Numerical Methods for Differential Equations
 Chapter 6: PDEs - Waves and hyperbolics

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

1. Hyperbolic problems
2. The advection equation
3. Classical finite difference schemes
4. Periodic boundary conditions
5. The wave equation
6. The inviscid Burgers equation
7. Weak solutions and shocks
8. The Godunov method

1. Hyperbolic problems

Wave equations with applications

$$
\begin{array}{ll}
u_{t t}=u_{x x} & \begin{array}{l}
\text { wave equation } \\
\text { acoustics }
\end{array} \\
u_{t}+c u_{x}=0 & \begin{array}{l}
\text { linear conservation law } \\
\text { fluids; traffic density }
\end{array} \\
u_{t}+u u_{x}=0 & \begin{array}{l}
\text { nonlinear conservation law } \\
\text { waste water management }
\end{array} \\
u_{t}+u u_{x}=u_{x x} & \begin{array}{l}
\text { viscous Burgers equation } \\
\text { seismics (parabolic wave equation) }
\end{array}
\end{array}
$$

Wave equations with applications. . .

$$
\begin{array}{cl}
u_{t}+u u_{x}=-u_{x x x} & \begin{array}{l}
\text { Korteweg-de Vries' (KdV) equation } \\
\text { soliton waves }
\end{array} \\
u_{t t}=u_{x x}-u & \begin{array}{l}
\text { Klein-Gordon equation } \\
\text { telegraph equation } \\
\text { quantum theory }
\end{array} \\
i u_{t}=u_{x x} \quad \begin{array}{l}
\text { Schrödinger equation } \\
\text { quantum theory }
\end{array} \\
u_{t t}=-u_{x x x x} \quad \begin{array}{l}
\text { beam equation } \\
\text { elastic vibrations }
\end{array}
\end{array}
$$

Shallow water equations

Tsunami simulation (Cascadia, 1700)

Pacific Ocean floor topography

Flow in porous media

Computational fluid dynamics

A380 pressure and streamlines

Computational fluid dynamics

RB4 F1 car (2008)

Standard hyperbolic model problems

Wave equation $u_{t t}=c^{2} u_{x x}$ or Advection equation $u_{t}+c u_{x}=0$
Conservation law $u_{t}+(f(u))_{x}=0$ (inviscid flow)
d'Alembert solution $u(t, x)=g(x-c t)$ solves $u_{t}+c u_{x}=0$, because $u_{t}=-c \cdot g^{\prime}$ and $u_{x}=g^{\prime}$

Solution u is constant on the characteristics $x-c t=$ const.

The characteristics are straight lines in the solution domain

Boundary conditions for $u_{t}+c u_{x}=0$

$$
c>0
$$

Bdry cond's at $\quad x=0$
$c<0$

Bdry cond's at $\quad x=1$

Initial conditions are always required

Example

Let $u(t, x)$ be car density (per unit distance)
Then total number of cars on road segment $[a, b]$ is

$$
N(t)=\int_{a}^{b} u \mathrm{~d} x
$$

Non-overtaking cars at speed v gives car flux $v u(t, x)$
Hence $\dot{N}=\int u_{t} \mathrm{~d} x=$ influx - outflux, implying

$$
\int_{a}^{b} u_{t} \mathrm{~d} x=v u(t, a)-v u(t, b)=-\int_{a}^{b} \frac{\mathrm{~d}(v u)}{\mathrm{d} x} \mathrm{~d} x
$$

Traffic flow conservation law

If v is constant, $(v u)^{\prime}=v u_{x}$. Hence conservation law

$$
\int_{a}^{b} u_{t}+v u_{x} \mathrm{~d} x=0 \Rightarrow u_{t}+v u_{x}=0
$$

Application "Green wave" traffic light control

More advanced model - if speed depends on u, then $(v(u) u)^{\prime}=v^{\prime}(u) u_{x}+v(u) u_{x}$. Nonlinear conservation law

$$
u_{t}+\left(v(u)+v^{\prime}(u)\right) u_{x}=0
$$

Interesting phenomena: Stau, pile-ups (shock waves), \&c.

2. The advection equation

$$
u_{t}+v u_{x}=0
$$

Relation to the wave equation $u_{t t}=c^{2} u_{x x}$
Factorize the differential operator

$$
\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) \cdot\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)
$$

General d'Alembert solution for wave equation

$$
u(t, x)=G_{1}(x+c t)+G_{2}(x-c t)
$$

Waves going both left and right

The advection equation

Method of lines semi-discretization (SD) of $u_{t}+u_{x}=0$

$$
\dot{u}_{l}(t)+\frac{1}{\Delta x} \sum_{k=-\alpha}^{\beta} a_{k} u_{l+k}(t)=0
$$

1. $u_{x} \approx\left(u_{l}^{n}-u_{l-1}^{n}\right) / \Delta x \quad$ backward difference
2. $u_{x} \approx\left(u_{l+1}^{n}-u_{l}^{n}\right) / \Delta x \quad$ forward difference
3. $u_{x} \approx\left(u_{l+1}^{n}-u_{l-1}^{n}\right) /(2 \Delta x)$ symmetric difference
4. $u_{x} \approx\left(\frac{1}{4} u_{l+1}^{n}+\frac{5}{6} u_{l}^{n}-\frac{3}{2} u_{l-1}^{n}+\frac{1}{2} u_{l-2}^{n}-\frac{1}{12} u_{l-3}^{n}\right) / \Delta x$

Upwind/downwind schemes

Upwind schemes use more points on the side that the information is flowing from

For $u_{t}+c u_{x}=0$ with $c>0$ information flows left \rightarrow right:

$$
\begin{array}{lr}
\text { 1. } u_{x} \approx\left(u_{l}^{n}-u_{l-1}^{n}\right) / \Delta x & \text { upwind } \\
\text { 2. } u_{x} \approx\left(u_{l+1}^{n}-u_{l}^{n}\right) / \Delta x & \text { downwind } \\
\text { 3. } u_{x} \approx\left(\frac{1}{2} u_{l+1}^{n}-\frac{1}{2} u_{l-1}^{n}\right) / \Delta x & \text { symmetric } \\
\text { 4. } u_{x} \approx\left(\frac{1}{4} u_{l+1}^{n}+\frac{5}{6} u_{l}^{n}-\frac{3}{2} u_{l-1}^{n}+\frac{1}{2} u_{l-2}^{n}-\frac{1}{12} u_{l-3}^{n}\right) / \Delta x & \text { upwind }
\end{array}
$$

Upwind is necessary for stability
With $c<0$, scheme 1., 2. and 4. change character

Consistency order

Insert exact solution

The SD method is of consistent of order p if

$$
\frac{1}{\Delta x} \sum_{k=-\alpha}^{\beta} a_{k} u(t, x+k \Delta x)=u_{x}(t, x)+\mathrm{O}\left(\Delta x^{p}\right)
$$

Using Taylor expansion in forward shift operator E_{X} (see Chap. 2)

Theorem The SD method is of order p if and only if

$$
a(z):=\sum_{k=-\alpha}^{\beta} a_{k} z^{k}=\log z+\mathrm{O}\left(|z-1|^{p+1}\right), \quad z \rightarrow 1
$$

Semidiscretizations for the advection equation

A semidiscretization of order p_{1} combined with order p_{2} time stepping produces a method of consistency order $p=\min \left\{p_{1}, p_{2}\right\}$

The structure of the Courant number is $\Delta t / \Delta x \leq C$

$$
u_{t}+u_{x}=0 \quad \rightarrow \quad \frac{\sum_{j} c_{j} u_{l}^{n+1-j}}{\Delta t}+\frac{\sum_{k} a_{k} u_{l+k}^{n}}{\Delta x}=0
$$

Why is it $\Delta t / \Delta x^{2}<C$ in diffusion equation?

Construction of FD schemes from SD

Let $\mu=\Delta t / \Delta x$ and consider $u_{t}+u_{x}=0$

1. $u_{x} \approx\left(u_{l}^{n}-u_{l-1}^{n}\right) / \Delta x$ and $u_{t} \approx\left(u_{l}^{n+1}-u_{l}^{n}\right) / \Delta t$ gives the upwind (Euler) scheme $u_{l}^{n+1}=(1-\mu) u_{l}^{n}+\mu u_{l-1}^{n}$
2. $u_{x} \approx\left(u_{l+1}^{n}-u_{l}^{n}\right) / \Delta x$ and $u_{t} \approx\left(u_{l}^{n+1}-u_{l}^{n}\right) / \Delta t$ gives the downwind scheme $u_{l}^{n+1}=(1+\mu) u_{l}^{n}-\mu u_{l+1}^{n}$
3. $u_{x} \approx\left(u_{l+1}^{n+1}-u_{l-1}^{n+1}\right) /(2 \Delta x)$ combined with the explicit midpoint rule $u_{t} \approx\left(u_{l}^{n+2}-u_{l}^{n}\right) /(2 \Delta t)$ gives the leapfrog method $u_{l}^{n+2}=\mu\left(u_{l-1}^{n+1}-u_{l+1}^{n+1}\right)+u_{l}^{n}$

3. Classical FD schemes for $u_{t}+a u_{x}=0$

1. The Central difference scheme (always unstable!)

$$
\frac{u_{l}^{n+1}-u_{l}^{n}}{\Delta t}+a \frac{u_{l+1}^{n}-u_{l-1}^{n}}{2 \Delta x}=0
$$

leads to

$$
u_{l}^{n+1}=u_{l}^{n}+\frac{a \mu}{2}\left(u_{l-1}^{n}-u_{l+1}^{n}\right)
$$

2. The Lax-Friedrichs scheme (convergent, $p=1$)

$$
u_{l}^{n+1}=\frac{u_{l-1}^{n}+u_{l+1}^{n}}{2}+\frac{a \mu}{2}\left(u_{l-1}^{n}-u_{l+1}^{n}\right)
$$

or

$$
u_{l}^{n+1}=\frac{1}{2}(1+a \mu) u_{l-1}^{n}+\frac{1}{2}(1-a \mu) u_{l+1}^{n}
$$

Classical FD schemes for $u_{t}+a u_{x}=0 \ldots$

3. The Lax-Wendroff scheme (convergent, $p=2$)

$$
u_{l}^{n+1}=\frac{a \mu}{2}(1+a \mu) u_{l-1}^{n}+\left(1-a^{2} \mu^{2}\right) u_{l}^{n}-\frac{a \mu}{2}(1-a \mu) u_{l+1}^{n}
$$

Uses auto upwinding dependent on Courant number μ and flow direction a (method coefficients are not symmetric)
4. The Beam-Warming scheme (convergent, $p=2$)
$u_{l}^{n+1}=\frac{a \mu}{2}(1-a \mu)(2-a \mu) u_{l}^{n}+a \mu(2-a \mu) u_{l-1}^{n}-\frac{a \mu}{2}(1-a \mu) u_{l-2}^{n}$
Genuine upwind scheme (uses no downwind information)

Derivation of the Lax-Wendroff scheme

$$
u(t+\Delta t, x)=u+\Delta t u_{t}+\frac{\Delta t^{2}}{2} u_{t t}+\ldots
$$

But $u_{t}=-a u_{x}$ implies $\partial_{t}=-a \partial_{x}$, hence $u_{t t}=a^{2} u_{x x}$ and

$$
u(t+\Delta t, x)=u-a \Delta t u_{x}+\frac{a^{2} \Delta t^{2}}{2} u_{x x}+\ldots
$$

So, with Courant number $\mu=\Delta t / \Delta x$,

$$
u_{l}^{n+1}=\frac{a \mu}{2}(1+a \mu) u_{l-1}^{n}+\left(1-a^{2} \mu^{2}\right) u_{l}^{n}-\frac{a \mu}{2}(1-a \mu) u_{l+1}^{n}
$$

2nd order accurate as it picks up the first three Taylor terms

Lax-Wendroff computational stencil at $a \mu=1 / 2$

Participating mesh points

Note Asymmetric coefficients correspond to upwinding

Lax-Wendroff computational stencil at $a \mu=1$

Participating mesh points

Note Information transportation along characteristic

At $a \mu=1$ the Lax-Wendroff scheme solves $u_{t}+a u_{x}$ exactly

4. Periodic boundary conditions

In wave phenomena we often have periodicity in t and x. Periodic boundary conditions are defined by $u(t, 0)=u(t, 1)$ for all $t \geq 0$

$$
u(0, x)=g(x) \Rightarrow u(1, x)=g(x)
$$

Dynamics on a torus. Stability analysis is relatively simple
Fourier - von Neumann stability analysis

Lax-Wendroff Toeplitz matrix with periodic conditions

$u^{n+1}=A(a \mu) u^{n}$ where $A(a \mu)$ is a circulant matrix

$$
A(a \mu)=\left(\begin{array}{cccc}
1-a^{2} \mu^{2} & \frac{a \mu}{2}(a \mu-1) & & \frac{a \mu}{2}(a \mu+1) \\
\frac{a \mu}{2}(a \mu+1) & 1-a^{2} \mu^{2} & \frac{a \mu}{2}(a \mu-1) & \\
& \ddots & & \\
\frac{a \mu}{2}(a \mu-1) & & \frac{a \mu}{2}(a \mu+1) & 1-a^{2} \mu^{2}
\end{array}\right)
$$

$$
u(0, x)=g(x) \Rightarrow u(1, x)=g(x)
$$

Lax-Wendroff with periodic conditions

Taking $a \mu=1$, the matrix $A(1)$ becomes a cyclic permutation

$$
A(1)=\left(\begin{array}{cccc}
0 & 0 & & 1 \\
1 & 0 & 0 & \\
& \ddots & & \\
0 & & 1 & 0
\end{array}\right) \quad \Rightarrow \quad u_{l}^{n+1}=u_{l-1}^{n}
$$

Exact solution along characteristic

$$
u(t+\Delta t, x)=u(t, x-\Delta x)=g(x)
$$

Lax-Wendroff with periodic conditions

- All permutation matrices P are orthogonal, i.e., $P^{-1}=P^{T}$
- Therefore $A(1)^{\mathrm{T}} A(1)=I$, so $\|A(1)\|_{2}=\left\|A(1)^{-1}\right\|_{2}=1$
- Hence the Lax-Wendroff method is stable at $a \mu=1$
- The eigenvalues of $A(1)$ are $\left|\lambda_{k}[A(1)]\right| \leq 1$
- By the same token, $\left|\lambda_{k}\left[A(1)^{-1}\right]\right|=1 /\left|\lambda_{k}[A(1)]\right| \leq 1$
- Simple unimodular eigenvalues, $\lambda_{k}[A(1)]=\mathrm{e}^{2 \pi \mathrm{i} k / N}, k=1: N$
- In forward or reverse time $\left\|u^{n}\right\|_{\Delta x}=\left\|u^{0}\right\|_{\Delta x}$ for all n

Advection equation

Conservation law

This is in agreement with the conservation properties of $u_{t}=a u_{x}$

$$
\int_{0}^{1} u u_{t} \mathrm{~d} x=a \int_{0}^{1} u u_{x} \mathrm{~d} x \Rightarrow \frac{1}{2} \frac{\mathrm{~d}\|u(t, \cdot)\|_{L^{2}}^{2}}{\mathrm{~d} t}=a \cdot\left\langle u, u_{x}\right\rangle
$$

Integrate by parts, using periodic boundary conditions

$$
\left\langle u, u_{x}\right\rangle=-\left\langle u_{x}, u\right\rangle=-\left\langle u, u_{x}\right\rangle=0
$$

So u_{x} is always orthogonal to u, and for all t

$$
\frac{\mathrm{d}\|u(t, \cdot)\|_{L^{2}}^{2}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad\|u(t, \cdot)\|_{L^{2}}=\text { const. }
$$

Circulant matrices

Structure of circulant matrices

$$
C(\kappa)=\left(\begin{array}{cccc}
\kappa_{0} & \kappa_{1} & \cdots & \kappa_{d-1} \\
\kappa_{d-1} & \kappa_{0} & \cdots & \kappa_{d-2} \\
\vdots & & & \vdots \\
\kappa_{1} & \kappa_{2} & \cdots & \kappa_{0}
\end{array}\right)
$$

Circulant matrices are a special class of Toeplitz matrices
(Same element along each diagonal)

Eigenvalues of circulant matrices

Theorem The eigenvalues of an $N \times N$ circulant matrix C are

$$
\lambda_{k}[C]=\sum_{j=0}^{N-1} \kappa_{j} \mathrm{e}^{2 k j \pi i / N}
$$

A finite difference scheme with periodic boundary conditions is stable if and only if

$$
\left|\lambda_{k}[A(a \mu)]\right| \leq 1
$$

Fourier - von Neumann stability

5. The wave equation

$$
u_{t t}=u_{x x}, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

Initial conditions $u(0, x)=g_{0}(x), \quad u_{t}(0, x)=g_{1}(x)$
Dirichlet conditions $u(t, 0)=\phi_{0}(t), \quad u(t, 1)=\phi_{1}(t)$
Can be rewritten as a 1 st order system $v_{t}+A v_{x}=0$ with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \lambda[A]= \pm 1
$$

Direct semidiscretization

$$
\ddot{u}_{l}-\frac{1}{\Delta x^{2}} \sum_{k=-\alpha}^{\beta} a_{k} u_{I+k}=0
$$

The wave equation

Theorem The direct SD method is of order p if and only if

$$
\sum_{k=-\alpha}^{\beta} a_{k} z^{k}=(\log z)^{2}+\mathrm{O}\left(|z-1|^{p+2}\right), z \rightarrow 1
$$

Analogous to first order case but the method for second order (in time) equations must approximate $(\log z)^{2}$

Methods for the wave equation

For a linear system of equations a one-sided upwind method cannot be used if eigenvalues have different signs

What is "upwind" is determined by eigenvalue signs (which determine the slopes of the characteristics)

Example $\quad u_{t}+A u_{x}=0, \quad A=V \wedge V^{-1}, \quad \Lambda=\operatorname{diag}(1,-1)$

May use Lax-Friedrichs and Lax-Wendroff, but not upwind Euler

The vector advection equation

For $u_{t}+a u_{x}=0$, stability must be guaranteed by $a \mu$
For a linear system of advection equations

$$
u_{t}+A u_{x}=0, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

with matrix $A=V \wedge V^{-1}$ with real eigenvalues $\lambda_{k}[A]$,

$$
\begin{aligned}
u_{t}+V \Lambda V^{-1} u_{x} & =0 \\
V^{-1} u_{t}+\Lambda V^{-1} u_{x} & =0 \\
w_{t}+\Lambda w_{x} & =0
\end{aligned}
$$

$\mu \lambda_{k}[A]$ must satisfy the CFL stability condition

Direct semi- and full discretization of the wave equation

2nd order central difference $u_{x x} \approx\left(u_{I-1}-2 u_{l}+u_{l+1}\right) / \Delta x^{2}$ gives symmetric semidiscretization

$$
\ddot{u}_{l}=\left(u_{l-1}-2 u_{l}+u_{l+1}\right) / \Delta x^{2}
$$

equivalent to the ODE system

$$
\begin{array}{ll}
\dot{u}=v & u_{0}=u(0, x) \\
\dot{v}=f(t, u) & w_{0}=\dot{u}(0, x)
\end{array}
$$

Use explicit Euler/implicit Euler combination

$$
\begin{aligned}
& u^{n+1}=u^{n}+\Delta t v^{n} \\
& v^{n+1}=v^{n}+\Delta t f\left(t_{n+1}, u^{n+1}\right)
\end{aligned}
$$

The Störmer method

Eliminate v to get a Störmer method $(p=2)$

$$
u^{n+2}-2 u^{n+1}+u^{n}=\Delta t^{2} f\left(t_{n+1}, u^{n+1}\right)
$$

and apply to the SD $\ddot{u}_{l}=\frac{u_{l-1}-2 u_{l}+u_{l+1}}{\Delta x^{2}}$

With $\mu=\Delta t / \Delta x$ we get the 2 nd order leapfrog scheme

$$
u_{l}^{n+2}-2 u_{l}^{n+1}+u_{l}^{n}=\mu^{2}\left(u_{l-1}^{n+1}-2 u_{l}^{n+1}+u_{l+1}^{n+1}\right)
$$

which is stable with Dirichlet conditions for $0<\mu \leq 1$

Note the 2nd-order time approximation $\frac{u^{n+2}-2 u^{n+1}+u^{n}}{\Delta t^{2}} \approx \ddot{u}\left(t_{n+1}\right)$

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

Domain of dependence

Explicit time stepping gives CFL condition $\frac{\Delta t}{\Delta x} \lesssim 1$
Numerical domain of dependence must cover the physical (and hence mathematical) domain of dependence

6. The inviscid Burgers equation

Nonlinear conservation law

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=u_{t}+u u_{x}=0
$$

with $u(0, x)=g(x)$ and $\|g\|_{2}^{2}<\infty$ on $[-\infty, \infty]$

This solution is implicitly characterized by a d'Alembert solution

$$
u(t, x)=g(x-u t)
$$

for which

$$
u_{t}=-u \cdot g^{\prime} ; \quad u_{x}=g^{\prime} \quad \Rightarrow \quad u_{t}+u u_{x}=0
$$

Inviscid Burgers. . .

Nonlinear conservation law

$$
u_{t}+u u_{x}=0 ; \quad u(0, x)=g(x)
$$

Take t, x such that $x-u t=$ const. Then $\dot{x}(t)=u(t, x)$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} u(t, x(t))=u_{t}+u_{x} \dot{x}(t)=u_{t}+u u_{x}=0
$$

Along a characteristic, $\mathrm{d} u / \mathrm{d} t=0 \Rightarrow u(t, x)$ is constant
Characteristics are straight lines with slopes equal to the magnitude of u

Inviscid Burgers

$u_{t}+u u_{x}=0$

Inner product $\left\langle u, u_{t}\right\rangle+\left\langle u^{2}, u_{x}\right\rangle=0$, using periodic bdry conditions

$$
\left\langle u^{2}, u_{x}\right\rangle=\int_{0}^{1} u^{2} u_{x} \mathrm{~d} x=-\int_{0}^{1} 2 u u_{x} u \mathrm{~d} x=-\int_{0}^{1} 2 u^{2} u_{x} \mathrm{~d} x
$$

Therefore,

$$
\left\langle u^{2}, u_{x}\right\rangle=-2\left\langle u^{2}, u_{x}\right\rangle=0
$$

So u_{x} is always orthogonal to u^{2}, and for all t

$$
\frac{\mathrm{d}\|u(t, \cdot)\|_{L^{2}}^{2}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad\|u(t, \cdot)\|_{L^{2}}=\text { const. }
$$

In fact...

With periodic boundary conditions, u_{x} is orthogonal to u^{p} for all p

$$
\left\langle u^{p}, u_{x}\right\rangle=-\left\langle p u^{p-1} u_{x}, u\right\rangle=-p\left\langle u^{p}, u_{x}\right\rangle
$$

So $(1+p)\left\langle u^{p}, u_{x}\right\rangle=0$, and if $p \neq-1$,

$$
\left\langle u^{p}, u_{x}\right\rangle=0
$$

What about $p=-1$? Then (without integrating by parts)

$$
\left\langle u^{-1}, u_{x}\right\rangle=\int_{0}^{1} \frac{u_{x}}{u} \mathrm{~d} x=\int_{u(0)}^{u(1)} \mathrm{d} \log u=0
$$

Inner product $\left\langle u, u_{t}\right\rangle+\left\langle u,(f(u))_{x}\right\rangle=0$, using periodic boundary conditions and integration by parts

$$
\left\langle u,(f(u))_{x}\right\rangle=-\left\langle u_{x}, f(u)\right\rangle=-\int_{0}^{1} \frac{\mathrm{~d} u}{\mathrm{~d} x} f(u) \mathrm{d} x=-\int_{u(0)}^{u(1)} f(u) \mathrm{d} u
$$

Therefore, $\left\langle u,(f(u))_{x}\right\rangle=0$ and $\|u(t, \cdot)\|_{L^{2}}=$ const. for all $t \geq 0$
The L^{2}-norm of the solution is conserved

Characteristics

$$
g(x)=\mathrm{e}^{-x^{2}}
$$

Characteristics may collide, creating a discontinuity (shock)

One can determine $u(t, x)$ by following the characteristic

The viscous Burgers equation

$u_{t}+u u_{x}=\varepsilon u_{x x}$

The viscous Burgers equation

Characteristics

Note Characteristics collide - shock formation (discontinuity)

7. Weak solutions of $u_{t}+f(u)_{x}=0$

Let $\varphi(t, x)$ be any C^{1} function with compact support
Multiply $u_{t}+f(u)_{x}=0$ by φ and integrate

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\varphi u_{t}+\varphi f_{x}\right) \mathrm{d} x \mathrm{~d} t=0
$$

Integrate by parts to see that a solution of the PDE satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\varphi_{t} u+\varphi_{x} f(u)\right) \mathrm{d} x \mathrm{~d} t=-\int_{-\infty}^{\infty} \varphi(0, x) u(0, x) \mathrm{d} x
$$

Definition $u(t, x)$ is a weak solution of $u_{t}+f(u)_{x}=0$ if it satisfies the integral equation above

The Riemann problem

$u_{t}+f(u)_{x}=0+$ piecewise constant data
Example Burgers inviscid equation $u_{t}+u u_{x}=0$ with

$$
u(x, 0)= \begin{cases}u_{l}, & x<0 \\ u_{r}, & x>0\end{cases}
$$

The solution depends on relation between u_{l} and u_{r}
$\begin{cases}u_{l}>u_{r} & \text { unique weak solution } \\ u_{l}<u_{r} & \text { infinitely many weak solutions, among which } \\ \quad \begin{array}{l}\text { one is stable with respect to perturbations } \\ \text { and physically relevant }\end{array}\end{cases}$

Solutions of the Riemann problem

A shock is a discontinuous solution
This occurs for $u_{l}>u_{r}$ when

$$
u(t, x)= \begin{cases}u_{l}, & x<s \cdot t \\ u_{r}, & x>s \cdot t\end{cases}
$$

where $s=\left(u_{l}+u_{r}\right) / 2$ is the shock speed

Note The shock propagates undamped with speed s in the inviscid Burgers equation

Riemann problem

Rarefaction waves

If $u_{l}<u_{r}$, there is no shock but a rarefaction wave instead

$$
u(x, t)= \begin{cases}u_{I}, & x<u_{I} t \\ x / t, & u_{I} t<x<u_{r} t \\ u_{r}, & x>u_{r} t\end{cases}
$$

Note The rarefaction wave is continuous but not differentiable. Characteristics "fan out" instead of colliding

The Godunov method

Approximate the solution locally by a piecewise constant function

$$
u_{t}+f(u)_{x}=0 ; \quad u(x, 0)=g(x)
$$

Define a piecewise constant initial value approximation $w^{[0]}(x, 0)$ for $x \in\left(x_{I-1 / 2}, x_{I+1 / 2}\right]$ with average

$$
u_{l}^{0}=\frac{1}{\Delta x} \int_{x_{l-1 / 2}}^{x_{l+1 / 2}} g(x) \mathrm{d} x
$$

Thus $w^{[0]}(x, 0)$ has a discontinuity at the center of $\left[x_{l-1}, x_{l}\right]$

Godunov method. . .

With piecewise constant data $w^{[0]}(x, 0)$ in each cell $\left[x_{I-1}, x_{l}\right]$, construct $w^{[0]}(t, x)$ for $0 \leq t \leq t_{1}$ by solving the corresponding Riemann problem exactly

Define the approximate solution at t_{1} by taking

$$
u_{l}^{1}=\frac{1}{\Delta x} \int_{x_{l-1 / 2}}^{x_{l+1 / 2}} w^{[0]}\left(x, t_{1}\right) \mathrm{d} x
$$

Proceed to construct a new piecewise constant function $w^{[1]}\left(t_{1}, x\right):=u_{l}^{1}$ for $x \in\left(x_{I-1 / 2}, x_{l+1 / 2}\right]$

Godunov method. . .

Cell averages are easy to compute, resulting in

$$
u_{l}^{n+1}=u_{l}^{n}-\mu_{n}\left[F\left(u_{l}^{n}, u_{l+1}^{n}\right)-F\left(u_{l-1}^{n}, u_{l}^{n}\right)\right]
$$

where $\mu_{n}=\Delta t_{n} / \Delta x$ and the flux integral

$$
F\left(u_{l}^{n}, u_{l+1}^{n}\right)=\frac{1}{\Delta t_{n}} \int_{t_{n}}^{t_{n+1}} f\left(w^{[n]}\left(x_{l+1 / 2}, t\right)\right) \mathrm{d} t
$$

Note This integral is trivial to compute because $w^{[n]}$ is constant at $x_{l+1 / 2}$ for $t \in\left(t_{n}, t_{n+1}\right)$

John von Neumann 1903-1957

The end ... and the beginning!

