Numerical Methods for Differential Equations, FMNN10 Pi3, F3
 Tony Stillfjord, Gustaf Söderlind

Review questions and study problems, week 3

1. Write the definition of the logarithmic norm.
2. True or false: For the Euclidean vector norm,

$$
\mu_{2}[A]=\max _{x \neq 0} x^{\mathrm{T}} A x / x^{\mathrm{T}} x .
$$

3. Using the Uniform Monotonicity Theorem, give a bound for $\left\|A^{-1}\right\|_{\infty}$, given that $\mu_{\infty}[A]<0$.
4. Explain which of the following two bounds is sharper, and why:

- $\|x(t)\| \leq \mathrm{e}^{t \mu[A]}\|x(0)\| ; \quad t \geq 0$
- $\|x(t)\| \leq \mathrm{e}^{t\|A\|}\|x(0)\| ; \quad t \geq 0$

5. Suppose $A=\lambda$, a complex number. Then the "norm" is simply the absolute value, $\|A\|=|\lambda|$. What is the logarithmic norm of λ ?
6. Show that

$$
\lim _{h \rightarrow 0+} \frac{|1+h z|-1}{h}=\operatorname{Re} z
$$

7. Using the results of the previous two problems, consider the linear test equation $\dot{y}=\lambda y$ with $y(0)=1$. When is $|y(t)| \leq \mathrm{e}^{t|\lambda|} \mathrm{a}$ "sharp" bound? And when is the corresponding bound with the logarithmic norm "sharp?"
8. Let E be the forward shift operator, Δ the forward difference operator, ∇ the backward difference operator, M the forward averaging operator, $M=(E+1) / 2, W$ the backward averaging operator, $W=\left(1+E^{-1}\right) / 2$ and D the differential operator. Describe each operator in terms of the others by filling in the following table

	E	Δ	∇	M	W	$h D$
E	\times					
Δ		\times				
∇			\times			
M				\times		
W					\times	
$h D$						\times

9. Consider the two-point boundary value problem

$$
y^{\prime \prime}=x^{2}+y^{2} \quad y(0)=0, y(1)=0
$$

Approximate $y^{\prime \prime}$ by $\frac{y_{n-1}-2 y_{n}+y_{n+1}}{\Delta x^{2}}$ and write the corresponding discretization for this BVP. Take $N=4$; write the nonlinear system of equations $F(y)=0$ for the unknowns $y_{1}, y_{2}, y_{3}, y_{4}$.
10. What is the Jacobian for the problem above?
11. Once you have the Jacobian, how do you perform one Newton iteration to solve $F(y)=0$?
12. Consider the two-point boundary value problem

$$
y^{\prime \prime}=x^{2}+y^{2} \quad y(0)=0, y^{\prime}(1)=0
$$

Approximate $y^{\prime \prime}$ by $\frac{y_{n-1}-2 y_{n}+y_{n+1}}{\Delta x^{2}}$ and write the corresponding discretization for this BVP. Take $N=4$; write the nonlinear system of equations $F(y)=0$ for the unknowns $y_{1}, y_{2}, y_{3}, y_{4}$. Discretize the Neumann boundary condition so that the resulting method is of second order.

