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1. Brief overview of PDE problems

Classification Three basic types, four prototype equations

Elliptic —Au="f + BC Poisson equation
Parabolic ~ u; = Au + BC & IV  Diffusion equation
Hyperbolic  uy = Au + BC & IV Wave equation

us+a(u)uy =0 + BC & IV Advection equation

We will consider these equations in 1D (one space dimension only)

"
—u' =f; Ut = Uxx Uit = Uxx , Ut+a(U)UX:0
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Classification of PDEs

Classical approach Linear PDE with two independent variables
Auy + 2Buyy, + Cuyy + L(uy, uy, u,x,y) =0

with L linear in uy, uy, u. Study

._ A BY _ R2
5.—det<B C)—AC B

0 >0 Elliptic
0 =0 Parabolic
0 <0 Hyperbolic
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General classification of PDEs Fourier transforms

Highest derivatives wrt t and x determines the PDE type

Let F(w,x) = e“* and let u and its derivatives go to zero as
X — +00, and introduce the Fourier transform F : u > i by

0(w)—.7-"u—<F,u>—/ I:_udx—/ e WXy dx

Then
Fur = da/dt
Fu, = iw 0
Fly = (iw)2 ]
etc.
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General classification. . .

Highest order terms (real coefficients)

OPu 0%

atP Ix9

Uy = Uy

Ut = Uxx

U = Uxx

Ut = Uxxx

Ut = — Uxxxx
Utt = Uxx

Uit = —Uxxxx

Hyperbolic if p + g is even, parabolic if p + g is odd

Hyperbolic
Parabolic
Hyperbolic
Hyperbolic
Parabolic

Hyperbolic
Hyperbolic
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General classification. . .

Mostly about the properties of the solutions:

Elliptic steady-state solutions, no time evolution
Parabolic  energy dissipation, solutions gain regularity

Hyperbolic  energy conservation, no regularity gain

Classification breaks down for nonlinear problems
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PDE method types

FDM Finite difference methods

FEM Finite element methods

FVM  Finite volume methods
Boundary element methods

Spectral methods

We will mostly study FDM to cover basic theory and some FEM
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PDE methods for elliptic problems

Simple geometry FDM or Fourier methods
Complex geometry FEM
Special problems FVM or BEM

Very large, sparse systems, e.g. 10° — 1010 equations

Often combined with iterative solvers such as multigrid methods
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PDE methods for parabolic problems

Simple geometry FDM or Fourier methods

Complex geometry FEM
Stiffness calls for A—stable implicit time-stepping methods
Need Newton-type solvers for large sparse systems, e.g. 10® — 10°

equations. May be combined with multigrid methods
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PDE methods for hyperbolic problems

FDM, FVM. Sometimes FEM
Very challenging problems, with conservation properties, sometimes
shocks, and sometimes multiscale phenomena such as turbulence

Solutions may be discontinuous, cf. “sonic booms”

Highly specialized methods are often needed
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2. Elliptic problems with FDM

, 2 0*  0?
Laplacian A = 2 + oy2 + 5.2

Laplace equation Au=20
with boundary conditions v = up(x,y,z) x,y,z € 0Q

Poisson equation —Au=f
with boundary conditions v = wug(x,y,z) x,y,z € 09

Other boundary conditions also of interest (Neumann)
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Elliptic problems Some applications

e FEquilibrium problems
Structural analysis (strength of materials)
Heat distribution

e Potential problems
Potential flow (inviscid, subsonic flow)
Electromagnetics (fields, radiation)

e Eigenvalue problems

Acoustics
Microphysics
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An elliptic model problem Poisson equation

0?u  0%u
ENe + ay2 f(x,y)

Computational domain Q = [0, 1] x [0, 1] (unit square), Dirichlet
conditions u(x, y) = 0 on boundary

Uniform grid {x,-,yj}l{v’jiﬂl with equidistant mesh widths
Ax=1/(N+1)and Ay =1/(M+1)

Discretization Finite differences with v;; ~ u(x;, y;)

Uio1j = 20ij + Uiy | Uijo1 = 205 + Ui

Ax? Ay? = i)
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Equidistant mesh Ax = Ay

Ui—1j+ Uij—1 —4uij+ Uijy1 + Uipa

Participating approximations and mesh points

Yj+1

Yj

Yj-1

Ax?

Xi—1

Xi

Xi+1
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Computational stencil for Ax = Ay

Ui-1j + Uij—1 — 4Uij + Uij+1 + Ui
Ax?

@ “Five-point operator”
O——O

= f(X,',yj)

16 /52



The FDM linear system of equations

Lexicographic ordering of unknowns = block partitioned system

U1 f(x1, y1)
T | U1 f(x2, )

| T | :
1 T mn | | fOayw)
Ax? Uz 1 f(x2,y1)
/ 2.2 f(x2,y2)

| T :
U, N f(xn,yn)

with Toeplitz matrix T = tridiag(l —4 1)

The system is N2 x N2, hence large and very sparse
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3. Elliptic problems with FEM

A general finite element method

Linear PDE Lu=f in domain €2
Ansatz u =) cp; = Lu=)> cily;
Requirement (¢, Lu—f) =0 gives coefficients {¢;}

FEM is a least squares approximation, fitting a linear combination
of basis functions {¢;} to the solution using orthogonality

Simplest case Piecewise linear basis functions: 2nd-order cG(1)

18/52



Strong and weak forms

Strong form
—Au=f inQ; u=0 on 0N

Take v with v = 0 on 012
/Aude:/fde
Q Q

Integrate by parts to get weak form

/Vu'Vv:/fv
Q Q

Note: - means scalar product on R? here; Vu is a vector
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Strong and weak forms 1D case

Recall integration by parts in 1D
1 . 1
/ —u"vdx = [u/v]0+/ u'v dx
0 0

or in terms of an inner product

—<U//, V> — <U/, V/>

Generalization to 2D, 3D uses vector calculus
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Weak form of —Au = f Au = div(grad v)

Define inner product

m@:Awm

and bilinear form

a(v,u):—/vAudQ:/Vv-VudQ:/gradv-gradudQ
Q Q Q

to get the weak form of —Au=1f as

a(v,u) = (v,f)
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Galerkin method (Finite Element Method)

1. Basis functions {oi}
2. Approximate u=ycp;
3. Determine c¢; from > cja(yi,¢;) = (¢i.f)

The ¢; are determined by the /inear system
Kec=F

The matrix K is called the stiffness matrix
Stiffness matrix elements kjj = a(p;, ¢;) = [ Vi - Vip; dQ

Right-hand side F; = (¢, f) = [ :f dQ
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Dealing with the right-hand side

Typically [ ¢;f dQ cannot be evaluated exactly so we approximate
fr) fiv)
J
Then

J

The matrix M is called the mass matrix, with matrix elements
mj; = (i, ;) = [ wip; dQ

Finite element equations, using f = {f;}, finally becomes Kc = MF
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The FEM mesh cG(1) domain triangulation

Piecewise linear basis {;} require domain triangulation
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4. Parabolic problems Diffusion

The prototypical equation is the diffusion equation
ur = Au
Also nonlinear diffusion

uy = div (k(v) gradu)

Boundary and initial conditions are needed

Solution methods are now built by combining time-stepping
methods with space discretization of the spatial derivative operator
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Parabolic problems Some applications

e Diffusive processes
Heat conduction Ur = d - Uy

e Chemical reactions
Reaction—diffusion ur = d - g + f(u)

Convection—diffusion vy = uy + pieuxx

e Seismology
Parabolic waves Ur = Uly + d - Uy

Irreversibility v, = —Au is not well-posed!
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A parabolic model problem Diffusion

Equation v
Initial values u(0,x) = g(x)
Boundary values  u(t

Separation of variables u(t,x):=X(x)T(t) =

: T
Ut:XT, UXX:X//T = ?:7:)\

T = Cet X = AsinvV—M\x + BcosvV—\x
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Parabolic model problem. ..

Boundary values X(0) = X(1) =0 = A, = —(km)?, therefore

Xe(x) = V2sinknx  Ti(t) = e (k7’t

Fourier expansion of initial values g(x) = > % c,v/2sin krx =

Solution can be assembled

u(t,x) = \chke *tsin kmx
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5. Method of lines (MOL) discretization

In u: = uy, discretize 92/0x> by

Ui—1 — 2Uj + Uj41
Ax?

Uy =

System of ODEs (semidiscretization) & = Taxu reads
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Full FDM discretization

Note u;(t) ~ u(t, x;) along the line x = x; in the (t, x) plane

Using Explicit Euler time-stepping with u? ~ u(t,, x;) implies

n n n
i 7ooul g 20ty

At Ax?

With the Courant number ;1 = At/Ax? we obtain recursion

n+1 _ .n n n n
ul ™ = 4 e (U = 207 + o)
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Method of lines Computational stencil

Explicit Euler time stepping. Participating grid points

tn—|— 1
th

Xi—1 Xi Xi+1

Courant number = At/Ax?
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Method of lines Stability and the CFL condition
Explicit Euler with Ax = 1/(N + 1) implies recursion
™t = U At Tau”
2.2 kT
Recall A\¢[Tax] = —4(N+1)sin® —— fork=1:N

2(N +1)

Stability requires At -\, € S for all eigenvalues

4Nt > 4 m
At)\k€|:—AX2,—7TAt:| . S
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The CFL condition

For explicit Euler stability we need 4At/Ax? <2

CFL condition (Courant, Friedrichs, Lewy 1928)
At 1 e "\\‘
Ax? = 2 v‘g‘ POy

The CFL condition is a severe restriction on time step At

Stiffness The CFL condition can be avoided by using A-stable
methods, e.g. Trapezoidal Rule or Implicit Euler
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Experimental stability investigation

N = 30 internal pts in [0,1], M = 187 time steps on [0,0.1].
Stable solution at CFL = .514
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Violating the CFL condition Instability!

N = 30 internal pts in [0, 1], M = 184 time steps on [0,0.1].
Unstable solution at CFL = .522
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Crank—Nicolson method (1947)

Crank—Nicolson method < Trapezoidal Rule for PDEs
The Trapezoidal Rule is

e implicit = more work /step
e A-stable = no restriction on At
e Far more efficient

Theorem Crank—Nicolson is unconditionally stable

There is no CFL condition on the time-step At which is why the
Crank—Nicolson method is preferable
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Crank—Nicolson method. ..

At
Un—"_1 =u" + 7<TAxUn + TAXUn+1>

Courant number 1= At/Ax?> = recursion

(I — gr)uwl = (I + %T)u,"

with Toeplitz matrix T = tridiag(l —2 1)
Tridiagonal structure = low complexity

Refactorize only if Courant number 1 = At/Ax? changes
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6. Error analysis Convergence

MOL with explicit Euler for u; = vy

Global error el = u” — u(ty, x;)

Local error Insert exact solution to get

u(tn+1, i) — u(tn, xi) _ ultn, xi—1) — 2u(tn, xi) + u(tn, Xi+1)
At Ax?2 !

Expand in Taylor series

At Ax?
I = Sue+ %UXXXX +O(AL2, AxY)
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The Lax Principle

Conclusion
Consistency I — 0 as At,Ax — 0
Stability CFL condition At/Ax?<1/2
Convergence e/ — 0 as At,Ax — 0

Theorem (Lax Principle)

Consistency + Stability = Convergence

Note Choice of norm is very important
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Convergence order Explicit Euler

With local error

At Ax?
I = St + S thoo = O(AL, Ax?)

and stability in terms of CFL condition ;1 = At/Ax? < 1/2 we
have global error e = O(At, Ax?)

For fixed ;« we have At ~ Ax? and it follows that
Global error e = O(At, Ax?) = O(Ax?) =

Theorem The order of convergence is p = 2
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Crank—Nicolson Unconditional stability

A, = (- gT)*l(/ + gT) with the usual Toeplitz matrix T
1+ 5A[T]

Theorem The eigenvalues are \A,| = ————
AT

Note A[T] e (—4,0) = —1 < A[A,] < 1. This implies that
there is no CFL stability condition on the Courant ratio ;. The
method is stable for all At >0

Theorem Crank—Nicolson is unconditionally stable and convergent
of order p =2

41/52



Experimental stability investigation

N = 30 internal pts in [0, 1], M = 30 time steps on [0,0.1] Stable
solution at CFL = 3.2
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Convection—diffusion Ur = Ugy + il —

Space operator with homogeneous Dirichlet conditions on [0, 1]
Lou=u"~+ ol

Convection dominated for Péclet numbers || > 1, with boundary
layer at x =1 for « < 0 and at x =0 for & > 0

L, is not self-adjoint, but it is equi-elliptic wrt Péclet number:

a?

Me[La] = —(/<7T)2 vy

uK(x) = e /2 sin knx

= L < —(km)? for all «

f'
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FDM discretization Convection—diffusion

N x N Toeplitz matrix Ta, with Ax =1/(N+ 1)

P L tridiag(1 —2 1)+~ tridiag(—1 0 1)
0= —= — ~ ——tridi — ridiag(—
dx? adx Ax? a8 2Ax &
=: Tax

While £, has negative real eigenvalues, the discrete eigenvalues

2 2 a2 Ax? km
)\k[TAX]:—AX2+AX2 1-— 2 COSN+1’ k=1:N

are negative real only if mesh Péclet number satisfies |aAx| < 2
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7. Parabolic problems with cG(1) FEM

Consider diffusion problem in strong form u; — uy, = 0 with
Dirichlet boundary conditions

Multiply by test function v and integrate by parts

1 1
/ VUth+/ Viddx =0
0 0

In terms of inner product and energy norm:

Weak form (v, u;) + a(v,u) =0 for all v with v(0) = v(1) =0
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Galerkin ¢G(1) FEM for parabolic equations

1. Basis functions {wi}
2. Approximate u(t, x) = > ci(t)p;(x)
3. Determine c¢; from (p;, us)+ a(pj,u) =0

Note (pi, ur) =3 (i, ;) and  a(pi,u) =3 ¢y ¢))

We get an initial value problem
May¢ + Kaxc =0

for the determination of the coefficients ¢;(t) with c(0) determined
by the initial condition
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Galerkin ¢G(1) FEM for parabolic equations

Simplest case Piecewise linear elements on equidistant grid

Stiffness matrix elements  kj; = (¢}, ©)

1
Kax = Etridiag(—l 2 —1)

and mass matrix elements  mj;; = (i, ;)

A
MAX:?Xtridiag(l 4 1)
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Galerkin ¢G(1) FEM for parabolic equations. ..

Note that in the initial value problem
Mayx¢ + Kaxc =0
the matrix May is tridiagonal = no advantage from explicit
time stepping methods
Explicit Euler
Max(cn1 — cn) = —At - Kaxcn

requires the solution of a tridiagonal system on every step
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Galerkin ¢G(1) FEM for parabolic equations. ..

As the system is stiff, use implicit A-stable method instead

At

MAX(Cn+1 - Cn) - - 7 : KAX(Cn + Cn+1)
and solve tridiagonal system
At At
(MAX + 7KAX)CI'I+1 — (MAX - 7KAX)Cn

on every step

Trapezoidal rule has same cost, but better stability
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8. Well-posedness

Linear partial differential equation

up=Lu+f, 0<x<1, t>0, u(0,x)=h(x),
U(t,O) - (f)o(t), U(tv 1) - (bl(t)

Suppose + =Lw+f, w(0,x)= h(x)
PP vi =Lv+f, v(0,x)=h(x)+g(x)

Subtract to get homogeneous Dirichlet problem

ur = Lu, u(0,x)=g(x), ¢o(t)=0, ¢1(t)=0
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Well-posedness Time evolution

Suppose time evolution u(t, x) = &(t)g(x)

Definition The equation is well-posed if for every t* > 0 there is
a constant 0 < C(t*) < oo such that ||E(t)|| < C(t*) for all
o<t <t*

Definition A well-posed equation has a solution that
e depends continuously on the initial value (the “data”)

e is uniformly bounded in any compact interval

A small change in initial condition results in a small change in the
solution
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U = Uy is well posed

Fourier series expansion g(x) = /25" cisin kmx  implies

u(t,x) = \@Z cxe” Kt sin krx
k=1

1
1&(t)el = /0 u(t, X)2 dx

CSICS 1
(K24 2Vr2 . .
ZZchcje (K*47%)m t/ sin kmrx sin jmx dx
k=1 j=1 0
o0 o0
2 —2(km)?t 2 2
cpe 2k <N "2 = |glI3

k=1 k=1

Hence [|E(t)|l2 <1 forevery t >0
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