Numerical Methods for Differential Equations, FMNN10 Pi3, F3 Tony Stillfjord, Gustaf Söderlind

Review questions and study problems, week 3

- 1. Write the definition of the logarithmic norm.
- 2. True or false: For the Euclidean vector norm,

$$\mu_2[A] = \max_{x \neq 0} x^{\mathrm{T}} A x / x^{\mathrm{T}} x$$

- 3. Using the Uniform Monotonicity Theorem, give a bound for $||A^{-1}||_{\infty}$, given that $\mu_{\infty}[A] < 0$.
- 4. Explain which of the following two bounds is sharper, and why:

•
$$||x(t)|| \le e^{t\mu[A]} ||x(0)||; \quad t \ge 0$$

- $||x(t)|| \le e^{t||A||} ||x(0)||; \quad t \ge 0$
- 5. Suppose $A = \lambda$, a complex number. Then the "norm" is simply the absolute value, $||A|| = |\lambda|$. What is the logarithmic norm of λ ?
- 6. Show that

$$\lim_{h \to 0+} \frac{|1+hz|-1}{h} = \operatorname{Re} z$$

- 7. Using the results of the previous two problems, consider the linear test equation $\dot{y} = \lambda y$ with y(0) = 1. When is $|y(t)| \leq e^{t|\lambda|}$ a "sharp" bound? And when is the corresponding bound with the logarithmic norm "sharp?"
- 8. Let E be the forward shift operator, Δ the forward difference operator, ∇ the backward difference operator, M the forward averaging operator, M = (E+1)/2, W the backward averaging operator, $W = (1+E^{-1})/2$ and D the differential operator. Describe each operator in terms of the others by filling in the following table

	E	Δ	∇	M	W	hD
E	×					
Δ		×				
∇			×			
M				×		
W					×	
hD						×

9. Consider the two-point boundary value problem

$$y'' = x^2 + y^2$$
 $y(0) = 0, y(1) = 0$

Approximate y'' by $\frac{y_{n-1} - 2y_n + y_{n+1}}{\Delta x^2}$ and write the corresponding discretization for this BVP. Take N = 4; write the nonlinear system of equations F(y) = 0 for the unknowns y_1, y_2, y_3, y_4 .

- 10. What is the Jacobian for the problem above?
- 11. Once you have the Jacobian, how do you perform one Newton iteration to solve F(y) = 0?
- 12. Consider the two-point boundary value problem

$$y'' = x^2 + y^2$$
 $y(0) = 0, y'(1) = 0$

Approximate y'' by $\frac{y_{n-1} - 2y_n + y_{n+1}}{\Delta x^2}$ and write the corresponding discretization for this BVP. Take N = 4; write the nonlinear system of equations F(y) = 0 for the unknowns y_1, y_2, y_3, y_4 . Discretize the Neumann boundary condition so that the resulting method is of second order.