Numerical Methods for Differential Equations, FMNN10 Pi3, F3
Tony Stillfjord, Gustaf Séderlind

Review questions and study problems, week 5

A problem is said to be well posed if it has a unique solution which depends
continuously on the data. For example, in the simple 2p-BVP v” = ¢(z)
with 4(0) = u(1) = 0 that we studied in the BVP part of the course, we
found, by using the logarithmic norm, that
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Hence, if the data ||q||ax — 0, then the solution ||ul[a, — 0. This implies
continuity: a small change in the data ¢ has only a bounded effect on the
solution u. The problem is well posed.

In a similar way, an initial value problem @ = f(u) with u(0) = wug is well
posed if the solution depends continuously on the data ug. A small change
in the initial value up must only have a bounded effect on the solution wu(t).
Note that here it’s enough that the effect is bounded at a finite time ¢t. So a
problem like

t=wu; u(0)=1

is well posed: if we perturb u(0) by ¢ the solution u(¢) changes by e’e, which
is bounded for any finite ¢.

There are several questions concerning well-posedness below. They cannot
be treated in a complete way here, so we will only take a simplified ap-
proach, looking at a continuous data dependence. Thus, you don’t have to
address existence questions below. Moreover, as boundary conditions also af-
fect well-posedness we will for simplicity disregard the influence of boundary
conditions below. This corresponds to either having homogeneous boundary
conditions, periodic boundary conditions, or “none at all” when the compu-
tational domain is infinite, i.e., z € (—00, 00).

1. Show that the diffusion equation u; = ug, with boundary conditions
u(t,0) = u(t,1) = 0 and initial value u(0,z) = g(x) is well posed for
t>0.

(Hint: Using the log norm of 9?/9z%, how large is the influence of a

perturbation of g7 Use the same technique as we used for the initial
value problem above.)



. Show that the diffusion equation u; = u,,; is not well posed in reverse
time, i.e., for t < 0.

(Hint: Use the same technique as above, but note that you will need
the log norm of —9?/0z%, as the reversed problem is equivalent to
solving u; = —ug, in forward time.)

. Consider the semi-discretization (method of lines) © = Ta,u of the
diffusion equation. If the initial condition is changed by e, how large
is the perturbation at a given time t > 07

. Same question for the reversed problem, & = —Ta,u. Can you con-
clude that the semi-discretization is ill posed as Ax — 07

. (A hard problem) Let the skew-symmetric matrix
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be given, and note that Ray, = R/(2Ax) is a second order accurate
approximation to 9/0x.

(a) Show that the eigenvalues of R, are purely imaginary,
Ae[RAz] = — cos ——— kE=1:N.
x

(b) Determine po[Ra,] and ps|—Raz]. (Hint: Do not try to com-
pute the logarithmic norms. Instead, use the fact that we know
that the Euclidean norm is sharp for normal matrices, and hence
p2|Raz] = maxy Re \g[Raz]-)

(c) Is the semi-discretization @ = Razu well posed in forward time?
Is it well posed in reverse time?

. In view of what you found above, consider the two-point boundary
value problem y” + Ky’ +vy = ¢(x) with homogeneous boundary condi-
tions. Does the value of the constant K matter at all for whether the
problem is well-posed or not?

. Consider instead y” + ¢y’ + Ky = ¢(x) with homogeneous boundary
conditions. Does the value of the constant K matter now? (Hint:
In these problems, look at how the constant K affects the logarithmic
norm of the operator on the left-hand side.)
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Consider the linear hyperbolic conservation law u; +u, = 0. Show that
it is well posed both in forward and reverse time. How much does a
perturbation in the initial data grow until time ¢ in forward and reverse
time, respectively?

(Difficult) Find out whether the convection—diffusion equation u; =
Uy + Ugy/Pe is well-posed in forward time. Here 0 < Pe < oo is the
Peclet number, which measures the “balance” between convection and
diffusion. You can take homogeneous Dirichlet boundary conditions
u(t,0) = u(t,1) = 0. Differentiate ||u(t,-)||3 and use the Cauchy-
Schwarz inequality as well as Young’s inequality. The latter says that
ab < iag + §b2 for any positive numbers a, b and .

Check if the convection—diffusion equation is well posed in reverse time.
Which of the two operators, the convection part 9/0z, or the diffusion
part 92/0z?, is decisive for well-posedness? Note that finding an ex-
plicit counterexample to well-posedness is not easy.

Consider the Laplacian in 2D,
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on the unit square [0, 1] x [0, 1] with u = 0 on the boundary. Consider
the corresponding eigenvalue problem, Au = Au. Write u(z,y) =
X (x)Y (y) and insert it into the eigenvalue problem. Show that

Nij[A] = ki [d2/d:c2] + Kj [d2/dy2},

where r;[d?/dx?] is the ith eigenvalue of d?/dz? on [0, 1] with boundary
conditions X (0) = X (1) = 0. What is the largest eigenvalue (note, not
in magnitude!) of A on the given domain and with the given boundary
conditions?

Now consider the discrete eigenvalue problem for the five-point finite
difference operator approximating the Laplacian,

Wizt = 2 b Uigny | Wigo1 = 2y i
Ax? Ay?
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using Az = Ay. Write u; ; = X;Y; and try to “separate” the eigen-
value problem like you did in the continuous case. Conclude what the
eigenvalues are, using your knowledge of the eigenvalues of standard
Toeplitz matrix we use to approximate d?/dz?.



13. In the lecture notes we saw that, using the five-point operator, we can
represent the discrete Laplacian (a linear operator) by the matrix

LAzpzi

with T = tridiag(1—4 1). Note that the matrix La, is symmetric, but
it is not a Toeplitz matrix. Using the information on the eigenvalues
of La, found in the previous problem, find the Euclidean logarithmic
norm fia[Lag].



