Numerical Methods for Differential Equations, FMNN10 Pi3, F3 Tony Stillfjord, Gustaf Söderlind

Review questions and study problems, week 4

1. True or false (justify your answer): Consider the Sturm-Liouville problem

$$\frac{d}{dx}\left((1-0.8\sin^2 x)\frac{dy}{dx}\right) - \lambda y = 0, \quad y(0) = y(\pi) = 0.$$

The following discretization

$$\frac{p_{n-1}y_{n-1} - 2p_ny_n + p_{n+1}y_{n+1}}{\Delta x^2} = \lambda_{\Delta x}y_n, \quad n = 1:N$$

$$y_0 = y_{N+1} = 0$$

where $p_n = 1 - 0.8 \sin^2 \frac{n\pi}{N+1}$ is of order 2.

- 2. Give a 4×4 example of
 - A tridiagonal symmetric Toeplitz matrix
 - A skew-symmetric Toeplitz matrix
 - A lower triangular Toeplitz matrix
- 3. Solve the linear difference equation

$$6u_{j+2} - 5u_{j+1} + u_j = 0 \qquad (j = 0: N - 1)$$

$$u_0 = 1, \ u_{N+1} = 0.$$

- 4. True or false (justify your answer): If $\lambda[T]$ are the eigenvalues of T and $\lambda[S]$ the eigenvalues of S, then $\lambda[T] + \lambda[S]$ are the eigenvalues of T + S.
- 5. Let $Au = \lambda u$. Show that A^{-1} has the eigenvalues $1/\lambda$.
- 6. True or false: If $Au = \lambda u$, then e^{tA} has the eigenvalues $e^{t\lambda}$.
- 7. In class we determined the eigenvalues of

$$T_{\Delta x} = \frac{1}{\Delta x^2} \operatorname{tridiag}(1 \quad -2 \quad 1)$$

(a) Sketch the location of the eigenvalues in the complex plane

- (b) Sketch the location of the eigenvalues of $T_{\Delta x}^{-1}$. (Make sure that your sketches have some "reasonable scaling," e.g. by indicating where the eigenvalues are in relation to the unit circle.)
- (c) If $\Delta x \to 0$, where will the eigenvalues of $T_{\Delta x}^{-1}$ "cluster?"
- 8. Consider the initial value problem $\dot{u} = T_{\Delta x} u$ with initial condition u(0) = v.
 - (a) Give an upper bound for $||e^{tT_{\Delta x}}||_2$ for $t \ge 0$.
 - (b) Sketch the location of the eigenvalues of $e^{tT_{\Delta x}}$ in the complex plane. (You may consider time t to be a fixed parameter.)
 - (c) Where do the eigenvalues of $e^{tT_{\Delta x}}$ "cluster" as $\Delta x \to 0$ for t fixed?
 - (d) Where do they go as $t \to \infty$ for Δx fixed?
 - (e) Can you give or suggest an upper bound for the *inverse* $||e^{-tT_{\Delta x}}||_2$ (where t > 0)? How does that inverse behave as $\Delta x \to 0$?
 - (f) Suppose we solve this initial value problem using the explicit Euler method. What condition on the time step Δt is a minimum requirement for stability?
 - (g) Same question for the implicit Euler method.
 - (h) Which method is suitable when $\Delta x \to 0$?
- 9. Consider the diffusion equation $u_t = u_{xx}$ with homogeneous boundary conditions u(t,0) = u(t,1) = 0 and write

$$\frac{1}{2}\frac{\mathrm{d}\|u\|_2^2}{\mathrm{d}t} = \langle u, u_t \rangle$$

for the usual inner product $\langle v, u \rangle = \int v u \, dx$. Use integration by parts and Sobolev's lemma (alternatively the logarithmic norm of d^2/dx^2) to show that

$$||u(t,\cdot)||_2 \le e^{-t\pi^2} ||u(0,\cdot)||_2$$

10. In class we determined the eigenvalues of symmetric Toeplitz matrix $T = \text{tridiag}(1 \quad 0 \quad 1)$ analytically.

(Difficult) Determine, with a similar methodology, the eigenvalues of the skew symmetric Toeplitz matrix $S = \text{tridiag}(-1 \quad 0 \quad 1)$.

- 11. Let y' be approximated by the second order, symmetric difference quotient $S_{\Delta x} = S/(2\Delta x)$. What are the
 - (a) eigenvalues of $S_{\Delta x}$
 - (b) Euclidean norm of $S_{\Delta x}$

(c) Euclidean logarithmic norm of $S_{\Delta x}$

(Hint: In class we showed that the Euclidean norm is "sharp" for symmetric matrices, and those proofs can easily be modified to see that the Euclidean norm is also sharp for skew-symmetric matrices.)

- 12. Consider the 2pBVP u'' + u' + u = f(x) with u(0) = u(1) = 0.
 - (a) Find (an upper bound of) the logarithmic norm of the operator

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{\mathrm{d}}{\mathrm{d}x} + 1.$$

Does the problem have a unique solution for every right-hand side f? (Use the fact that $\mu[A+B] \leq \mu[A] + \mu[B]$ and combine it with the Uniform Monotonicity Theorem.)

- (b) Introduce a suitable grid and discretize the equation above. Use the same techniques as in the previous problem to show that your *discretization* has a unique solution for every right-hand side f.
- (c) Let $u_{\Delta x}$ denote the solution vector on the grid. Give a bound for $||u_{\Delta x}||_{\Delta x}$ in terms of $||f||_{\Delta x}$ and the logarithmic norm.
- 13. Consider the 2pBVP $y'' + \omega^2 y = g(x)$ with homogeneous boundary data y(0) = y(1) = 0.
 - (a) For what values of the parameter ω can you guarantee that there is a unique solution?
 - (b) Let $\omega = \pi$. What happens with the analytical solution? Why?