Numerical Methods for Differential Equations, FMNN10 Pi3, F3

Tony Stillfjord, Gustaf Söderlind

Review questions and study problems, week 4

1. True or false (justify your answer): Consider the Sturm-Liouville problem

$$
\frac{d}{d x}\left(\left(1-0.8 \sin ^{2} x\right) \frac{d y}{d x}\right)-\lambda y=0, \quad y(0)=y(\pi)=0
$$

The following discretization

$$
\begin{gathered}
\frac{p_{n-1} y_{n-1}-2 p_{n} y_{n}+p_{n+1} y_{n+1}}{\Delta x^{2}}=\lambda_{\Delta x} y_{n}, \quad n=1: N \\
y_{0}=y_{N+1}=0
\end{gathered}
$$

where $p_{n}=1-0.8 \sin ^{2} \frac{n \pi}{N+1}$ is of order 2.
2. Give a 4×4 example of

- A tridiagonal symmetric Toeplitz matrix
- A skew-symmetric Toeplitz matrix
- A lower triangular Toeplitz matrix

3. Solve the linear difference equation

$$
\begin{aligned}
6 u_{j+2}-5 u_{j+1}+u_{j} & =0 \quad(j=0: N-1) \\
u_{0}=1, u_{N+1} & =0 .
\end{aligned}
$$

4. True or false (justify your answer): If $\lambda[T]$ are the eigenvalues of T and $\lambda[S]$ the eigenvalues of S, then $\lambda[T]+\lambda[S]$ are the eigenvalues of $T+S$.
5. Let $A u=\lambda u$. Show that A^{-1} has the eigenvalues $1 / \lambda$.
6. True or false: If $A u=\lambda u$, then $\mathrm{e}^{t A}$ has the eigenvalues $\mathrm{e}^{t \lambda}$.
7. In class we determined the eigenvalues of

$$
T_{\Delta x}=\frac{1}{\Delta x^{2}} \operatorname{tridiag}\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right)
$$

(a) Sketch the location of the eigenvalues in the complex plane
(b) Sketch the location of the eigenvalues of $T_{\Delta x}^{-1}$. (Make sure that your sketches have some "reasonable scaling," e.g. by indicating where the eigenvalues are in relation to the unit circle.)
(c) If $\Delta x \rightarrow 0$, where will the eigenvalues of $T_{\Delta x}^{-1}$ "cluster?"
8. Consider the initial value problem $\dot{u}=T_{\Delta x} u$ with initial condition $u(0)=v$.
(a) Give an upper bound for $\left\|e^{t T_{\Delta x}}\right\|_{2}$ for $t \geq 0$.
(b) Sketch the location of the eigenvalues of $\mathrm{e}^{t T_{\Delta x}}$ in the complex plane. (You may consider time t to be a fixed parameter.)

(d) Where do they go as $t \rightarrow \infty$ for Δx fixed?
(e) Can you give or suggest an upper bound for the inverse $\| \mathrm{e}^{-t T_{\Delta x} \|_{2}}$ (where $t>0$)? How does that inverse behave as $\Delta x \rightarrow 0$?
(f) Suppose we solve this initial value problem using the explicit Euler method. What condition on the time step Δt is a minimum requirement for stability?
(g) Same question for the implicit Euler method.
(h) Which method is suitable when $\Delta x \rightarrow 0$?
9. Consider the diffusion equation $u_{t}=u_{x x}$ with homogeneous boundary conditions $u(t, 0)=u(t, 1)=0$ and write

$$
\frac{1}{2} \frac{\mathrm{~d}\|u\|_{2}^{2}}{\mathrm{~d} t}=\left\langle u, u_{t}\right\rangle
$$

for the usual inner product $\langle v, u\rangle=\int v u \mathrm{~d} x$. Use integration by parts and Sobolev's lemma (alternatively the logarithmic norm of $\mathrm{d}^{2} / \mathrm{d} x^{2}$) to show that

$$
\|u(t, \cdot)\|_{2} \leq \mathrm{e}^{-t \pi^{2}}\|u(0, \cdot)\|_{2}
$$

10. In class we determined the eigenvalues of symmetric Toeplitz matrix $T=\operatorname{tridiag}\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$ analytically.
(Difficult) Determine, with a similar methodology, the eigenvalues of the skew symmetric Toeplitz matrix $S=\operatorname{tridiag}\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)$.
11. Let y^{\prime} be approximated by the second order, symmetric difference quotient $S_{\Delta x}=S /(2 \Delta x)$. What are the
(a) eigenvalues of $S_{\Delta x}$
(b) Euclidean norm of $S_{\Delta x}$
(c) Euclidean logarithmic norm of $S_{\Delta x}$
(Hint: In class we showed that the Euclidean norm is "sharp" for symmetric matrices, and those proofs can easily be modified to see that the Euclidean norm is also sharp for skew-symmetric matrices.)
12. Consider the 2 pBVP $u^{\prime \prime}+u^{\prime}+u=f(x)$ with $u(0)=u(1)=0$.
(a) Find (an upper bound of) the logarithmic norm of the operator

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{\mathrm{d}}{\mathrm{~d} x}+1
$$

Does the problem have a unique solution for every right-hand side $f ?$ (Use the fact that $\mu[A+B] \leq \mu[A]+\mu[B]$ and combine it with the Uniform Monotonicity Theorem.)
(b) Introduce a suitable grid and discretize the equation above. Use the same techniques as in the previous problem to show that your discretization has a unique solution for every right-hand side f.
(c) Let $u_{\Delta x}$ denote the solution vector on the grid. Give a bound for $\left\|u_{\Delta x}\right\|_{\Delta x}$ in terms of $\|f\|_{\Delta x}$ and the logarithmic norm.
13. Consider the 2pBVP $y^{\prime \prime}+\omega^{2} y=g(x)$ with homogeneous boundary data $y(0)=y(1)=0$.
(a) For what values of the parameter ω can you guarantee that there is a unique solution?
(b) Let $\omega=\pi$. What happens with the analytical solution? Why?

