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1. Hyperbolic problems

Wave equations with applications

utt = uxx wave equation
acoustics

ut + cux = 0 linear conservation law
fluids; traffic density

ut + uux = 0 nonlinear conservation law
waste water management

ut + uux = uxx viscous Burgers equation
seismics (parabolic wave equation)
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Wave equations with applications. . .

ut + uux = −uxxx Korteweg–de Vries’ (KdV) equation
soliton waves

utt = uxx − u Klein–Gordon equation
telegraph equation
quantum theory

iut = uxx Schrödinger equation
quantum theory

utt = −uxxxx beam equation
elastic vibrations
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Mathematics in geophysics Cascadia subduction

5 / 55



Shallow water equations Tsunami simulation (Cascadia, 1700)
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Pacific Ocean floor topography
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Flow in porous media Oil reservoir simulation
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Computational fluid dynamics A380 pressure and streamlines

9 / 55



Computational fluid dynamics RB4 F1 car (2008)
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Standard hyperbolic model problems

Wave equation utt = c2uxx or Advection equation ut + cux = 0

Conservation law ut + (f (u))x = 0 (inviscid flow)

d’Alembert solution u(t, x) = g(x − ct) solves ut + cux = 0,
because ut = −c · g ′ and ux = g ′

Solution u is constant on the characteristics x − ct = const.

The characteristics are straight lines in the solution domain
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Boundary conditions for ut + cux = 0

c > 0 c < 0
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Initial conditions are always required
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Example Traffic flow simulation

Let u(t, x) be car density (per unit distance)

Then total number of cars on road segment [a, b] is

N(t) =

∫ b

a
u dx

Non-overtaking cars at speed v gives car flux vu(t, x)

Hence Ṅ =
∫
ut dx = influx− outflux, implying∫ b

a
ut dx = vu(t, a)− vu(t, b) = −

∫ b

a

d(vu)

dx
dx
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Traffic flow conservation law

If v is constant, (vu)′ = vux . Hence conservation law∫ b

a
ut + vux dx = 0 ⇒ ut + vux = 0

Application “Green wave” traffic light control

More advanced model — if speed depends on u, then
(v(u)u)′ = v ′(u)ux + v(u)ux . Nonlinear conservation law

ut +
(
v(u) + v ′(u)

)
ux = 0

Interesting phenomena: Stau, pile-ups (shock waves), &c.
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2. The advection equation

ut + vux = 0

Relation to the wave equation utt = c2uxx

Factorize the differential operator

∂2

∂t2
− c2 ∂2

∂x2
=

(
∂

∂t
− c

∂

∂x

)
·
(
∂

∂t
+ c

∂

∂x

)
General d’Alembert solution for wave equation

u(t, x) = G1(x + ct) + G2(x − ct)

Waves going both left and right
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The advection equation Method of Lines

Method of lines semi-discretization (SD) of ut + ux = 0

u̇l(t) +
1

∆x

β∑
k=−α

akul+k(t) = 0

1. ux ≈ (unl − unl−1)/∆x backward difference

2. ux ≈ (unl+1 − unl )/∆x forward difference

3. ux ≈ (unl+1 − unl−1)/(2∆x) symmetric difference

4. ux ≈ ( 1
4u

n
l+1 + 5

6u
n
l −

3
2u

n
l−1 + 1

2u
n
l−2 −

1
12u

n
l−3)/∆x
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Upwind/downwind schemes

Upwind schemes use more points on the side that the information
is flowing from

For ut + cux = 0 with c > 0 information flows left→right:

1. ux ≈ (unl − unl−1)/∆x upwind

2. ux ≈ (unl+1 − unl )/∆x downwind

3. ux ≈ ( 1
2u

n
l+1 −

1
2u

n
l−1)/∆x symmetric

4. ux ≈ ( 1
4u

n
l+1 + 5

6u
n
l −

3
2u

n
l−1 + 1

2u
n
l−2 −

1
12u

n
l−3)/∆x upwind

Upwind is necessary for stability

With c < 0, scheme 1., 2. and 4. change character
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Consistency order Insert exact solution

The SD method is of consistent of order p if

1

∆x

β∑
k=−α

aku(t, x + k∆x) = ux(t, x) + O(∆xp)

Using Taylor expansion in forward shift operator Ex (see Chap. 2)

Theorem The SD method is of order p if and only if

a(z) :=

β∑
k=−α

akz
k = log z + O(|z − 1|p+1), z → 1
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Semidiscretizations for the advection equation

A semidiscretization of order p1 combined with order p2 time
stepping produces a method of consistency order p = min{p1, p2}

The structure of the Courant number is ∆t/∆x ≤ C

ut + ux = 0 →
∑

j cju
n+1−j
l

∆t
+

∑
k aku

n
l+k

∆x
= 0

Why is it ∆t/∆x2 < C in diffusion equation?
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Construction of FD schemes from SD

Let µ = ∆t/∆x and consider ut + ux = 0

1. ux ≈ (unl − unl−1)/∆x and ut ≈ (un+1
l − unl )/∆t gives the

upwind (Euler) scheme un+1
l = (1− µ) unl + µ unl−1

2. ux ≈ (unl+1 − unl )/∆x and ut ≈ (un+1
l − unl )/∆t gives the

downwind scheme un+1
l = (1 + µ) unl − µ unl+1

3. ux ≈ (un+1
l+1 − un+1

l−1 )/(2∆x) combined with the explicit

midpoint rule ut ≈ (un+2
l − unl )/(2∆t) gives the

leapfrog method un+2
l = µ (un+1

l−1 − un+1
l+1 ) + unl
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3. Classical FD schemes for ut + aux = 0

1. The Central difference scheme (always unstable!)

un+1
l − unl

∆t
+ a

unl+1 − unl−1

2∆x
= 0

leads to
un+1
l = unl +

aµ

2
(unl−1 − unl+1)

2. The Lax–Friedrichs scheme (convergent, p = 1)

un+1
l =

unl−1 + unl+1

2
+

aµ

2
(unl−1 − unl+1)

or

un+1
l =

1

2
(1 + aµ) unl−1 +

1

2
(1− aµ) unl+1
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Classical FD schemes for ut + aux = 0. . .

3. The Lax–Wendroff scheme (convergent, p = 2)

un+1
l =

aµ

2
(1 + aµ)unl−1 + (1− a2µ2)unl −

aµ

2
(1− aµ)unl+1

Uses auto upwinding dependent on Courant number µ and flow
direction a (method coefficients are not symmetric)

4. The Beam–Warming scheme (convergent, p = 2)

un+1
l =

aµ

2
(1− aµ)(2− aµ)unl + aµ(2− aµ)unl−1 −

aµ

2
(1− aµ)unl−2

Genuine upwind scheme (uses no downwind information)
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Derivation of the Lax–Wendroff scheme

u(t + ∆t, x) = u + ∆t ut +
∆t2

2
utt + . . .

But ut = −aux implies ∂t = −a∂x , hence utt = a2uxx and

u(t + ∆t, x) = u − a∆t ux +
a2∆t2

2
uxx + . . .

So, with Courant number µ = ∆t/∆x ,

un+1
l =

aµ

2
(1 + aµ)unl−1 + (1− a2µ2)unl −

aµ

2
(1− aµ)unl+1

2nd order accurate as it picks up the first three Taylor terms
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Lax–Wendroff computational stencil at aµ = 1/2

Participating mesh points

��
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1

��
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3/4 ��
��
−1/8

Note Asymmetric coefficients correspond to upwinding
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Lax–Wendroff computational stencil at aµ = 1

Participating mesh points

��
��

1
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��

1 ��
��

0 ��
��

0

Note Information transportation along characteristic

At aµ = 1 the Lax–Wendroff scheme solves ut + aux exactly

25 / 55



4. Periodic boundary conditions ut + ux = 0

In wave phenomena we often have periodicity in t and x . Periodic
boundary conditions are defined by u(t, 0) = u(t, 1) for all t ≥ 0

�
�
�
�
�

à
àà��à

t = 0

t = 1

u(0, x) = g(x)⇒ u(1, x) = g(x)

Dynamics on a torus. Stability analysis is relatively simple

Fourier – von Neumann stability analysis
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Lax–Wendroff Toeplitz matrix with periodic conditions

un+1 = A(aµ)un where A(aµ) is a circulant matrix

A(aµ) =


1− a2µ2 aµ

2 (aµ− 1) aµ
2 (aµ+ 1)

aµ
2 (aµ+ 1) 1− a2µ2 aµ

2 (aµ− 1)
. . .

aµ
2 (aµ− 1) aµ

2 (aµ+ 1) 1− a2µ2



t = 0

t = 1

u(0, x) = g(x)⇒ u(1, x) = g(x)

à à̀aà à
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Lax–Wendroff with periodic conditions aµ = 1

Taking aµ = 1, the matrix A(1) becomes a cyclic permutation

A(1) =


0 0 1
1 0 0

. . .

0 1 0

 ⇒ un+1
l = unl−1

�
�
�
�
�
�

t = 0

t = 1

u(t + ∆t, x) = u(t, x −∆x) = g(x)

Exact solution along characteristicà à̀aà à
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Lax–Wendroff with periodic conditions aµ = 1

• All permutation matrices P are orthogonal, i.e., P−1 = PT

• Therefore A(1)TA(1) = I , so ‖A(1)‖2 = ‖A(1)−1‖2 = 1

• Hence the Lax–Wendroff method is stable at aµ = 1

• The eigenvalues of A(1) are |λk [A(1)]| ≤ 1

• By the same token, |λk [A(1)−1]| = 1/|λk [A(1)]| ≤ 1

• Simple unimodular eigenvalues, λk [A(1)] = e2πik/N , k = 1 : N

• In forward or reverse time ‖un· ‖∆x = ‖u0
· ‖∆x for all n
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Advection equation Conservation law

This is in agreement with the conservation properties of ut = aux

∫ 1

0
uut dx = a

∫ 1

0
uux dx ⇒ 1

2

d‖u(t, ·)‖2
L2

dt
= a · 〈u, ux〉

Integrate by parts, using periodic boundary conditions

〈u, ux〉 = −〈ux , u〉 = −〈u, ux〉 = 0

So ux is always orthogonal to u, and for all t

d‖u(t, ·)‖2
L2

dt
= 0 ⇒ ‖u(t, ·)‖L2 = const.
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Circulant matrices

Structure of circulant matrices

C (κ) =


κ0 κ1 · · · κd−1

κd−1 κ0 · · · κd−2
...

...
κ1 κ2 · · · κ0


Circulant matrices are a special class of Toeplitz matrices

(Same element along each diagonal)
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Eigenvalues of circulant matrices

Theorem The eigenvalues of an N × N circulant matrix C are

λk [C ] =
N−1∑
j=0

κje
2kjπi/N

A finite difference scheme with periodic boundary conditions is
stable if and only if

|λk [A(aµ)]| ≤ 1

Fourier – von Neumann stability
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5. The wave equation

utt = uxx , 0 ≤ x ≤ 1, t ≥ 0

Initial conditions u(0, x) = g0(x), ut(0, x) = g1(x)
Dirichlet conditions u(t, 0) = φ0(t), u(t, 1) = φ1(t)

Can be rewritten as a 1st order system vt + Avx = 0 with

A =

[
0 1
1 0

]
, λ[A] = ±1

Direct semidiscretization

ül −
1

∆x2

β∑
k=−α

akul+k = 0
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The wave equation

Theorem The direct SD method is of order p if and only if

β∑
k=−α

akz
k = (log z)2 + O(|z − 1|p+2), z → 1

Analogous to first order case but the method for second order (in
time) equations must approximate (log z)2
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Methods for the wave equation

For a linear system of equations a one-sided upwind method
cannot be used if eigenvalues have different signs

What is “upwind” is determined by eigenvalue signs (which
determine the slopes of the characteristics)

Example ut + Aux = 0, A = VΛV−1, Λ = diag(1,−1)

May use Lax–Friedrichs and Lax–Wendroff, but not upwind Euler
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The vector advection equation

For ut + aux = 0, stability must be guaranteed by aµ

For a linear system of advection equations

ut + Aux = 0, 0 ≤ x ≤ 1, t ≥ 0

with matrix A = VΛV−1 with real eigenvalues λk [A],

ut + VΛV−1ux = 0

V−1ut + ΛV−1ux = 0

wt + Λwx = 0

µλk [A] must satisfy the CFL stability condition
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Direct semi- and full discretization of the wave equation

2nd order central difference uxx ≈ (ul−1 − 2ul + ul+1)/∆x2 gives
symmetric semidiscretization

ül = (ul−1 − 2ul + ul+1)/∆x2

equivalent to the ODE system

u̇ = v u0 = u(0, x)

v̇ = f (t, u) w0 = u̇(0, x)

Use explicit Euler/implicit Euler combination

un+1 = un + ∆t vn

vn+1 = vn + ∆t f (tn+1, u
n+1)
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The Störmer method

Eliminate v to get a Störmer method (p = 2)

un+2 − 2un+1 + un = ∆t2 f (tn+1, u
n+1)

and apply to the SD ül =
ul−1 − 2ul + ul+1

∆x2

With µ = ∆t/∆x we get the 2nd order leapfrog scheme

un+2
l − 2un+1

l + unl = µ2(un+1
l−1 − 2un+1

l + un+1
l+1 )

which is stable with Dirichlet conditions for 0 < µ ≤ 1

Note the 2nd-order time approximation un+2−2un+1+un

∆t2 ≈ ü(tn+1)
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Domain of dependence

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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Domain of dependence

∆t

∆x
= 0.75

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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Domain of dependence

∆t

∆x
= 0.75

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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Domain of dependence

∆t

∆x
= 0.75

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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Domain of dependence

∆t

∆x
= 1.0

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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Domain of dependence

∆t

∆x
= 1.5

Explicit time stepping gives CFL condition
∆t

∆x
/ 1

Numerical domain of dependence must cover the physical (and
hence mathematical) domain of dependence
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6. The inviscid Burgers equation

Nonlinear conservation law

ut + (
u2

2
)x = ut + uux = 0

with u(0, x) = g(x) and ‖g‖2
2 <∞ on [−∞,∞]

This solution is implicitly characterized by a d’Alembert solution

u(t, x) = g(x − ut)

for which

ut = −u · g ′ ; ux = g ′ ⇒ ut + uux = 0
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Inviscid Burgers. . .

Nonlinear conservation law

ut + uux = 0 ; u(0, x) = g(x)

Take t, x such that x − ut = const. Then ẋ(t) = u(t, x)

d

dt
u(t, x(t)) = ut + ux ẋ(t) = ut + uux = 0

Along a characteristic, du/dt = 0 ⇒ u(t, x) is constant

Characteristics are straight lines with slopes equal to the
magnitude of u
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Inviscid Burgers ut + uux = 0

Inner product 〈u, ut〉+ 〈u2, ux〉 = 0, using periodic bdry conditions

〈u2, ux〉 =

∫ 1

0
u2ux dx = −

∫ 1

0
2uuxu dx = −

∫ 1

0
2u2ux dx

Therefore,
〈u2, ux〉 = −2〈u2, ux〉 = 0

So ux is always orthogonal to u2, and for all t

d‖u(t, ·)‖2
L2

dt
= 0 ⇒ ‖u(t, ·)‖L2 = const.
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In fact. . .

With periodic boundary conditions, ux is orthogonal to up for all p

〈up, ux〉 = −〈pup−1ux , u〉 = −p〈up, ux〉

So (1 + p)〈up, ux〉 = 0, and if p 6= −1,

〈up, ux〉 = 0

What about p = −1? Then (without integrating by parts)

〈u−1, ux〉 =

∫ 1

0

ux
u

dx =

∫ u(1)

u(0)
d log u = 0
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Nonlinear conservation law ut + (f (u))x = 0

Inner product 〈u, ut〉+ 〈u, (f (u))x〉 = 0, using periodic boundary
conditions and integration by parts

〈u, (f (u))x〉 = −〈ux , f (u)〉 = −
∫ 1

0

du

dx
f (u)dx = −

∫ u(1)

u(0)
f (u) du

Therefore, 〈u, (f (u))x〉 = 0 and ‖u(t, ·)‖L2 = const. for all t ≥ 0

The L2-norm of the solution is conserved
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Characteristics g(x) = e−x
2

Characteristics may collide, creating a discontinuity (shock)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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One can determine u(t, x) by following the characteristic

45 / 55



The viscous Burgers equation ut + uux = ε uxx
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The viscous Burgers equation Characteristics

Note Characteristics collide – shock formation (discontinuity)
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7. Weak solutions of ut + f (u)x = 0

Let ϕ(t, x) be any C1 function with compact support

Multiply ut + f (u)x = 0 by ϕ and integrate∫ ∞
0

∫ ∞
−∞

(ϕut + ϕfx) dx dt = 0

Integrate by parts to see that a solution of the PDE satisfies∫ ∞
0

∫ ∞
−∞

(ϕtu + ϕx f (u))dx dt = −
∫ ∞
−∞

ϕ(0, x)u(0, x)dx

Definition u(t, x) is a weak solution of ut + f (u)x = 0 if it
satisfies the integral equation above
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The Riemann problem

ut + f (u)x = 0 + piecewise constant data

Example Burgers inviscid equation ut + uux = 0 with

u(x , 0) =

{
ul , x < 0
ur , x > 0

The solution depends on relation between ul and ur


ul > ur unique weak solution

ul < ur infinitely many weak solutions, among which
one is stable with respect to perturbations
and physically relevant
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Solutions of the Riemann problem Shocks

A shock is a discontinuous solution

This occurs for ul > ur when

u(t, x) =

{
ul , x < s · t
ur , x > s · t

where s = (ul + ur )/2 is the shock speed

Note The shock propagates undamped with speed s in the
inviscid Burgers equation
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Riemann problem Rarefaction waves

If ul < ur , there is no shock but a rarefaction wave instead

u(x , t) =


ul , x < ul t
x/t, ul t < x < ur t
ur , x > ur t

Note The rarefaction wave is continuous but not differentiable.
Characteristics “fan out” instead of colliding
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The Godunov method Finite Volume Method

Approximate the solution locally by a piecewise constant function

ut + f (u)x = 0 ; u(x , 0) = g(x)

Define a piecewise constant initial value approximation w [0](x , 0)
for x ∈ (xl−1/2, xl+1/2] with average

u0
l =

1

∆x

∫ xl+1/2

xl−1/2

g(x)dx

Thus w [0](x , 0) has a discontinuity at the center of [xl−1, xl ]
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Godunov method. . .

With piecewise constant data w [0](x , 0) in each cell [xl−1, xl ],
construct w [0](t, x) for 0 ≤ t ≤ t1 by solving the corresponding
Riemann problem exactly

Define the approximate solution at t1 by taking

u1
l =

1

∆x

∫ xl+1/2

xl−1/2

w [0](x , t1) dx

Proceed to construct a new piecewise constant function
w [1](t1, x) := u1

l for x ∈ (xl−1/2, xl+1/2]
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Godunov method. . .

Cell averages are easy to compute, resulting in

un+1
l = unl − µn[F (unl , u

n
l+1)− F (unl−1, u

n
l )]

where µn = ∆tn/∆x and the flux integral

F (unl , u
n
l+1) =

1

∆tn

∫ tn+1

tn

f (w [n](xl+1/2, t))dt

Note This integral is trivial to compute because w [n] is constant
at xl+1/2 for t ∈ (tn, tn+1)
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John von Neumann 1903 – 1957 IAS, Princeton 1952

The end . . . and the beginning!
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