
Project #3 in FMNN10 and NUMN12
c© T Stillfjord, G Söderlind 2019

Goals. In this project, we will work with parabolic and hyperbolic par-
tial di�erential equations, and combine elementary techniques from 2p-BVPs
with time-stepping methods from IVPs. The goal is to gain experience with
the method of lines and stability constraints of Courant-Friedrichs-Lewy
(CFL) type on the time-step ∆t.

In the �rst part we shall primarily work with the parabolic di�usion
equation ut = uxx. In the second part we will work with conservation laws
such as the hyperbolic advection equation ut = −ux. In the third part, we
combine the two and consider the parabolic convection�di�usion equation
ut = εuxx − ux. Finally, in the fourth part we change the problem to the
parabolic viscous Burgers equation, ut = εuxx − uux.

The objective is to gain an elementary understanding of and experience
with �evolution equations� (time dependent partial di�erential equations),
and the many varying properties one encounters in such problems, from dis-
sipation to wave propagation, including shock formation. In addition, we
will work with di�erent types of boundary conditions, and it is important to
implement boundary conditions correctly in order to get the correct results.

We will only work in one space dimension, and on equidistant grids.
We will use explicit and implicit time-stepping methods, in order to study
the properties of some important elementary �nite di�erence methods. We
will observe some undesirable phenomena such as numerical instability and
numerical damping, and learn how to cope with them.

Part 1. The di�usion equation

The di�usion equation is

ut = uxx

u(t, 0) = u(t, 1) = 0

u(0, x) = g(x)

and its method-of-lines semi-discretization is

u̇ = T∆xu

on an equidistant grid on [0, 1], with ∆x = 1/(N + 1) and initial condition
g(x) sampled on the grid. Generate the grid using linspace, so that you have

1



N internal points on (0, 1). The matrix T∆x is the usual Toeplitz symmetric
tridiagonal matrix that approximates ∂2/∂x2 to second order accuracy on
the grid. In Project 2 you have generated this (and similar operators. Go
back to your old programs and retrieve the code segments you need in order
to create T∆x. You will need (some representation of) the operator T∆x in
order to solve equation systems involving this matrix.

Next, get your function eulerstep from Project 1 and make sure that
it takes one time step, and that it works in the matrix�vector case. It will
probably be necessary to make some minor modi�cations so that you can call
eulerstep with a command of the type

unew = eulerstep(Tdx,uold,dt)

in order to solve u̇ = T∆xu by the Euler method, um+1 = um + ∆t · T∆xu
m.

Task 1.1 Write a script that constructs T∆x, assuming N interior points
on the grid and solves the semidiscretization u̇ = T∆xu by the Euler method.

1. Visualize the computational procedure by plotting the numerical solu-
tion u(m∆t, n∆x) over the t, x plane. Basically, you should apply the
following procedure. You determine your spatial grid size ∆x and time
step ∆t from the number N of internal mesh points on the x-interval
[0, 1] and the number M of time steps to go from t = 0 to t = tend,
respectively. Always run your experiments by varying N and M , not
by varying ∆x and ∆t directly. Then construct a vector

xx = linspace(0,1,N+2)

and a vector

tt = linspace(0,tend,M+1)

and run [T,X]=meshgrid(tt,xx) to generate the independent vari-
ables for 3D graphics in Matlab. If you are not familiar with these
commands, check Matlab's help. In Python, the meshgrid function
exists directly in the base scipy module.

When you solve the PDE, save the solution vectors over the meshed
grid. Don't forget to insert the boundary values! When the compu-
tation is done, make a 3D color graph using either the mesh or the
surf command. (Run help to �nd out how they work.) In Python,
this is slightly more involved. See e.g. https://matplotlib.org/mpl_
toolkits/mplot3d/tutorial.html for a tutorial on how to do this in
matplotlib. The functions roughly equivalent to mesh and surf are
called plot_wireframe and plot_surface.

2



2. Determine experimentally the CFL condition on the time step ∆t for
the explicit Euler method applied to the semi-discretization. Choose
your initial condition g(x) as you like, but make sure that they are com-
patible with the boundary conditions at x = 0 and x = 1, respectively,
and make sure that g(x) is not an eigenfunction of ∂2/∂x2.

3. Try to obtain representative plots of the solution both when you ful�ll
the CFL condition and when you violate it. In the latter case, don't
overdo it; try to see what happens when you violate the CFL condition
by a small amount only, so that the numerical instability is clearly
visible.

Task 1.2 Next implement the Crank�Nicolson method. This is the same
as applying the trapezoidal rule to the equation,

un+1 = un +
∆t

2
(T∆xu

n + T∆xu
n+1).

Implement a function

unew = TRstep(Tdx,uold,dt)

Solve the same di�usion equation as in Task 1. Verify that you can now
obtain stable solutions where you previously observed instability due to a
violated CFL condition. Try to verify that you can use much larger time
steps ∆t than before, but remember to vary time step and Courant number
by varying N and M . Check that the results are the same no matter what
initial conditions you use.

Part 2. The advection equation

The linear advection equation is

ut + aux = 0,

with appropriate initial and boundary conditions. We will only work with
periodic boundary conditions. This means that the solution satis�es u(t, 0) =
u(t, 1) for all times t. That is, the solution �wraps around� from x = 1 to
x = 0, and vice versa.

With periodic boundary conditions, we represent the solution u on the

entire grid, including the boundaries throughout the entire computation. Let
the solution vector at time t be an N -vector and introduce an equidistant

3



grid on [0, 1], such that 0 = x1, . . . , xj = (j−1)∆x, . . . , xN = (N−1)∆x and
xN+1 = 1.

This implies that ∆x = 1/N , and that we are going to compute the
solution at the N points x1, . . . xN . The solution at the right boundary,
xN+1 = 1, is uN+1 and is identi�ed with u1 at the left boundary, x1 = 0.
Make sure you have understood exactly what this implies (make a sketch of
the grid!), as your code will di�er from what you did in the parabolic case.

Initial conditions are always needed, and have the form

u(0, x) = g(x).

Note that the initial condition must satisfy g(0) = g(1) and g′(0) = g′(1)
when periodic boundary conditions are used. Do not use a trigonometric

initial condition such as sin 3πx.

One of the simplest methods of order 2 for the advection equation is the
Lax�Wendro� scheme. It can be derived using a Taylor series expansion.
Thus,

u(t+ ∆t, x) = u(t, x) + ∆tut +
∆t2

2!
utt + O(∆t3).

From the di�erential equation ut + aux = 0 we get utt = −auxt, as well as
utx = −auxx. Therefore we have utt = a2uxx provided that the solution u is
su�ciently di�erentiable. Inserting this into the Taylor series expansion we
get

u(t+ ∆t, x) = u(t, x)− a∆tux +
a2∆t2

2!
uxx + O(∆t3).

This gives the Lax�Wendro� scheme,

un+1
j =

aµ

2
(1 + aµ)unj−1 + (1− a2µ2)unj −

aµ

2
(1− aµ)unj+1,

where µ = ∆t
∆x

. Note that the method coe�cients are not symmetric � instead,
they change with the �ow direction as determined by the sign of a.

Task 2.1 Implement a Lax�Wendro� solver for the scalar advection equa-
tion with periodic boundary conditions. Write a function

function unew = LaxWen(u, amu)

that takes a step of size ∆t starting from the �initial condition� u. The
parameter amu is the product a∆t/∆x. Write a script for running your Lax�
Wendro� solver. Test your solver using some pulse-like initial data, e.g.

g(x) = e−100(x−0.5)2 .

4



Check how this pulse propagates for 5 units of time, and verify that the
method works both for positive and negative a. Pay close attention to how
you implement the periodic boundary conditions (sketch the grid and the
computational stencil before you write the program).

Produce plots of the solution for at least two di�erent CFL numbers. In
addition, plot the L2 norm (RMS norm) of the solution vs time t ∈ [0, 5]
for a∆t/∆x = 1 as well as for a∆t/∆x = 0.9, and explain the di�erence.
Is the Lax-Wendro� method conserving the norm of the solution? Does the
amplitude remain constant, or is it damped? Motivate why one actually
wants to run the code at the CFL stability limit.

Part 3. The convection�di�usion equation

The linear convection�di�usion equation is

ut + a · ux = d · uxx

with appropriate initial and boundary conditions at both boundaries. Here
a is the convection velocity, and d is the di�usivity. Introduce an equidistant
grid on [0, 1] with ∆x = 1/N and work with periodic boundary conditions
only, as you did with the advection equation. This means that the boundary
conditions are u(t, 0) = u(t, 1). Initial conditions have the form u(0, x) =
g(x). Pick g(x) such that g(0) = g(1) and g′(0) = g′(1). (The latter condition
could very well be approximate, like when you use the pulse data from the
previous task.)

It is important to note that due to di�usion, the problem is always
sti�. Therefore, it is preferable to work with implicit methods for the time-
stepping. We choose the trapezoidal method, which is second order in time.
Combined with a second order in space discretization, one can expect to
obtain a reasonably good solver.

There are some unexpected di�culties associated with convection�di�usion.
A straightforward method of lines discretization gives (the description below
disregards the periodic boundary conditions, which you will have to imple-
ment � the matrices will be of circulant type)

u̇ = (d · T∆x − a · S∆x)u.

Here T∆x is symmetric, while S∆x is skew-symmetric. The former has neg-
ative real eigenvalues, and the latter purely imaginary eigenvalues. As the
di�erential operator has negative real eigenvalues, it is important that the

5



discretization mimics this property. In the MOL equation above, it is easy
to see that the subdiagonal matrix elements are

d

∆x2
+

a

2∆x

while the superdiagonal elements are

d

∆x2
− a

2∆x
.

Since the matrix d · T∆x − a · S∆x has real eigenvalues if and only if the
subdiagonal and superdiagonal elements have the same sign, given that a
and d are positive, we must require

d

∆x2
>

a

2∆x
.

The ratio Pe = |a/d| is known as the Péclet number. It measures the balance
between the convective and di�usive terms. At high Péclet numbers, the
solution is convection dominated; for small Pe di�usion dominates. The
condition above can be written

Pe∆x < 2,

and expresses that you have to choose ∆x small when the Péclet number is
large, i.e., when convection dominates. However, when you choose a small
∆x, it becomes problematic to use an explicit time-stepping method, as this
will have to ful�ll a CFL condition, which roughly is

d · ∆t

∆x2
≤ 1

2
.

Therefore, explicit time stepping methods are not well suited to convection�
di�usion problems.

The quantity Pe∆x is called the mesh Péclet number and is somewhat
similar to the Courant number, as both put restrictions on the discretiza-
tion parameters. The mesh Péclet condition, however, is independent of
time-stepping and stability; it is a matter of whether the discretization has
properties similar to those of the di�erential operator. If the mesh Péclet
condition is violated, one typically observes �non-physical� oscillations in the
numerical solution. This means, as a matter of course, that the error is large,
due to the discrete equation being a poor approximation to the di�erential
operator.

6



Task 3.1 Write a convection�di�usion solver

function unew = convdif(u,a,d,dt)

for the convection�di�usion equation on [0, 1] and for t ∈ [0, 1]. The sin-
gle step from u to unew should be carried out using the Trapezoidal Rule.
Boundary conditions should be periodic.

When writing a script to test the solver, use a = 1 and the di�usivity
d = 0.1. Feel free to choose your own parameters once you get your code to
work, but take notice: d ≥ 0. (Why?) You can, however, choose the sign
of a as you please. Your convdif code should work well for Pe ∼ 0 − 1000.
The script should keep the mesh Péclet number in check, so that you can
experiment with your code, both within and outside theoretical limitations.

Start with some suitable initial condition. You can try the same initial
pulse as before if you like, but you might get more exciting plots by choosing
a less symmetric initial function. Make sure your initial function ful�lls the
periodic boundary conditions. Plot and report your tests, demonstrating
that you have a working code.

Part 4. The viscous Burgers equation

The viscous Burgers equation is ut + uux = d · uxx. Note that this problem
is nonlinear, so a simple matrix-vector representation won't work. It is a
nonlinear convection�di�usion equation.

We are going to build a solver for this equation using the tools you have
developed above. However, we are going to �nd out that due to the nonlin-
earity the problem is far more complicated than one might think.

To obtain a discretization that is of second order at d = 0, note that you
cannot just replace the advection speed a by u in your Lax�Wendro� solver.
Instead, you have to start anew from

u(t+ ∆t, x) ≈ u(t, x) + ∆tut +
∆t2

2!
utt

Using the inviscid Burgers equation ut = −uux, express utt in terms of space
derivatives (u, ux and uxx) and replace the time derivatives with these ex-
pressions to obtain the Lax�Wendro� discretization of ut = −uux, where all
space derivatives are approximated by symmetric �nite di�erences. Derive
this scheme!

The scheme will look a little more complicated than it did for ut = −aux,
and will lead to a recursion

unew = LW(uold),

7



where you need to construct the map u 7→ LW(u). We are not going to run
this scheme; we �rst need to add the di�usion term. Because the latter is
sti�, we will treat it by the Trapezoidal Rule. This means that we will add
the di�usion as follows,

unew = LW(uold) + d · ∆t

2
(T∆xunew + T∆xuold).

Note that T∆x is a circulant matrix to account for the periodic boundary
condition.

Because the scheme is now implicit, we have to solve for unew, from the
linear system(

I − d · ∆t

2
T∆x

)
unew = LW(uold) + d · ∆t

2
T∆xuold.

You have then obtained a simple second order discretization of the viscous
Burgers equation, where the nonlinear convective part is treated by the ex-
plicit Lax�Wendro� method, and the linear di�usion part is taken care of by
the Trapezoidal Rule. Note that while the scheme is second-order conver-
gent, the above reasoning does not constitute a rigorous proof of this fact.
For this project, however, we omit such a veri�cation.

Task 4.1 Implement the Lax-Wendro� scheme, and write a script for
the repeated time stepping, where you collect the solution data for plotting.
Choose a fairly low di�usivity (start with say d = 0.1) so that you can
see some wave propagation. Use some initial condition of your choice (for
instance the pulse data, but make sure it has a high enough amplitude) and
use periodic boundary conditions. Try to see if you can produce some waves
with very steep gradients (near shocks) without the method going unstable.
Plot at least one interesting example. It is advisable to take N in the range
200 � 300, and to use at least M = 1000 time steps. You have a well
functioning code if you can manage a di�usivity of d = 0.01. Your code
might go a little bit lower, but note that it won't work for d = 0 if the initial
condition has a high enough amplitude to generate shock waves.

Your code is not designed to solve problems with discontinuous solutions,
so you can expect to experience di�culties and instability. You may have
to experiment quite a lot with the parameters and initial data in order to
obtain a numerical solution.

Be sure to identify every plot with a title, axis labels and a caption
explaining what you see in the plot and what conclusions you can draw from

8



it. Include relevant functions, scripts and code segments to document your
solver.

Acknowledge help from fellow students and instructors, literature refer-
ences etc., and summarize what you have learned both in this assignment,
and about the numerical solution of di�erential equations in this course.

9


