Numerical Methods for Differential Equations Chapter 5: Elliptic and Parabolic PDEs

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

Contents

V4.19

- 1. Brief overview of PDE problems
- 2. Elliptic problems with FDM
- 3. Elliptic problems with cG(1) FEM
- 4. Parabolic problems
- 5. Method of lines
- 6. Error analysis and convergence
- 7. Parabolic problems with cG(1) FEM
- 8. Well-posedness

1. Brief overview of PDE problems

Classification Three basic types, four prototype equations

Elliptic $-\Delta u = f$ + BCPoisson equationParabolic $u_t = \Delta u$ + BC & IVDiffusion equationHyperbolic $u_{tt} = \Delta u$ + BC & IVWave equation $u_t + a(u)u_x = 0$ + BC & IVAdvection equation

We will consider these equations in 1D (one space dimension only)

$$-u'' = f;$$
 $u_t = u_{xx};$ $u_{tt} = u_{xx};$ $u_t + a(u)u_x = 0$

Classification of PDEs

Classical approach Linear PDE with two independent variables

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + L(u_x, u_y, u, x, y) = 0$$

with *L* linear in u_x, u_y, u . Study

$$\delta := \det \begin{pmatrix} A & B \\ B & C \end{pmatrix} = AC - B^2$$

 $\begin{array}{l} \delta > 0 \quad Elliptic \\ \delta = 0 \quad Parabolic \\ \delta < 0 \quad Hyperbolic \end{array}$

General classification of PDEs

Highest derivatives wrt t and x determines the PDE type

Let $F(\omega, x) = e^{i\omega x}$ and let u and its derivatives go to zero as $x \to \pm \infty$, and introduce the Fourier transform $\mathcal{F} : u \mapsto \hat{u}$ by

$$\hat{u}(\omega) = \mathcal{F}u = \langle F, u \rangle = \int_{-\infty}^{\infty} \bar{F}u \, \mathrm{d}x = \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}\omega x} u \, \mathrm{d}x$$

Then

$$\mathcal{F}u_{t} = \langle F, u_{t} \rangle = d(\mathcal{F}u)/dt = d\hat{u}/dt$$
$$\mathcal{F}u_{x} = \langle F, u_{x} \rangle = -\langle F_{x}, u \rangle = -\langle i\omega F, u \rangle = i\omega \mathcal{F}u = i\omega \hat{u}$$
$$\mathcal{F}u_{xx} = \langle F, u_{xx} \rangle = \langle F_{xx}, u \rangle = -\langle \omega^{2} F, u \rangle = -\omega^{2} \mathcal{F}u = (i\omega)^{2} \hat{u}$$

etc.

General classification...

Highest order terms (real coefficients)

 $\frac{\partial^p u}{\partial t^p} = \frac{\partial^q u}{\partial x^q}$

Hyperbolic if p + q is even, parabolic if p + q is odd

$u_t = u_x$	Hyperbolic
$u_t = u_{xx}$	Parabolic
$iu_t = u_{xx}$	Hyperbolic
$u_t = u_{xxx}$	Hyperbolic
$u_t = -u_{xxxx}$	Parabolic

$u_{tt} = u_{xx}$	Hyperbolic
$u_{tt} = -u_{xxxx}$	Hyperbolic

Mostly about the properties of the solutions:

Elliptic	steady-state solutions, no time evolution
Parabolic	energy dissipation, solutions gain regularity
Hyperbolic	energy conservation, no regularity gain

Classification breaks down for nonlinear problems

PDE method types

- **FDM** Finite difference methods
- **FEM** Finite element methods
- **FVM** Finite volume methods
- **BEM** Boundary element methods
 - ... Spectral methods

We will mostly study FDM to cover basic theory and some FEM

PDE methods for elliptic problems

Simple geometryFDM or Fourier methodsComplex geometryFEMSpecial problemsFVM or BEM

Very large, sparse systems, e.g. $10^6 - 10^{10}$ equations

Often combined with *iterative solvers* such as multigrid methods

PDE methods for parabolic problems

Simple geometry FDM or Fourier methods Complex geometry FEM

Stiffness calls for A-stable implicit time-stepping methods

Need Newton-type solvers for large sparse systems, e.g. $10^6 - 10^9\,$ equations. May be combined with multigrid methods

PDE methods for hyperbolic problems

FDM, FVM. Sometimes FEM

Very challenging problems, with *conservation properties*, sometimes *shocks*, and sometimes *multiscale phenomena* such as turbulence

Solutions may be discontinuous, cf. "sonic booms"

Highly specialized methods are often needed

2. Elliptic problems with FDM

Laplacian
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Laplace equation $\Delta u = 0$ with boundary conditions $u = u_0(x, y, z)$ $x, y, z \in \partial \Omega$

Poisson equation $-\Delta u = f$ with boundary conditions $u = u_0(x, y, z)$ $x, y, z \in \partial \Omega$

Other boundary conditions also of interest (Neumann)

Elliptic problems

Some applications

• Equilibrium problems

Structural analysis (strength of materials) Heat distribution

• Potential problems

Potential flow (inviscid, subsonic flow) Electromagnetics (fields, radiation)

Eigenvalue problems Acoustics

Microphysics

An elliptic model problem

Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

Computational domain $\Omega = [0,1] \times [0,1]$ (unit square), Dirichlet conditions u(x,y) = 0 on boundary

Uniform grid $\{x_i, y_j\}_{i,j=1}^{N,M}$ with equidistant mesh widths $\Delta x = 1/(N+1)$ and $\Delta y = 1/(M+1)$

Discretization Finite differences with $u_{i,j} \approx u(x_i, y_j)$

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta y^2} = f(x_i, y_j)$$

Equidistant mesh $\Delta x = \Delta y$

$$\frac{u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i,j+1} + u_{i+1,j}}{\Delta x^2} = f(x_i, y_j)$$

Participating approximations and mesh points

Computational stencil for $\Delta x = \Delta y$

The FDM linear system of equations

Lexicographic ordering of unknowns \Rightarrow *block partitioned system*

$$\frac{1}{\Delta x^{2}} \begin{pmatrix} T & I & & & \\ I & T & I & & \\ & I & T & I & & \\ & & I & T & I & \\ & & & \ddots & \ddots & \ddots & \\ & & & & I & T \end{pmatrix} \begin{pmatrix} u_{1,1} \\ u_{1,2} \\ \vdots \\ u_{1,N} \\ u_{2,1} \\ u_{2,2} \\ \vdots \\ u_{N,N} \end{pmatrix} = \begin{pmatrix} f(x_{1}, y_{1}) \\ f(x_{2}, y_{2}) \\ \vdots \\ f(x_{1}, y_{N}) \\ f(x_{2}, y_{1}) \\ f(x_{2}, y_{2}) \\ \vdots \\ f(x_{N}, y_{N}) \end{pmatrix}$$

with Toeplitz matrix T = tridiag(1 - 4 1)

The system is $N^2 \times N^2$, hence large and very sparse

3. Elliptic problems with FEM

A general finite element method

FEM is a *least squares approximation*, fitting a linear combination of basis functions $\{\varphi_i\}$ to the solution using *orthogonality*

Simplest case Piecewise linear basis functions: 2nd-order cG(1)

Strong and weak forms

Strong form

 $-\Delta u = f$ in Ω ; u = 0 on $\partial \Omega$

Take v with v = 0 on $\partial \Omega$

$$\int_{\Omega} -\Delta u \, v \, \mathrm{d}\Omega = \int_{\Omega} f \, v \, \mathrm{d}\Omega$$

Integrate by parts to get weak form

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v$$

Note: \cdot means scalar product on \mathbb{R}^d here; ∇u is a vector

1D case

Recall integration by parts in 1D

$$\int_0^1 -u'' v \, \mathrm{d}x = \left[-u' v \right]_0^1 + \int_0^1 u' v' \, \mathrm{d}x$$

or in terms of an inner product

$$-\langle u'',v\rangle = \langle u',v'\rangle$$

Generalization to 2D, 3D uses vector calculus

Weak form of $-\Delta u = f$

 $\Delta u = \operatorname{div}(\operatorname{grad} u)$

Define inner product

$$\langle \mathbf{v}, \mathbf{u} \rangle = \int_{\Omega} \mathbf{v} \mathbf{u} \, \mathrm{d}\Omega$$

and bilinear form

$$a(v, u) = -\int_{\Omega} v \Delta u \, \mathrm{d}\Omega = \int_{\Omega} \nabla v \cdot \nabla u \, \mathrm{d}\Omega = \int_{\Omega} \operatorname{grad} v \cdot \operatorname{grad} u \, \mathrm{d}\Omega$$

to get the *weak form* of $-\Delta u = f$ as

 $a(v, u) = \langle v, f \rangle$

Galerkin method (Finite Element Method)

1. Basis functions $\{\varphi_i\}$ 2. Approximate $u = \sum c_j \varphi_j$ 3. Determine c_i from $\sum c_i a(\varphi_i, \varphi_i) = \langle \varphi_i, f \rangle$

The c_i are determined by the *linear system*

Kc = F

The matrix *K* is called the *stiffness matrix*

Stiffness matrix elements $k_{ij} = a(\varphi_i, \varphi_j) = \int \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega$

Right-hand side $F_i = \langle \varphi_i, f \rangle = \int \varphi_i f \, \mathrm{d}\Omega$

Dealing with the right-hand side

Typically $\int \varphi_i f \, d\Omega$ cannot be evaluated exactly so we approximate

$$f\approx\sum_{j}f_{j}\varphi_{j}$$

Then

$$F_i \approx \langle \varphi_i, \sum_j f_j \varphi_j \rangle = \int \varphi_i \sum_j f_j \varphi_j \, \mathrm{d}\Omega = \sum_j \langle \varphi_i, \varphi_j \rangle f_j$$

The matrix M is called the *mass matrix*, with matrix elements $m_{ij} = \langle \varphi_i, \varphi_j \rangle = \int \varphi_i \varphi_j \, d\Omega$

Finite element equations, using $\bar{f} = \{f_i\}$, finally becomes $Kc = M\bar{f}$

The FEM mesh

cG(1) domain triangulation

Piecewise linear basis $\{\varphi_i\}$ require domain *triangulation*

4. Parabolic problems

The prototypical equation is the *diffusion equation*

 $u_t = \Delta u$

Also nonlinear diffusion

 $u_t = \operatorname{div}(k(u)\operatorname{grad} u)$

Boundary and initial conditions are needed

Solution methods are now built by *combining time-stepping* methods with *space discretization* of the spatial derivative operator

Diffusion

Parabolic problems

Some applications

Diffusive processes
Heat conduction

$$u_t = d \cdot u_{xx}$$

• Chemical reactions Reaction-diffusion Convection-diffusion

 $u_t = d \cdot u_{xx} + f(u)$ $u_t = u_x + \frac{1}{\text{Pe}}u_{xx}$

• Seismology Parabolic waves $u_t = uu_x + d \cdot u_{xx}$

Irreversibility $u_t = -\Delta u$ is not well-posed!

A parabolic model problem

Equation $u_t = u_{xx}$ Initial values u(0, x) = g(x)Boundary values u(t, 0) = u(t, 1) = 0

Separation of variables $u(t,x) := X(x)T(t) \Rightarrow$

$$u_t = X \dot{T}, \quad u_{xx} = X''T \quad \Rightarrow \quad \frac{\dot{T}}{T} = \frac{X''}{X} =: \lambda$$

 $T = C e^{\lambda t}$ $X = A \sin \sqrt{-\lambda} x + B \cos \sqrt{-\lambda} x$

Parabolic model problem...

Boundary values $X(0) = X(1) = 0 \Rightarrow \lambda_k = -(k\pi)^2$, therefore

$$X_k(x) = \sqrt{2} \sin k\pi x$$
 $T_k(t) = e^{-(k\pi)^2 t}$

Fourier expansion of initial values $g(x) = \sum_{1}^{\infty} c_k \sqrt{2} \sin k\pi x \Rightarrow$

Solution can be assembled

$$u(t,x) = \sqrt{2} \sum_{k=1}^{\infty} c_k \mathrm{e}^{-(k\pi)^2 t} \mathrm{sin} \, k\pi x$$

5. Method of lines (MOL) discretization

In
$$u_t = u_{xx}$$
, discretize $\partial^2/\partial x^2$ by

$$u_{xx} \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{\Delta x^2}$$

System of ODEs (semidiscretization) $\dot{u} = T_{\Delta \times} u$ reads

$$\dot{u} = \frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & \\ & \ddots & \\ & & \ddots & \\ & & & 1 & -2 \end{pmatrix} u$$

Full FDM discretization

Note $u_i(t) \approx u(t, x_i)$ along the line $x = x_i$ in the (t, x) plane

Using Explicit Euler time-stepping with $u_i^n \approx u(t_n, x_i)$ implies

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{\Delta x^2}$$

With the *Courant number* $\mu = \Delta t / \Delta x^2$ we obtain recursion

$$u_i^{n+1} = u_i^n + \mu \cdot (u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

Method of lines

Computational stencil

Explicit Euler time stepping. Participating grid points

Method of lines

Stability and the CFL condition

Explicit Euler with $\Delta x = 1/(N+1)$ implies recursion

$$u_{\cdot}^{n+1} = u_{\cdot}^{n} + \Delta t \cdot T_{\Delta \times} u_{\cdot}^{n}$$

Recall $\lambda_k[T_{\Delta x}] = -4(N+1)^2 \sin^2 \frac{k\pi}{2(N+1)}$ for k = 1:N

Stability requires $\Delta t \cdot \lambda_k \in S$ for all eigenvalues

$$\Delta t \cdot \lambda_k \in \left[-\frac{4\Delta t}{\Delta x^2}, -\pi^2 \Delta t\right]$$

The CFL condition

For explicit Euler stability we need $4\Delta t / \Delta x^2 \le 2$

CFL condition (Courant, Friedrichs, Lewy 1928)
$$\frac{\Delta t}{\Delta x^2} \leq \frac{1}{2}$$

The CFL condition is a severe restriction on time step Δt

Stiffness The CFL condition can be avoided by using A-stable methods, e.g. Trapezoidal Rule or Implicit Euler

Experimental stability investigation

N = 30 internal pts in [0,1], M = 187 time steps on [0,0.1]. Stable solution at CFL = .514

Violating the CFL condition

Instability!

N = 30 internal pts in [0, 1], M = 184 time steps on [0, 0.1]. Unstable solution at CFL = .522

Crank–Nicolson method (1947)

 $\mathsf{Crank-Nicolson}\ \mathsf{method} \Leftrightarrow \mathsf{Trapezoidal}\ \mathsf{Rule}\ \mathsf{for}\ \mathsf{PDEs}$

The Trapezoidal Rule is

- implicit ⇒ more work/step
- A-stable

 \Rightarrow no restriction on Δt

• Far more efficient

Theorem Crank–Nicolson is unconditionally stable

There is *no CFL condition* on the time-step Δt which is why the Crank–Nicolson method is preferable

Crank–Nicolson method...

$$u^{n+1} = u^n + \frac{\Delta t}{2} \Big(T_{\Delta \times} u^n + T_{\Delta \times} u^{n+1} \Big)$$

Courant number $\mu = \Delta t / \Delta x^2 \Rightarrow$ recursion

$$(I - \frac{\mu}{2}T)u_{\cdot}^{n+1} = (I + \frac{\mu}{2}T)u_{\cdot}^{n}$$

with Toeplitz matrix T = tridiag(1 - 2 1)

Tridiagonal structure ⇒ *low complexity*

Refactorize only if Courant number $\mu = \Delta t / \Delta x^2$ changes

6. Error analysis

MOL with explicit Euler for $u_t = u_{xx}$

Global error $e_i^n = u_i^n - u(t_n, x_i)$

Local error Insert exact solution to get

$$\frac{u(t_{n+1}, x_i) - u(t_n, x_i)}{\Delta t} = \frac{u(t_n, x_{i-1}) - 2u(t_n, x_i) + u(t_n, x_{i+1})}{\Delta x^2} - l_i^n$$

Expand in Taylor series

$$-l_i^n = \frac{\Delta t}{2}u_{tt} + \frac{\Delta x^2}{12}u_{xxxx} + O(\Delta t^2, \Delta x^4)$$

The Lax Principle

Conclusion

 $\begin{array}{lll} \textit{Consistency} & l_i^n \to 0 & \text{as } \Delta t, \Delta x \to 0 \\ \textit{Stability} & \textit{CFL condition} & \Delta t/\Delta x^2 \leq 1/2 \\ \textit{Convergence} & e_i^n \to 0 & \text{as } \Delta t, \Delta x \to 0 \end{array}$

Theorem (Lax Principle)

 $Consistency + Stability \Rightarrow Convergence$

Note Choice of norm is very important

Convergence order

Explicit Euler

With local error

$$-l_i^n = \frac{\Delta t}{2}u_{tt} + \frac{\Delta x^2}{12}u_{xxxx} = O(\Delta t, \Delta x^2)$$

and stability in terms of CFL condition $\mu = \Delta t / \Delta x^2 \le 1/2$ we have global error $e_i^n = O(\Delta t, \Delta x^2)$

For fixed μ we have $\Delta t \sim \Delta x^2$ and it follows that

Global error $e_i^n = O(\Delta t, \Delta x^2) = O(\Delta x^2) \Rightarrow$

Theorem The order of convergence is p = 2

 $A_{\mu} = (I - rac{\mu}{2}T)^{-1}(I + rac{\mu}{2}T)$ with the usual Toeplitz matrix T

Theorem The eigenvalues are $\lambda[A_{\mu}] = \frac{1 + \frac{\mu}{2}\lambda[T]}{1 - \frac{\mu}{2}\lambda[T]}$

Note $\lambda[T] \in (-4,0) \Rightarrow -1 < \lambda[A_{\mu}] < 1$. This implies that there is no CFL stability condition on the Courant ratio μ . The method is stable for all $\Delta t > 0$

Theorem Crank–Nicolson is unconditionally stable and convergent of order p = 2

Experimental stability investigation

N = 30 internal pts in [0, 1], M = 30 time steps on [0, 0.1] Stable solution at CFL = 3.2

Convection-diffusion

 $u_t = u_{xx} + \alpha u_x - f$

Space operator with homogeneous Dirichlet conditions on [0, 1]

 $\mathcal{L}_{\alpha}u = u'' + \alpha u'$

Convection dominated for Péclet numbers $|\alpha| \gg 1$, with boundary layer at x = 1 for $\alpha < 0$ and at x = 0 for $\alpha > 0$

 \mathcal{L}_{α} is *not self-adjoint*, but it is *equi-elliptic* wrt Péclet number:

$$\lambda_k[\mathcal{L}_\alpha] = -(k\pi)^2 - \frac{\alpha^2}{4}$$
$$u^k(x) = e^{-\alpha x/2} \sin k\pi x$$

 $\Rightarrow \mu_{[L_{\alpha}]} \leq -(k\pi)^2$ for all α

FDM discretization

Convection-diffusion

 $N \times N$ Toeplitz matrix $T_{\Delta x}$ with $\Delta x = 1/(N+1)$

$$\mathcal{L}_{\alpha} = \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} + \alpha \frac{\mathrm{d}}{\mathrm{d}x} \sim \frac{1}{\Delta x^{2}} \operatorname{tridiag}(1 - 2 \ 1) + \frac{\alpha}{2\Delta x} \operatorname{tridiag}(-1 \ 0 \ 1)$$
$$=: T_{\Delta x}$$

While \mathcal{L}_{α} has negative real eigenvalues, the discrete eigenvalues

$$\lambda_k[T_{\Delta x}] = -\frac{2}{\Delta x^2} + \frac{2}{\Delta x^2} \sqrt{1 - \frac{\alpha^2 \Delta x^2}{4} \cos \frac{k\pi}{N+1}}, \quad k = 1: N$$

are negative real only if *mesh Péclet number satisfies* $|\alpha \Delta x| < 2$

7. Parabolic problems with cG(1) FEM

Consider diffusion problem in strong form $u_t - u_{xx} = 0$ with Dirichlet boundary conditions

Multiply by test function v and integrate by parts

$$\int_0^1 v u_t \, \mathrm{d}x + \int_0^1 v' u' \, \mathrm{d}x = 0$$

In terms of inner product and energy norm:

Weak form $\langle v, u_t \rangle + a(v, u) = 0$ for all v with v(0) = v(1) = 0

Galerkin cG(1) FEM for parabolic equations

- 1. Basis functions $\{\varphi_i\}$
- 2. Approximate u
- 3. Determine c_j from $\langle \varphi_i, u \rangle$

$$\begin{aligned} \varphi_i \\ u(t, x) &= \sum c_j(t) \varphi_j(x) \\ \varphi_i, u_t \rangle + a(\varphi_i, u) = 0 \end{aligned}$$

Note $\langle \varphi_i, u_t \rangle = \sum \dot{c}_j \langle \varphi_i, \varphi_j \rangle$ and $a(\varphi_i, u) = \sum c_j \langle \varphi'_i, \varphi'_j \rangle$

We get an initial value problem

 $M_{\Delta x}\dot{c}+K_{\Delta x}c=0$

for the determination of the coefficients $c_j(t)$ with c(0) determined by the initial condition

Galerkin cG(1) FEM for parabolic equations

Simplest case Piecewise linear elements on equidistant grid

Stiffness matrix elements $k_{ij} = \langle \varphi'_i, \varphi'_j \rangle$

$$K_{\Delta x} = rac{1}{\Delta x} \operatorname{tridiag}(-1 \quad 2 \quad -1)$$

and mass matrix elements $m_{ij} = \langle \varphi_i, \varphi_j \rangle$

$$M_{\Delta x} = \frac{\Delta x}{6} \operatorname{tridiag}(1 \quad 4 \quad 1)$$

Galerkin cG(1) FEM for parabolic equations...

Note that in the initial value problem

 $M_{\Delta x}\dot{c}+K_{\Delta x}c=0$

the matrix $M_{\Delta \times}$ is tridiagonal \Rightarrow no advantage from explicit time stepping methods

Explicit Euler

$$M_{\Delta \times}(c_{n+1}-c_n)=-\Delta t\cdot K_{\Delta \times}c_n$$

requires the solution of a tridiagonal system on every step

Galerkin cG(1) FEM for parabolic equations...

As the system is stiff, use implicit A-stable method instead

$$M_{\Delta x}(c_{n+1}-c_n) = -rac{\Delta t}{2}\cdot K_{\Delta x}(c_n+c_{n+1})$$

and solve tridiagonal system

$$(M_{\Delta x} + \frac{\Delta t}{2}K_{\Delta x})c_{n+1} = (M_{\Delta x} - \frac{\Delta t}{2}K_{\Delta x})c_n$$

on every step

Trapezoidal rule has same cost, but better stability

8. Well-posedness

Linear partial differential equation

$$u_t = \mathcal{L}u + f, \quad 0 \le x \le 1, \quad t \ge 0, \quad u(0, x) = h(x),$$

 $u(t, 0) = \phi_0(t), \quad u(t, 1) = \phi_1(t)$

Suppose
$$\begin{cases} w_t = \mathcal{L}w + f, & w(0, x) = h(x) \\ v_t = \mathcal{L}v + f, & v(0, x) = h(x) + g(x) \end{cases}$$

Subtract to get homogeneous Dirichlet problem

$$u_t = \mathcal{L}u, \quad u(0,x) = g(x), \quad \phi_0(t) \equiv 0, \quad \phi_1(t) \equiv 0$$

Time evolution

Suppose time evolution $u(t,x) = \mathcal{E}(t)g(x)$

Definition The equation is well-posed if for every $t^* > 0$ there is a constant $0 < C(t^*) < \infty$ such that $||\mathcal{E}(t)|| \le C(t^*)$ for all $0 \le t \le t^*$

Definition A well-posed equation has a solution that

- depends continuously on the initial value (the "data")
- is uniformly bounded in any compact interval

A small change in initial condition results in a small change in the solution

$u_t = u_{xx}$ is well posed

Fourier series expansion $g(x) = \sqrt{2} \sum_{1}^{\infty} c_k \sin k\pi x$ implies

$$u(t,x) = \sqrt{2} \sum_{k=1}^{\infty} c_k \mathrm{e}^{-(k\pi)^2 t} \sin k\pi x$$

$$\begin{aligned} \|\mathcal{E}(t)g\|_{2}^{2} &= \int_{0}^{1} |u(t,x)|^{2} \,\mathrm{d}x \\ &= 2\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} c_{k}c_{j}\mathrm{e}^{-(k^{2}+j^{2})\pi^{2}t} \int_{0}^{1} \sin k\pi x \sin j\pi x \,\mathrm{d}x \\ &= \sum_{k=1}^{\infty} c_{k}^{2}\mathrm{e}^{-2(k\pi)^{2}t} \leq \sum_{k=1}^{\infty} c_{k}^{2} = \|g\|_{2}^{2} \end{aligned}$$

Hence $\|\mathcal{E}(t)\|_2 \leq 1$ for every $t \geq 0$