Numerical Methods for Differential Equations Chapter 5: Elliptic and Parabolic PDEs

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

1. Brief overview of PDE problems
2. Elliptic problems with FDM
3. Elliptic problems with $\mathrm{cG}(1) \mathrm{FEM}$
4. Parabolic problems
5. Method of lines
6. Error analysis and convergence
7. Parabolic problems with $\mathrm{cG}(1) \mathrm{FEM}$
8. Well-posedness

1. Brief overview of PDE problems

Classification Three basic types, four prototype equations

Elliptic $-\Delta u=f \quad+B C \quad$ Poisson equation
Parabolic $\quad u_{t}=\Delta u \quad+$ BC \& IV Diffusion equation
Hyperbolic $\quad u_{t t}=\Delta u \quad+$ BC \& IV Wave equation

$$
u_{t}+a(u) u_{x}=0 \quad+\text { BC \& IV Advection equation }
$$

We will consider these equations in 1D (one space dimension only)

$$
-u^{\prime \prime}=f ; \quad u_{t}=u_{x x} ; \quad u_{t t}=u_{x x} ; \quad u_{t}+a(u) u_{x}=0
$$

Classification of PDEs

Classical approach Linear PDE with two independent variables

$$
A u_{x x}+2 B u_{x y}+C u_{y y}+L\left(u_{x}, u_{y}, u, x, y\right)=0
$$

with L linear in u_{x}, u_{y}, u. Study

$$
\delta:=\operatorname{det}\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)=A C-B^{2}
$$

$$
\begin{array}{ll}
\delta>0 & \text { Elliptic } \\
\delta=0 & \text { Parabolic } \\
\delta<0 & \text { Hyperbolic }
\end{array}
$$

General classification of PDEs

Fourier transforms

Highest derivatives wrt t and x determines the PDE type

Let $F(\omega, x)=\mathrm{e}^{\mathrm{i} \omega x}$ and let u and its derivatives go to zero as $x \rightarrow \pm \infty$, and introduce the Fourier transform $\mathcal{F}: u \mapsto \hat{u}$ by

$$
\hat{u}(\omega)=\mathcal{F} u=\langle F, u\rangle=\int_{-\infty}^{\infty} \bar{F} u \mathrm{~d} x=\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} \omega x} u \mathrm{~d} x
$$

Then

$$
\begin{aligned}
\mathcal{F} u_{t} & =\left\langle F, u_{t}\right\rangle=\mathrm{d}(\mathcal{F} u) / \mathrm{d} t=\mathrm{d} \hat{u} / \mathrm{d} t \\
\mathcal{F} u_{x} & =\left\langle F, u_{x}\right\rangle=-\left\langle F_{x}, u\right\rangle=-\langle\mathrm{i} \omega F, u\rangle=\mathrm{i} \omega \mathcal{F} u=\mathrm{i} \omega \hat{u} \\
\mathcal{F} u_{x x} & =\left\langle F, u_{x x}\right\rangle=\left\langle F_{x x}, u\right\rangle=-\left\langle\omega^{2} F, u\right\rangle=-\omega^{2} \mathcal{F} u=(\mathrm{i} \omega)^{2} \hat{u}
\end{aligned}
$$

etc.

General classification. . .

Highest order terms (real coefficients)

$$
\frac{\partial^{p} u}{\partial t^{p}}=\frac{\partial^{q} u}{\partial x^{q}}
$$

Hyperbolic if $p+q$ is even, parabolic if $p+q$ is odd

$$
\begin{array}{ll}
u_{t}=u_{x} & \text { Hyperbolic } \\
u_{t}=u_{x x} & \text { Parabolic } \\
\mathrm{i} u_{t}=u_{x x} & \text { Hyperbolic } \\
u_{t}=u_{x x x} & \text { Hyperbolic } \\
u_{t}=-u_{x x x x} & \text { Parabolic } \\
& \\
u_{t t}=u_{x x} & \text { Hyperbolic } \\
u_{t t}=-u_{x x x x} & \text { Hyperbolic }
\end{array}
$$

General classification. . .

Mostly about the properties of the solutions:

Elliptic steady-state solutions, no time evolution

Parabolic energy dissipation, solutions gain regularity
Hyperbolic energy conservation, no regularity gain

Classification breaks down for nonlinear problems

PDE method types

FDM Finite difference methods

FEM Finite element methods

FVM Finite volume methods

BEM Boundary element methods
... Spectral methods

We will mostly study FDM to cover basic theory and some FEM

PDE methods for elliptic problems

Simple geometry FDM or Fourier methods
 Complex geometry FEM
 Special problems FVM or BEM

Very large, sparse systems, e.g. $10^{6}-10^{10}$ equations
Often combined with iterative solvers such as multigrid methods

PDE methods for parabolic problems

Simple geometry FDM or Fourier methods
 Complex geometry FEM

Stiffness calls for A-stable implicit time-stepping methods

Need Newton-type solvers for large sparse systems, e.g. $10^{6}-10^{9}$ equations. May be combined with multigrid methods

PDE methods for hyperbolic problems

FDM, FVM. Sometimes FEM

Very challenging problems, with conservation properties, sometimes shocks, and sometimes multiscale phenomena such as turbulence

Solutions may be discontinuous, cf. "sonic booms"

Highly specialized methods are often needed

2. Elliptic problems with FDM

Laplacian $\quad \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

Laplace equation $\quad \Delta u=0$
with boundary conditions $u=u_{0}(x, y, z) \quad x, y, z \in \partial \Omega$

Poisson equation $\quad-\Delta u=f$
with boundary conditions $u=u_{0}(x, y, z) \quad x, y, z \in \partial \Omega$

Other boundary conditions also of interest (Neumann)

Elliptic problems

Some applications

- Equilibrium problems

Structural analysis (strength of materials) Heat distribution

- Potential problems

Potential flow (inviscid, subsonic flow) Electromagnetics (fields, radiation)

- Eigenvalue problems

Acoustics
Microphysics

An elliptic model problem

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)
$$

Computational domain $\Omega=[0,1] \times[0,1]$ (unit square), Dirichlet conditions $u(x, y)=0$ on boundary

Uniform grid $\left\{x_{i}, y_{j}\right\}_{i, j=1}^{N, M}$ with equidistant mesh widths $\Delta x=1 /(N+1)$ and $\Delta y=1 /(M+1)$

Discretization Finite differences with $u_{i, j} \approx u\left(x_{i}, y_{j}\right)$

$$
\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{\Delta x^{2}}+\frac{u_{i, j-1}-2 u_{i, j}+u_{i, j+1}}{\Delta y^{2}}=f\left(x_{i}, y_{j}\right)
$$

Equidistant mesh $\Delta x=\Delta y$

$$
\frac{u_{i-1, j}+u_{i, j-1}-4 u_{i, j}+u_{i, j+1}+u_{i+1, j}}{\Delta x^{2}}=f\left(x_{i}, y_{j}\right)
$$

Participating approximations and mesh points

Computational stencil for $\Delta x=\Delta y$

$$
\frac{u_{i-1, j}+u_{i, j-1}-4 u_{i, j}+u_{i, j+1}+u_{i+1, j}}{\Delta x^{2}}=f\left(x_{i}, y_{j}\right)
$$

The FDM linear system of equations

Lexicographic ordering of unknowns \Rightarrow block partitioned system
$\frac{1}{\Delta x^{2}}\left(\begin{array}{cccccc}T & I & & & & \\ I & T & I & & & \\ & I & T & I & & \\ & & \ddots & \ddots & \ddots & \\ & & & & & I \\ & & & & I & T\end{array}\right)\left(\begin{array}{c}u_{1,1} \\ u_{1,2} \\ \vdots \\ u_{1, N} \\ u_{2,1} \\ u_{2,2} \\ \vdots \\ u_{N, N}\end{array}\right)=\left(\begin{array}{c}f\left(x_{1}, y_{1}\right) \\ f\left(x_{2}, y_{2}\right) \\ \vdots \\ f\left(x_{1}, y_{N}\right) \\ f\left(x_{2}, y_{1}\right) \\ f\left(x_{2}, y_{2}\right) \\ \vdots \\ f\left(x_{N}, y_{N}\right)\end{array}\right)$
with Toeplitz matrix $\quad T=\operatorname{tridiag}\left(\begin{array}{lll}1 & -4 & 1\end{array}\right)$
The system is $N^{2} \times N^{2}$, hence large and very sparse

3. Elliptic problems with FEM

A general finite element method

$$
\begin{array}{rll}
\text { Linear PDE } & L u=f & \text { in domain } \Omega \\
\text { Ansatz } & u=\sum c_{i} \varphi_{i} & \Rightarrow \quad L u=\sum c_{i} L \varphi_{i} \\
\text { Requirement } & \left\langle\varphi_{i}, L u-f\right\rangle=0 & \text { gives coefficients }\left\{c_{i}\right\}
\end{array}
$$

FEM is a least squares approximation, fitting a linear combination of basis functions $\left\{\varphi_{i}\right\}$ to the solution using orthogonality

Simplest case Piecewise linear basis functions: 2nd-order cG(1)

Strong and weak forms

Strong form

$$
-\Delta u=f \quad \text { in } \Omega ; \quad u=0 \text { on } \partial \Omega
$$

Take v with $v=0$ on $\partial \Omega$

$$
\int_{\Omega}-\Delta u v \mathrm{~d} \Omega=\int_{\Omega} f v \mathrm{~d} \Omega
$$

Integrate by parts to get weak form

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v
$$

Note: • means scalar product on \mathbb{R}^{d} here; ∇u is a vector

Strong and weak forms

Recall integration by parts in 1D

$$
\int_{0}^{1}-u^{\prime \prime} v \mathrm{~d} x=\left[-u^{\prime} v\right]_{0}^{1}+\int_{0}^{1} u^{\prime} v^{\prime} \mathrm{d} x
$$

or in terms of an inner product

$$
-\left\langle u^{\prime \prime}, v\right\rangle=\left\langle u^{\prime}, v^{\prime}\right\rangle
$$

Generalization to 2D, 3D uses vector calculus

Weak form of $-\Delta u=f$

Define inner product

$$
\langle v, u\rangle=\int_{\Omega} v u \mathrm{~d} \Omega
$$

and bilinear form
$a(v, u)=-\int_{\Omega} v \Delta u \mathrm{~d} \Omega=\int_{\Omega} \nabla v \cdot \nabla u \mathrm{~d} \Omega=\int_{\Omega} \operatorname{grad} v \cdot \operatorname{grad} u \mathrm{~d} \Omega$
to get the weak form of $-\Delta u=f$ as

$$
a(v, u)=\langle v, f\rangle
$$

Galerkin method (Finite Element Method)

1. Basis functions $\left\{\varphi_{i}\right\}$
2. Approximate

$$
u=\sum c_{j} \varphi_{j}
$$

3. Determine c_{j} from $\sum c_{j} a\left(\varphi_{i}, \varphi_{j}\right)=\left\langle\varphi_{i}, f\right\rangle$

The c_{j} are determined by the linear system

$$
K c=F
$$

The matrix K is called the stiffness matrix

Stiffness matrix elements $k_{i j}=a\left(\varphi_{i}, \varphi_{j}\right)=\int \nabla \varphi_{i} \cdot \nabla \varphi_{j} \mathrm{~d} \Omega$

Right-hand side $F_{i}=\left\langle\varphi_{i}, f\right\rangle=\int \varphi_{i} f \mathrm{~d} \Omega$

Dealing with the right-hand side

Typically $\int \varphi_{i} f \mathrm{~d} \Omega$ cannot be evaluated exactly so we approximate

$$
f \approx \sum_{j} f_{j} \varphi_{j}
$$

Then

$$
F_{i} \approx\left\langle\varphi_{i}, \sum_{j} f_{j} \varphi_{j}\right\rangle=\int \varphi_{i} \sum_{j} f_{j} \varphi_{j} \mathrm{~d} \Omega=\sum_{j}\left\langle\varphi_{i}, \varphi_{j}\right\rangle f_{j}
$$

The matrix M is called the mass matrix, with matrix elements $m_{i j}=\left\langle\varphi_{i}, \varphi_{j}\right\rangle=\int \varphi_{i} \varphi_{j} \mathrm{~d} \Omega$

Finite element equations, using $\bar{f}=\left\{f_{j}\right\}$, finally becomes $K c=M \bar{f}$

The FEM mesh

cG(1) domain triangulation

Piecewise linear basis $\left\{\varphi_{j}\right\}$ require domain triangulation

4. Parabolic problems

The prototypical equation is the diffusion equation

$$
u_{t}=\Delta u
$$

Also nonlinear diffusion

$$
u_{t}=\operatorname{div}(k(u) \operatorname{grad} u)
$$

Boundary and initial conditions are needed

Solution methods are now built by combining time-stepping methods with space discretization of the spatial derivative operator

Parabolic problems

Some applications

- Diffusive processes

$$
\text { Heat conduction } \quad u_{t}=d \cdot u_{x x}
$$

- Chemical reactions

$$
\begin{array}{ll}
\text { Reaction-diffusion } & u_{t}=d \cdot u_{x x}+f(u) \\
\text { Convection-diffusion } & u_{t}=u_{x}+\frac{1}{\mathrm{Pe}} u_{x x}
\end{array}
$$

- Seismology

$$
\text { Parabolic waves } \quad u_{t}=u u_{x}+d \cdot u_{x x}
$$

Irreversibility $u_{t}=-\Delta u$ is not well-posed!

A parabolic model problem

$$
\begin{aligned}
\text { Equation } & u_{t}=u_{x x} \\
\text { Initial values } & u(0, x)=g(x) \\
\text { Boundary values } & u(t, 0)=u(t, 1)=0
\end{aligned}
$$

Separation of variables $u(t, x):=X(x) T(t) \Rightarrow$

$$
\begin{gathered}
u_{t}=X \dot{T}, \quad u_{x x}=X^{\prime \prime} T \Rightarrow \frac{\dot{T}}{T}=\frac{X^{\prime \prime}}{X}=: \lambda \\
T=C \mathrm{e}^{\lambda t} \quad X=A \sin \sqrt{-\lambda} x+B \cos \sqrt{-\lambda} x
\end{gathered}
$$

Parabolic model problem...

Boundary values $X(0)=X(1)=0 \Rightarrow \lambda_{k}=-(k \pi)^{2}$, therefore

$$
X_{k}(x)=\sqrt{2} \sin k \pi x \quad T_{k}(t)=\mathrm{e}^{-(k \pi)^{2} t}
$$

Fourier expansion of initial values $g(x)=\sum_{1}^{\infty} c_{k} \sqrt{2} \sin k \pi x \Rightarrow$
Solution can be assembled

$$
u(t, x)=\sqrt{2} \sum_{k=1}^{\infty} c_{k} \mathrm{e}^{-(k \pi)^{2} t} \sin k \pi x
$$

5. Method of lines (MOL) discretization

In $u_{t}=u_{x x}$, discretize $\partial^{2} / \partial x^{2}$ by

$$
u_{x x} \approx \frac{u_{i-1}-2 u_{i}+u_{i+1}}{\Delta x^{2}}
$$

System of ODEs (semidiscretization) $\dot{u}=T_{\Delta x} u$ reads

$$
\dot{u}=\frac{1}{\Delta x^{2}}\left(\begin{array}{rrrr}
-2 & 1 & & \\
1 & -2 & 1 & \\
& & \ddots & \\
& & 1 & -2
\end{array}\right) u
$$

Full FDM discretization

Note $u_{i}(t) \approx u\left(t, x_{i}\right)$ along the line $x=x_{i}$ in the (t, x) plane
Using Explicit Euler time-stepping with $u_{i}^{n} \approx u\left(t_{n}, x_{i}\right)$ implies

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\frac{u_{i-1}^{n}-2 u_{i}^{n}+u_{i+1}^{n}}{\Delta x^{2}}
$$

With the Courant number $\mu=\Delta t / \Delta x^{2}$ we obtain recursion

$$
u_{i}^{n+1}=u_{i}^{n}+\mu \cdot\left(u_{i-1}^{n}-2 u_{i}^{n}+u_{i+1}^{n}\right)
$$

Explicit Euler time stepping. Participating grid points

Courant number $\mu=\Delta t / \Delta x^{2}$

Method of lines

Stability and the CFL condition

Explicit Euler with $\Delta x=1 /(N+1)$ implies recursion

$$
u_{.}^{n+1}=u_{.}^{n}+\Delta t \cdot T_{\Delta x} u_{.}^{n}
$$

Recall $\quad \lambda_{k}\left[T_{\Delta x}\right]=-4(N+1)^{2} \sin ^{2} \frac{k \pi}{2(N+1)} \quad$ for $k=1: N$
Stability requires $\Delta t \cdot \lambda_{k} \in \mathcal{S}$ for all eigenvalues

$$
\Delta t \cdot \lambda_{k} \in\left[-\frac{4 \Delta t}{\Delta x^{2}},-\pi^{2} \Delta t\right]
$$

The CFL condition

For explicit Euler stability we need $4 \Delta t / \Delta x^{2} \leq 2$

CFL condition (Courant, Friedrichs, Lewy 1928)

$$
\frac{\Delta t}{\Delta x^{2}} \leq \frac{1}{2}
$$

The CFL condition is a severe restriction on time step Δt

Stiffness The CFL condition can be avoided by using A-stable methods, e.g. Trapezoidal Rule or Implicit Euler

Experimental stability investigation

$N=30$ internal pts in $[0,1], M=187$ time steps on $[0,0.1]$. Stable solution at CFL $=.514$

Violating the CFL condition

$N=30$ internal pts in $[0,1], M=184$ time steps on $[0,0.1]$. Unstable solution at CFL $=.522$

Crank-Nicolson method (1947)

Crank-Nicolson method \Leftrightarrow Trapezoidal Rule for PDEs
The Trapezoidal Rule is

- implicit

$$
\Rightarrow \text { more work/step }
$$

- A-stable $\quad \Rightarrow$ no restriction on Δt
- Far more efficient

Theorem Crank-Nicolson is unconditionally stable

There is no CFL condition on the time-step Δt which is why the
Crank-Nicolson method is preferable

Crank-Nicolson method...

$$
u^{n+1}=u^{n}+\frac{\Delta t}{2}\left(T_{\Delta x} u^{n}+T_{\Delta x} u^{n+1}\right)
$$

Courant number $\mu=\Delta t / \Delta x^{2} \Rightarrow$ recursion

$$
\left(I-\frac{\mu}{2} T\right) u^{n+1}=\left(I+\frac{\mu}{2} T\right) u^{n}
$$

with Toeplitz matrix $\quad T=\operatorname{tridiag}\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)$

Tridiagonal structure \Rightarrow low complexity

Refactorize only if Courant number $\mu=\Delta t / \Delta x^{2}$ changes

6. Error analysis

MOL with explicit Euler for $u_{t}=u_{x x}$
Global error $e_{i}^{n}=u_{i}^{n}-u\left(t_{n}, x_{i}\right)$
Local error Insert exact solution to get

$$
\frac{u\left(t_{n+1}, x_{i}\right)-u\left(t_{n}, x_{i}\right)}{\Delta t}=\frac{u\left(t_{n}, x_{i-1}\right)-2 u\left(t_{n}, x_{i}\right)+u\left(t_{n}, x_{i+1}\right)}{\Delta x^{2}}-l_{i}^{n}
$$

Expand in Taylor series

$$
-l_{i}^{n}=\frac{\Delta t}{2} u_{t t}+\frac{\Delta x^{2}}{12} u_{x x x x}+\mathrm{O}\left(\Delta t^{2}, \Delta x^{4}\right)
$$

The Lax Principle

Conclusion

Consistency	$l_{i}^{n} \rightarrow 0$	as $\Delta t, \Delta x \rightarrow 0$
Stability	$C F L$ condition	$\Delta t / \Delta x^{2} \leq 1 / 2$
Convergence	$e_{i}^{n} \rightarrow 0$	as $\Delta t, \Delta x \rightarrow 0$

Theorem (Lax Principle)

$$
\text { Consistency }+ \text { Stability } \Rightarrow \text { Convergence }
$$

Note Choice of norm is very important

Convergence order

Explicit Euler

With local error

$$
-l_{i}^{n}=\frac{\Delta t}{2} u_{t t}+\frac{\Delta x^{2}}{12} u_{x x x x}=\mathrm{O}\left(\Delta t, \Delta x^{2}\right)
$$

and stability in terms of CFL condition $\mu=\Delta t / \Delta x^{2} \leq 1 / 2$ we have global error $e_{i}^{n}=\mathrm{O}\left(\Delta t, \Delta x^{2}\right)$

For fixed μ we have $\Delta t \sim \Delta x^{2}$ and it follows that

Global error $e_{i}^{n}=\mathrm{O}\left(\Delta t, \Delta x^{2}\right)=\mathrm{O}\left(\Delta x^{2}\right) \Rightarrow$

Theorem The order of convergence is $p=2$

Crank-Nicolson

$A_{\mu}=\left(I-\frac{\mu}{2} T\right)^{-1}\left(I+\frac{\mu}{2} T\right)$ with the usual Toeplitz matrix T
Theorem The eigenvalues are $\lambda\left[A_{\mu}\right]=\frac{1+\frac{\mu}{2} \lambda[T]}{1-\frac{\mu}{2} \lambda[T]}$

Note $\lambda[T] \in(-4,0) \Rightarrow-1<\lambda\left[A_{\mu}\right]<1$. This implies that there is no CFL stability condition on the Courant ratio μ. The method is stable for all $\Delta t>0$

Theorem Crank-Nicolson is unconditionally stable and convergent of order $p=2$

Experimental stability investigation

$N=30$ internal pts in $[0,1], M=30$ time steps on $[0,0.1]$ Stable solution at $\mathrm{CFL}=3.2$

Convection-diffusion

$$
u_{t}=u_{x x}+\alpha u_{x}-f
$$

Space operator with homogeneous Dirichlet conditions on $[0,1]$

$$
\mathcal{L}_{\alpha} u=u^{\prime \prime}+\alpha u^{\prime}
$$

Convection dominated for Péclet numbers $|\alpha| \gg 1$, with boundary layer at $x=1$ for $\alpha<0$ and at $x=0$ for $\alpha>0$
\mathcal{L}_{α} is not self-adjoint, but it is equi-elliptic wrt Péclet number:

$$
\begin{aligned}
\lambda_{k}\left[\mathcal{L}_{\alpha}\right] & =-(k \pi)^{2}-\frac{\alpha^{2}}{4} \\
u^{k}(x) & =\mathrm{e}^{-\alpha x / 2} \sin k \pi x
\end{aligned}
$$

$$
\Rightarrow \mu_{\left[L_{\alpha}\right]} \leq-(k \pi)^{2} \text { for all } \alpha
$$

FDM discretization

Convection-diffusion

$N \times N$ Toeplitz matrix $T_{\Delta x}$ with $\Delta x=1 /(N+1)$

$$
\begin{aligned}
\mathcal{L}_{\alpha}=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\alpha \frac{\mathrm{d}}{\mathrm{dx}} & \sim \frac{1}{\Delta x^{2}} \operatorname{tridiag}(1-2 \quad 1)+\frac{\alpha}{2 \Delta x} \operatorname{tridiag}\left(\begin{array}{lll}
-1 & 0 & 1
\end{array}\right) \\
& =: T_{\Delta x}
\end{aligned}
$$

While \mathcal{L}_{α} has negative real eigenvalues, the discrete eigenvalues

$$
\lambda_{k}\left[T_{\Delta x}\right]=-\frac{2}{\Delta x^{2}}+\frac{2}{\Delta x^{2}} \sqrt{1-\frac{\alpha^{2} \Delta x^{2}}{4}} \cos \frac{k \pi}{N+1}, \quad k=1: N
$$

are negative real only if mesh Péclet number satisfies $|\alpha \Delta x|<2$

7. Parabolic problems with cG(1) FEM

Consider diffusion problem in strong form $u_{t}-u_{x x}=0$ with Dirichlet boundary conditions

Multiply by test function v and integrate by parts

$$
\int_{0}^{1} v u_{t} \mathrm{~d} x+\int_{0}^{1} v^{\prime} u^{\prime} \mathrm{d} x=0
$$

In terms of inner product and energy norm:

Weak form $\left\langle v, u_{t}\right\rangle+a(v, u)=0$ for all v with $v(0)=v(1)=0$

Galerkin cG(1) FEM for parabolic equations

1. Basis functions $\left\{\varphi_{i}\right\}$
2. Approximate $u(t, x)=\sum c_{j}(t) \varphi_{j}(x)$
3. Determine c_{j} from $\left\langle\varphi_{i}, u_{t}\right\rangle+a\left(\varphi_{i}, u\right)=0$

Note $\left\langle\varphi_{i}, u_{t}\right\rangle=\sum \dot{c}_{j}\left\langle\varphi_{i}, \varphi_{j}\right\rangle$ and $a\left(\varphi_{i}, u\right)=\sum c_{j}\left\langle\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right\rangle$

We get an initial value problem

$$
M_{\Delta x} \dot{c}+K_{\Delta x} c=0
$$

for the determination of the coefficients $c_{j}(t)$ with $c(0)$ determined by the initial condition

Galerkin cG(1) FEM for parabolic equations

Simplest case Piecewise linear elements on equidistant grid
Stiffness matrix elements $k_{i j}=\left\langle\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right\rangle$

$$
K_{\Delta x}=\frac{1}{\Delta x} \operatorname{tridiag}\left(\begin{array}{lll}
-1 & 2 & -1
\end{array}\right)
$$

and mass matrix elements $m_{i j}=\left\langle\varphi_{i}, \varphi_{j}\right\rangle$

$$
M_{\Delta x}=\frac{\Delta x}{6} \operatorname{tridiag}\left(\begin{array}{lll}
1 & 4 & 1
\end{array}\right)
$$

Galerkin cG(1) FEM for parabolic equations. . .

Note that in the initial value problem

$$
M_{\Delta x} \dot{c}+K_{\Delta x} c=0
$$

the matrix $M_{\Delta x}$ is tridiagonal \Rightarrow no advantage from explicit time stepping methods

Explicit Euler

$$
M_{\Delta x}\left(c_{n+1}-c_{n}\right)=-\Delta t \cdot K_{\Delta x} c_{n}
$$

requires the solution of a tridiagonal system on every step

Galerkin $\mathrm{cG}(1)$ FEM for parabolic equations. . .

As the system is stiff, use implicit A-stable method instead

$$
M_{\Delta x}\left(c_{n+1}-c_{n}\right)=-\frac{\Delta t}{2} \cdot K_{\Delta x}\left(c_{n}+c_{n+1}\right)
$$

and solve tridiagonal system

$$
\left(M_{\Delta x}+\frac{\Delta t}{2} K_{\Delta x}\right) c_{n+1}=\left(M_{\Delta x}-\frac{\Delta t}{2} K_{\Delta x}\right) c_{n}
$$

on every step
Trapezoidal rule has same cost, but better stability

8. Well-posedness

Linear partial differential equation

$$
\begin{aligned}
u_{t} & =\mathcal{L} u+f, \quad 0 \leq x \leq 1, \quad t \geq 0, \quad u(0, x)=h(x), \\
u(t, 0) & =\phi_{0}(t), \quad u(t, 1)=\phi_{1}(t)
\end{aligned}
$$

Suppose $\begin{cases}w_{t}=\mathcal{L} w+f, & w(0, x)=h(x) \\ v_{t}=\mathcal{L} v+f, & v(0, x)=h(x)+g(x)\end{cases}$

Subtract to get homogeneous Dirichlet problem

$$
u_{t}=\mathcal{L} u, \quad u(0, x)=g(x), \quad \phi_{0}(t) \equiv 0, \quad \phi_{1}(t) \equiv 0
$$

Well-posedness

Time evolution

Suppose time evolution $\quad u(t, x)=\mathcal{E}(t) g(x)$

Definition The equation is well-posed if for every $t^{*}>0$ there is a constant $0<C\left(t^{*}\right)<\infty$ such that $\|\mathcal{E}(t)\| \leq C\left(t^{*}\right)$ for all $0 \leq t \leq t^{*}$

Definition A well-posed equation has a solution that

- depends continuously on the initial value (the "data")
- is uniformly bounded in any compact interval

A small change in initial condition results in a small change in the solution

$u_{t}=u_{x x}$ is well posed

Fourier series expansion $g(x)=\sqrt{2} \sum_{1}^{\infty} c_{k} \sin k \pi x$ implies

$$
\begin{aligned}
& u(t, x)=\sqrt{2} \sum_{k=1}^{\infty} c_{k} \mathrm{e}^{-(k \pi)^{2} t} \sin k \pi x \\
\|\mathcal{E}(t) g\|_{2}^{2}= & \int_{0}^{1}|u(t, x)|^{2} \mathrm{~d} x \\
= & 2 \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} c_{k} c_{j} \mathrm{e}^{-\left(k^{2}+j^{2}\right) \pi^{2} t} \int_{0}^{1} \sin k \pi x \sin j \pi x \mathrm{~d} x \\
= & \sum_{k=1}^{\infty} c_{k}^{2} \mathrm{e}^{-2(k \pi)^{2} t} \leq \sum_{k=1}^{\infty} c_{k}^{2}=\|g\|_{2}^{2}
\end{aligned}
$$

Hence $\|\mathcal{E}(t)\|_{2} \leq 1$ for every $t \geq 0$

