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Review questions and study problems, week 5

A problem is said to be well posed if it has a unique solution which depends

continuously on the data. For example, in the simple 2p-BVP u′′ = q(x)
with u(0) = u(1) = 0 that we studied in the BVP part of the course, we

found, by using the logarithmic norm, that

‖u‖∆x ≤
‖q‖∆x
π2

.

Hence, if the data ‖q‖∆x → 0, then the solution ‖u‖∆x → 0. This implies

continuity: a small change in the data q has only a bounded e�ect on the

solution u. The problem is well posed.

In a similar way, an initial value problem u̇ = f(u) with u(0) = u0 is well

posed if the solution depends continuously on the data u0. A small change

in the initial value u0 must only have a bounded e�ect on the solution u(t).
Note that here it's enough that the e�ect is bounded at a �nite time t. So a

problem like

u̇ = u; u(0) = 1

is well posed: if we perturb u(0) by ε the solution u(t) changes by etε, which
is bounded for any �nite t.

There are several questions concerning well-posedness below. They cannot

be treated in a complete way here, so we will only take a simpli�ed ap-

proach, looking at a continuous data dependence. Thus, you don't have to

address existence questions below. Moreover, as boundary conditions also af-

fect well-posedness we will for simplicity disregard the in�uence of boundary

conditions below. This corresponds to either having homogeneous boundary

conditions, periodic boundary conditions, or �none at all� when the compu-

tational domain is in�nite, i.e., x ∈ (−∞,∞).

1. Show that the di�usion equation ut = uxx with boundary conditions

u(t, 0) = u(t, 1) = 0 and initial value u(0, x) = g(x) is well posed for

t ≥ 0.

(Hint: Using the log norm of ∂2/∂x2, how large is the in�uence of a

perturbation of g? Use the same technique as we used for the initial

value problem above.)
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2. Show that the di�usion equation ut = uxx is not well posed in reverse

time, i.e., for t < 0.

(Hint: Use the same technique as above, but note that you will need

the log norm of −∂2/∂x2, as the reversed problem is equivalent to

solving ut = −uxx in forward time.)

3. Consider the semi-discretization (method of lines) u̇ = T∆xu of the

di�usion equation. If the initial condition is changed by ε, how large

is the perturbation at a given time t > 0?

4. Same question for the reversed problem, u̇ = −T∆xu. Can you con-

clude that the semi-discretization is ill posed as ∆x→ 0?

5. (A hard problem) Let the skew-symmetric matrix

R =


0 1 0 . . .
−1 0 1

−1 0 1
. . .

. . . 0 −1 0


be given, and note that R∆x = R/(2∆x) is a second order accurate

approximation to ∂/∂x.

(a) Show that the eigenvalues of R∆x are purely imaginary,

λk[R∆x] =
i

∆x
cos

kπ

N + 1
, k = 1 : N.

(b) Determine µ2[R∆x] and µ2[−R∆x]. (Hint: Do not try to com-

pute the logarithmic norms. Instead, use the fact that we know

that the Euclidean norm is sharp for normal matrices, and hence

µ2[R∆x] = maxk Reλk[R∆x].)

(c) Is the semi-discretization u̇ = R∆xu well posed in forward time?

Is it well posed in reverse time?

6. In view of what you found above, consider the two-point boundary

value problem y′′+Ky′+y = q(x) with homogeneous boundary condi-

tions. Does the value of the constant K matter at all for whether the

problem is well-posed or not?

7. Consider instead y′′ + y′ + Ky = q(x) with homogeneous boundary

conditions. Does the value of the constant K matter now? (Hint:

In these problems, look at how the constant K a�ects the logarithmic

norm of the operator on the left-hand side.)
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8. Consider the linear hyperbolic conservation law ut+ux = 0. Show that

it is well posed both in forward and reverse time. How much does a

perturbation in the initial data grow until time t in forward and reverse

time, respectively?

9. (Di�cult) Find out whether the convection�di�usion equation ut =
ux + uxx/Pe is well-posed in forward time. Here 0 < Pe < ∞ is the

Peclet number, which measures the �balance� between convection and

di�usion. You can take homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0. Di�erentiate ‖u(t, ·)‖22 and use the Cauchy-

Schwarz inequality as well as Young's inequality. The latter says that

ab ≤ 1
2εa

2 + ε
2b

2 for any positive numbers a, b and ε.

10. Check if the convection�di�usion equation is well posed in reverse time.

Which of the two operators, the convection part ∂/∂x, or the di�usion
part ∂2/∂x2, is decisive for well-posedness? Note that �nding an ex-

plicit counterexample to well-posedness is not easy.

11. Consider the Laplacian in 2D,

∆ =
∂2

∂x2
+

∂2

∂y2

on the unit square [0, 1]× [0, 1] with u = 0 on the boundary. Consider

the corresponding eigenvalue problem, ∆u = λu. Write u(x, y) =
X(x)Y (y) and insert it into the eigenvalue problem. Show that

λi,j [∆] = κi[d
2/dx2] + κj [d

2/dy2],

where κi[d
2/dx2] is the ith eigenvalue of d2/dx2 on [0, 1] with boundary

conditions X(0) = X(1) = 0. What is the largest eigenvalue (note, not

in magnitude!) of ∆ on the given domain and with the given boundary

conditions?

12. Now consider the discrete eigenvalue problem for the �ve-point �nite

di�erence operator approximating the Laplacian,

ui−1,j − 2ui,j + ui+1,j

∆x2
+
ui,j−1 − 2ui,j + ui,j+1

∆y2
= λui,j ,

using ∆x = ∆y. Write ui,j = XiYj and try to �separate� the eigen-

value problem like you did in the continuous case. Conclude what the

eigenvalues are, using your knowledge of the eigenvalues of standard

Toeplitz matrix we use to approximate d2/dx2.
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13. In the lecture notes we saw that, using the �ve-point operator, we can

represent the discrete Laplacian (a linear operator) by the matrix

L∆x =
1

∆x2



T I 0 . . .
I T I

I T I

. . . I
. . . 0 I T


,

with T = tridiag(1−4 1). Note that the matrix L∆x is symmetric, but

it is not a Toeplitz matrix. Using the information on the eigenvalues

of L∆x found in the previous problem, �nd the Euclidean logarithmic

norm µ2[L∆x].
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