Numerical Methods for Differential Equations Chapter 6: PDEs – Waves and hyperbolics

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

Contents

- 1. Hyperbolic problems
- 2. The advection equation
- 3. Classical finite difference schemes
- 4. Periodic boundary conditions
- 5. The wave equation
- 6. The inviscid Burgers equation
- 7. Weak solutions and shocks
- 8. The Godunov method

1. Hyperbolic problems

Wave equations with applications

 $u_{tt} = u_{xx}$ wave equation acoustics

- $u_t + cu_x = 0$ linear conservation law *fluids; traffic density*
- $u_t + uu_x = 0$ nonlinear conservation law waste water management
- $u_t + uu_x = u_{xx}$ viscous Burgers equation seismics (parabolic wave equation)

Wave equations with applications...

 $u_t + uu_x = -u_{xxx}$ Korteweg-de Vries' (KdV) equation soliton waves

- $u_{tt} = u_{xx} u$ Klein–Gordon equation telegraph equation quantum theory
 - $iu_t = u_{xx}$ Schrödinger equation quantum theory
- $u_{tt} = -u_{xxxx}$ beam equation elastic vibrations

Mathematics in geophysics

Cascadia subduction

Shallow water equations *Tsunami simulation (Cascadia, 1700)*

Pacific Ocean floor topography

Flow in porous media

Oil reservoir simulation

Computational fluid dynamics A380 pressure and streamlines

Computational fluid dynamics

RB4 F1 car (2008)

Standard hyperbolic model problems

Wave equation $u_{tt} = c^2 u_{xx}$ or Advection equation $u_t + cu_x = 0$

Conservation law $u_t + (f(u))_x = 0$ (inviscid flow)

d'Alembert solution u(t, x) = g(x - ct) solves $u_t + cu_x = 0$, because $u_t = -c \cdot g'$ and $u_x = g'$

Solution *u* is constant on the characteristics x - ct = const.

The characteristics are straight lines in the solution domain

Boundary conditions for $u_t + cu_x = 0$

c > 0

c < 0

Initial conditions are always required

Example

Let u(t, x) be car density (per unit distance)

Then total number of cars on road segment [a, b] is

$$N(t) = \int_a^b u \, \mathrm{d}x$$

Non-overtaking cars at speed v gives car flux vu(t, x)

Hence $N = \int u_t \, dx = influx - outflux$, implying

$$\int_a^b u_t \, \mathrm{d}x = v u(t, a) - v u(t, b) = - \int_a^b \frac{\mathrm{d}(v u)}{\mathrm{d}x} \, \mathrm{d}x$$

Traffic flow conservation law

If v is constant, $(vu)' = vu_x$. Hence *conservation law* $\int_a^b u_t + vu_x \, dx = 0 \quad \Rightarrow \quad u_t + vu_x = 0$ Application "Green wave" traffic light control

More advanced model — if speed depends on u, then $(v(u)u)' = v'(u)u_x + v(u)u_x$. Nonlinear conservation law

 $u_t + (v(u) + v'(u))u_x = 0$

Interesting phenomena: Stau, pile-ups (shock waves), &c.

2. The advection equation

 $u_t + v u_x = 0$

Relation to the wave equation $u_{tt} = c^2 u_{xx}$

Factorize the differential operator

$$\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x}\right) \cdot \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x}\right)$$

General d'Alembert solution for wave equation

$$u(t,x) = G_1(x+ct) + G_2(x-ct)$$

Waves going both left and right

The advection equation

Method of Lines

Method of lines semi-discretization (SD) of $u_t + u_x = 0$

$$\dot{u}_l(t) + \frac{1}{\Delta x} \sum_{k=-\alpha}^{\beta} a_k u_{l+k}(t) = 0$$

1.
$$u_x \approx (u_l^n - u_{l-1}^n)/\Delta x$$
backward difference2. $u_x \approx (u_{l+1}^n - u_l^n)/\Delta x$ forward difference3. $u_x \approx (u_{l+1}^n - u_{l-1}^n)/(2\Delta x)$ symmetric difference4. $u_x \approx (\frac{1}{4}u_{l+1}^n + \frac{5}{6}u_l^n - \frac{3}{2}u_{l-1}^n + \frac{1}{2}u_{l-2}^n - \frac{1}{12}u_{l-3}^n)/\Delta x$

Upwind/downwind schemes

Upwind schemes use more points on the side that the information is flowing from

For $u_t + cu_x = 0$ with c > 0 information flows left \rightarrow right:

1.
$$u_x \approx (u_l^n - u_{l-1}^n) / \Delta x$$
 upwind
2. $u_x \approx (u_{l+1}^n - u_l^n) / \Delta x$ downwind
3. $u_x \approx (\frac{1}{2}u_{l+1}^n - \frac{1}{2}u_{l-1}^n) / \Delta x$ symmetric
4. $u_x \approx (\frac{1}{4}u_{l+1}^n + \frac{5}{6}u_l^n - \frac{3}{2}u_{l-1}^n + \frac{1}{2}u_{l-2}^n - \frac{1}{12}u_{l-3}^n) / \Delta x$ upwind

Upwind is necessary for stability

With c < 0, scheme 1., 2. and 4. change character

Consistency order

Insert exact solution

The SD method is of consistent of order p if

$$\frac{1}{\Delta x}\sum_{k=-\alpha}^{\beta}a_{k}u(t,x+k\Delta x)=u_{x}(t,x)+O(\Delta x^{p})$$

Using Taylor expansion in *forward shift operator* E_x (see Chap. 2)

Theorem The SD method is of order *p* if and only if

$$a(z) := \sum_{k=-\alpha}^{\beta} a_k z^k = \log z + \mathcal{O}(|z-1|^{p+1}), \quad z \to 1$$

Semidiscretizations for the advection equation

A semidiscretization of order p_1 combined with order p_2 time stepping produces a method of consistency order $p = \min\{p_1, p_2\}$

The structure of the Courant number is $\Delta t / \Delta x \leq C$

$$u_t + u_x = 0 \qquad \rightarrow \qquad \frac{\sum_j c_j u_l^{n+1-j}}{\Delta t} + \frac{\sum_k a_k u_{l+k}^n}{\Delta x} = 0$$

Why is it $\Delta t / \Delta x^2 < C$ in diffusion equation?

Construction of FD schemes from SD

Let $\mu = \Delta t / \Delta x$ and consider $u_t + u_x = 0$

1. $u_x \approx (u_l^n - u_{l-1}^n)/\Delta x$ and $u_t \approx (u_l^{n+1} - u_l^n)/\Delta t$ gives the upwind (Euler) scheme $u_l^{n+1} = (1 - \mu) u_l^n + \mu u_{l-1}^n$

2. $u_x \approx (u_{l+1}^n - u_l^n)/\Delta x$ and $u_t \approx (u_l^{n+1} - u_l^n)/\Delta t$ gives the downwind scheme $u_l^{n+1} = (1 + \mu) u_l^n - \mu u_{l+1}^n$

3. $u_x \approx (u_{l+1}^{n+1} - u_{l-1}^{n+1})/(2\Delta x)$ combined with the explicit midpoint rule $u_t \approx (u_l^{n+2} - u_l^n)/(2\Delta t)$ gives the leapfrog method $u_l^{n+2} = \mu (u_{l-1}^{n+1} - u_{l+1}^{n+1}) + u_l^n$

3. Classical FD schemes for $u_t + au_x = 0$

1. The *Central difference scheme* (always unstable!)

$$\frac{u_l^{n+1} - u_l^n}{\Delta t} + a \frac{u_{l+1}^n - u_{l-1}^n}{2\Delta x} = 0$$

leads to

$$u_l^{n+1} = u_l^n + \frac{a\mu}{2}(u_{l-1}^n - u_{l+1}^n)$$

2. The Lax–Friedrichs scheme (convergent, p = 1)

$$u_{l}^{n+1} = \frac{u_{l-1}^{n} + u_{l+1}^{n}}{2} + \frac{a\mu}{2}(u_{l-1}^{n} - u_{l+1}^{n})$$

or

$$u_l^{n+1} = rac{1}{2}(1+a\mu) \, u_{l-1}^n + rac{1}{2}(1-a\mu) \, u_{l+1}^n$$

Classical FD schemes for $u_t + au_x = 0...$

3. The Lax–Wendroff scheme (convergent, p = 2)

$$u_{l}^{n+1} = \frac{a\mu}{2}(1+a\mu)u_{l-1}^{n} + (1-a^{2}\mu^{2})u_{l}^{n} - \frac{a\mu}{2}(1-a\mu)u_{l+1}^{n}$$

Uses *auto upwinding* dependent on Courant number μ and flow direction *a* (method coefficients are not symmetric)

4. The *Beam–Warming scheme* (convergent, p = 2)

 $u_l^{n+1} = \frac{a\mu}{2}(1-a\mu)(2-a\mu)u_l^n + a\mu(2-a\mu)u_{l-1}^n - \frac{a\mu}{2}(1-a\mu)u_{l-2}^n$

Genuine upwind scheme (uses no downwind information)

Derivation of the Lax-Wendroff scheme

$$u(t + \Delta t, x) = u + \Delta t u_t + \frac{\Delta t^2}{2}u_{tt} + \dots$$

But $u_t = -au_x$ implies $\partial_t = -a\partial_x$, hence $u_{tt} = a^2u_{xx}$ and

$$u(t + \Delta t, x) = u - \mathbf{a} \Delta t \, \mathbf{u}_{\mathsf{x}} + \frac{\mathbf{a}^2 \Delta t^2}{2} u_{\mathsf{x}\mathsf{x}} + \dots$$

So, with Courant number $\mu = \Delta t / \Delta x$,

$$u_{l}^{n+1} = \frac{a\mu}{2}(1+a\mu)u_{l-1}^{n} + (1-a^{2}\mu^{2})u_{l}^{n} - \frac{a\mu}{2}(1-a\mu)u_{l+1}^{n}$$

2nd order accurate as it picks up the first three Taylor terms

Lax–Wendroff computational stencil at $a\mu = 1/2$

Participating mesh points

Note Asymmetric coefficients correspond to upwinding

Lax–Wendroff computational stencil at $a\mu=1$

Participating mesh points

Note Information transportation along characteristic

At $a\mu = 1$ the Lax–Wendroff scheme solves $u_t + au_x$ exactly

4. Periodic boundary conditions

In wave phenomena we often have periodicity in t and x. Periodic boundary conditions are defined by u(t,0) = u(t,1) for all $t \ge 0$

Dynamics on a torus. Stability analysis is relatively simple

Fourier – von Neumann stability analysis

 $u_t + u_x = 0$

Lax-Wendroff Toeplitz matrix with periodic conditions

 $u^{n+1} = A(a\mu)u^n$ where $A(a\mu)$ is a *circulant matrix*

$$A(a\mu) = \begin{pmatrix} 1 - a^{2}\mu^{2} & \frac{a\mu}{2}(a\mu - 1) & \frac{a\mu}{2}(a\mu + 1) \\ \frac{a\mu}{2}(a\mu + 1) & 1 - a^{2}\mu^{2} & \frac{a\mu}{2}(a\mu - 1) \\ & \ddots & \\ \frac{a\mu}{2}(a\mu - 1) & \frac{a\mu}{2}(a\mu + 1) & 1 - a^{2}\mu^{2} \end{pmatrix}$$

 $u(0,x) = g(x) \Rightarrow u(1,x) = g(x)$

Lax-Wendroff with periodic conditions

 $a\mu = 1$

Taking $a\mu = 1$, the matrix A(1) becomes a cyclic permutation

$$\Rightarrow \quad u_l^{n+1} = u_{l-1}^n$$

Exact solution along characteristic $u(t + \Delta t, x) = u(t, x - \Delta x) = g(x)$

Lax-Wendroff with periodic conditions

- All permutation matrices P are orthogonal, i.e., $P^{-1} = P^{T}$
- Therefore $A(1)^{T}A(1) = I$, so $||A(1)||_{2} = ||A(1)^{-1}||_{2} = 1$
- Hence the Lax–Wendroff method is stable at $a\mu = 1$
- The eigenvalues of A(1) are $|\lambda_k[A(1)]| \le 1$
- By the same token, $|\lambda_k[A(1)^{-1}]| = 1/|\lambda_k[A(1)]| \le 1$
- Simple unimodular eigenvalues, $\lambda_k[A(1)] = e^{2\pi i k/N}, \ k = 1 : N$
- In forward or reverse time $\|u_{\cdot}^{n}\|_{\Delta x} = \|u_{\cdot}^{0}\|_{\Delta x}$ for all n

 $a\mu = 1$

Advection equation

Conservation law

This is in agreement with the conservation properties of $u_t = au_x$

$$\int_0^1 u u_t \, \mathrm{d}x = a \int_0^1 u u_x \, \mathrm{d}x \quad \Rightarrow \quad \frac{1}{2} \frac{\mathrm{d} \|u(t, \cdot)\|_{L^2}^2}{\mathrm{d}t} = a \cdot \langle u, u_x \rangle$$

Integrate by parts, using periodic boundary conditions

$$\langle u, u_{\mathsf{x}} \rangle = - \langle u_{\mathsf{x}}, u \rangle = - \langle u, u_{\mathsf{x}} \rangle = \mathbf{0}$$

So u_x is always orthogonal to u, and for all t

$$\frac{\mathrm{d} \|u(t,\cdot)\|_{L^2}^2}{\mathrm{d} t} = 0 \quad \Rightarrow \quad \|u(t,\cdot)\|_{L^2} = \mathrm{const.}$$

Circulant matrices

Structure of circulant matrices

$$C(\kappa) = \begin{pmatrix} \kappa_0 & \kappa_1 & \cdots & \kappa_{d-1} \\ \kappa_{d-1} & \kappa_0 & \cdots & \kappa_{d-2} \\ \vdots & & \vdots \\ \kappa_1 & \kappa_2 & \cdots & \kappa_0 \end{pmatrix}$$

Circulant matrices are a special class of Toeplitz matrices

(Same element along each diagonal)

Eigenvalues of circulant matrices

Theorem The eigenvalues of an $N \times N$ circulant matrix C are

$$\lambda_k[C] = \sum_{j=0}^{N-1} \kappa_j \mathrm{e}^{2kj\pi\mathrm{i}/N}$$

A finite difference scheme with periodic boundary conditions is stable if and only if

 $|\lambda_k[A(a\mu)]| \leq 1$

Fourier - von Neumann stability

5. The wave equation

$$u_{tt} = u_{xx}, \qquad 0 \le x \le 1, \quad t \ge 0$$

Initial conditions $u(0,x) = g_0(x)$, $u_t(0,x) = g_1(x)$ Dirichlet conditions $u(t,0) = \phi_0(t)$, $u(t,1) = \phi_1(t)$

Can be rewritten as a 1st order system $v_t + Av_x = 0$ with

$$A = \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight], \qquad \lambda[A] = \pm 1$$

Direct semidiscretization

$$\ddot{u}_l - \frac{1}{\Delta x^2} \sum_{k=-\alpha}^{\beta} a_k u_{l+k} = 0$$

Theorem The direct SD method is of order *p* if and only if

$$\sum_{k=-\alpha}^{\beta} a_k z^k = (\log z)^2 + O(|z-1|^{p+2}), \ z \to 1$$

Analogous to first order case but the method for second order (in time) equations must approximate $(\log z)^2$

For a linear system of equations a one-sided upwind method cannot be used if eigenvalues have different signs

What is "upwind" is determined by eigenvalue signs (which determine the slopes of the characteristics)

Example $u_t + Au_x = 0$, $A = V\Lambda V^{-1}$, $\Lambda = \text{diag}(1, -1)$

May use Lax-Friedrichs and Lax-Wendroff, but not upwind Euler

The vector advection equation

For $u_t + au_x = 0$, stability must be guaranteed by $a\mu$

For a linear system of advection equations

 $u_t + \mathbf{A}u_x = 0, \qquad 0 \le x \le 1, \quad t \ge 0$

with matrix $A = V \Lambda V^{-1}$ with real eigenvalues $\lambda_k[A]$,

$$u_t + V\Lambda V^{-1}u_x = 0$$
$$V^{-1}u_t + \Lambda V^{-1}u_x = 0$$
$$w_t + \Lambda w_x = 0$$

 $\mu\lambda_k[A]$ must satisfy the CFL stability condition

Direct semi- and full discretization of the wave equation

2nd order central difference $u_{xx} \approx (u_{l-1} - 2u_l + u_{l+1})/\Delta x^2$ gives symmetric semidiscretization

$$\ddot{u}_l = (u_{l-1} - 2u_l + u_{l+1})/\Delta x^2$$

equivalent to the ODE system

$$\dot{u} = v$$
 $u_0 = u(0, x)$
 $\dot{v} = f(t, u)$ $w_0 = \dot{u}(0, x)$

Use explicit Euler/implicit Euler combination

$$u^{n+1} = u^n + \Delta t v^n$$
$$v^{n+1} = v^n + \Delta t f(t_{n+1}, u^{n+1})$$

The Störmer method

Eliminate v to get a Störmer method (p = 2)

$$u^{n+2} - 2u^{n+1} + u^n = \Delta t^2 f(t_{n+1}, u^{n+1})$$

and apply to the SD $\ddot{u}_l = \frac{u_{l-1} - 2u_l + u_{l+1}}{\Delta x^2}$

With $\mu = \Delta t / \Delta x$ we get the 2nd order *leapfrog scheme* $u_l^{n+2} - 2u_l^{n+1} + u_l^n = \mu^2 (u_{l-1}^{n+1} - 2u_l^{n+1} + u_{l+1}^{n+1})$

which is stable with Dirichlet conditions for $0<\mu\leq 1$

Note the 2nd-order time approximation $\frac{u^{n+2}-2u^{n+1}+u^n}{\Delta t^2} \approx \ddot{u}(t_{n+1})$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

Explicit time stepping gives *CFL condition* $\frac{\Delta t}{\Delta x} \lesssim 1$

6. The inviscid Burgers equation

Nonlinear conservation law

$$u_t + (\frac{u^2}{2})_x = u_t + uu_x = 0$$

with u(0,x) = g(x) and $||g||_2^2 < \infty$ on $[-\infty,\infty]$

This solution is implicitly characterized by a d'Alembert solution

u(t,x)=g(x-ut)

for which

$$u_t = -u \cdot g'; \quad u_x = g' \quad \Rightarrow \quad u_t + uu_x = 0$$

Inviscid Burgers...

Nonlinear conservation law

$$u_t + uu_x = 0; \quad u(0, x) = g(x)$$

Take t, x such that x - ut = const. Then $\dot{x}(t) = u(t, x)$

$$\frac{\mathrm{d}}{\mathrm{d}t}u(t,x(t)) = u_t + u_x\dot{x}(t) = u_t + uu_x = 0$$

Along a characteristic, $du/dt = 0 \Rightarrow u(t,x)$ is constant

Characteristics are straight lines with slopes equal to the magnitude of u

Inviscid Burgers

 $u_t + uu_x = 0$

Inner product $\langle u, u_t \rangle + \langle u^2, u_x \rangle = 0$, using periodic bdry conditions

$$\langle u^2, u_x \rangle = \int_0^1 u^2 u_x \, \mathrm{d}x = -\int_0^1 2u u_x u \, \mathrm{d}x = -\int_0^1 2u^2 u_x \, \mathrm{d}x$$

Therefore,

$$\langle u^2, u_x \rangle = -2 \langle u^2, u_x \rangle = 0$$

So u_x is always orthogonal to u^2 , and for all t

$$\frac{\mathrm{d} \|u(t,\cdot)\|_{L^2}^2}{\mathrm{d} t} = 0 \quad \Rightarrow \quad \|u(t,\cdot)\|_{L^2} = \mathrm{const.}$$

In fact...

With periodic boundary conditions, u_x is orthogonal to u^p for all p

$$\langle u^{p}, u_{x} \rangle = -\langle pu^{p-1}u_{x}, u \rangle = -p \langle u^{p}, u_{x} \rangle$$

So $(1+p)\langle u^p, u_x \rangle = 0$, and if $p \neq -1$,

 $\langle u^p, u_x \rangle = 0$

What about p = -1? Then (without integrating by parts)

$$\langle u^{-1}, u_x \rangle = \int_0^1 \frac{u_x}{u} \, \mathrm{d}x = \int_{u(0)}^{u(1)} \mathrm{d}\log u = 0$$

 $u_t + (f(u))_x = 0$

Inner product $\langle u, u_t \rangle + \langle u, (f(u))_x \rangle = 0$, using periodic boundary conditions and integration by parts

$$\langle u, (f(u))_x \rangle = -\langle u_x, f(u) \rangle = -\int_0^1 \frac{\mathrm{d}u}{\mathrm{d}x} f(u) \,\mathrm{d}x = -\int_{u(0)}^{u(1)} f(u) \,\mathrm{d}u$$

Therefore, $\langle u, (f(u))_x \rangle = 0$ and $||u(t, \cdot)||_{L^2} = \text{const.}$ for all $t \ge 0$

The L^2 -norm of the solution is conserved

 $g(x) = e^{-x^2}$

Characteristics may collide, creating a discontinuity (shock)

One can determine u(t, x) by following the characteristic

The viscous Burgers equation

 $u_t + uu_x = \varepsilon u_{xx}$

The viscous Burgers equation

Characteristics

Note Characteristics collide – shock formation (discontinuity)

7. Weak solutions of $u_t + f(u)_x = 0$

Let $\varphi(t, x)$ be any C¹ function with *compact support*

Multiply $u_t + f(u)_x = 0$ by φ and integrate

$$\int_0^\infty \int_{-\infty}^\infty (\varphi u_t + \varphi f_x) \, \mathrm{d}x \, \mathrm{d}t = 0$$

Integrate by parts to see that a solution of the PDE satisfies

$$\int_0^\infty \int_{-\infty}^\infty (\varphi_t u + \varphi_x f(u)) \, \mathrm{d}x \, \mathrm{d}t = -\int_{-\infty}^\infty \varphi(0, x) u(0, x) \, \mathrm{d}x$$

Definition u(t,x) is a *weak solution* of $u_t + f(u)_x = 0$ if it satisfies the integral equation above

The Riemann problem

 $u_t + f(u)_{\times} = 0 + \text{ piecewise constant data}$

Example Burgers inviscid equation $u_t + uu_x = 0$ with

$$u(x,0) = \begin{cases} u_l, & x < 0\\ u_r, & x > 0 \end{cases}$$

The solution depends on relation between u_l and u_r

 $\left\{ \begin{array}{ll} u_l > u_r & \textit{unique} \text{ weak solution} \\ u_l < u_r & \textit{infinitely many} \text{ weak solutions, among which} \\ & \text{one is stable with respect to perturbations} \\ & \text{and physically relevant} \end{array} \right.$

Solutions of the Riemann problem

A *shock* is a discontinuous solution

This occurs for $u_l > u_r$ when

$$u(t,x) = \begin{cases} u_l, & x < s \cdot t \\ u_r, & x > s \cdot t \end{cases}$$

where $s = (u_l + u_r)/2$ is the shock speed

Note The shock propagates undamped with speed *s* in the inviscid Burgers equation

Shocks

If $u_l < u_r$, there is no shock but a *rarefaction wave* instead

$$u(x,t) = \begin{cases} u_l, & x < u_l t \\ x/t, & u_l t < x < u_r t \\ u_r, & x > u_r t \end{cases}$$

Note The rarefaction wave is continuous but not differentiable. Characteristics "fan out" instead of colliding Approximate the solution *locally* by a *piecewise constant function*

$$u_t + f(u)_x = 0; \quad u(x,0) = g(x)$$

Define a piecewise constant initial value approximation $w^{[0]}(x, 0)$ for $x \in (x_{l-1/2}, x_{l+1/2}]$ with *average*

$$u_l^0 = \frac{1}{\Delta x} \int_{x_{l-1/2}}^{x_{l+1/2}} g(x) \, \mathrm{d}x$$

Thus $w^{[0]}(x,0)$ has a discontinuity at the center of $[x_{l-1}, x_l]$

Godunov method...

With piecewise constant data $w^{[0]}(x, 0)$ in each cell $[x_{l-1}, x_l]$, construct $w^{[0]}(t, x)$ for $0 \le t \le t_1$ by solving the corresponding Riemann problem exactly

Define the *approximate solution* at t_1 by taking

$$u_l^1 = \frac{1}{\Delta x} \int_{x_{l-1/2}}^{x_{l+1/2}} w^{[0]}(x, t_1) \, \mathrm{d}x$$

Proceed to construct a *new piecewise constant function* $w^{[1]}(t_1, x) := u_l^1$ for $x \in (x_{l-1/2}, x_{l+1/2}]$

Godunov method...

Cell averages are easy to compute, resulting in

$$u_l^{n+1} = u_l^n - \mu_n [F(u_l^n, u_{l+1}^n) - F(u_{l-1}^n, u_l^n)]$$

where $\mu_n = \Delta t_n / \Delta x$ and the *flux integral*

$$F(u_l^n, u_{l+1}^n) = \frac{1}{\Delta t_n} \int_{t_n}^{t_{n+1}} f(w^{[n]}(x_{l+1/2}, t)) \, \mathrm{d}t$$

Note This integral is trivial to compute because $w^{[n]}$ is constant at $x_{l+1/2}$ for $t \in (t_n, t_{n+1})$

John von Neumann 1903 – 1957

IAS, Princeton 1952

The end ... and the beginning!