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1. Approximation of derivatives y' =dy/dx

First order approximations

Forward difference
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Spatial symmetric approximation of derivatives

Second order approximations

Symmetric difference quotients

y(x + Bx) = y(x — AX)
2Ax

y(x) = +0(Ax)

(x + Ax) —2y(x) + y(x — Ax)
Ax?

y'(x) = 4 + 0(AX?)
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Derivatives — finite differences — matrices

Matrix representation of forward difference

y/(X) _ y(X+AAX)2_y(X) —I—O(AX)

Introduce vectors y = {y(x;)} and y’ = {y/'(x;)}

Yo -1 1 Yo
¥ 1 -1 1 yi
DT Ax . :

Y;v -1 1 YN+1
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From derivatives to matrices

Note Forward difference ~ (N + 1) x (N + 2) matrix

7 -1 1 Yo
¥ 1 -1 1 %1
LT Ax R :

Yi -1 1 YN+1

Nullspace spanned by y = (1 1 1...1)"

Compare nullspace of d/dx, y=1 = y' =0

Analogous result for backward difference
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From derivatives to matrices. . .

Central difference

iy L Y(x+ Ax) — y(x — Ax)
y(x) =~ Ax
Matrix representation

y/

1 -1 0 1 Yo
2 o1 _ . _ Y1

: ~ 2Ax o :

/ -1 0 1
Yn YN+1
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From derivatives to matrices. . .

Note N x (N + 2) matrix

/

" -1 0 1 Yo
2 1 _ S i
: ~ 2Ax - . B :

} ~1 0 1
Yn YN+1

Nullspace is now two-dimensional

y=@ 1 1...0)7 and y=(1 -1 1 -1...1)7F
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From derivatives to matrices. . .

“False” nullspace

y=( -1 1 —1...1)T does not converge to a C* function!

Compare difference equation y,.1 — y,—1 = 0, with characteristic
equation

ZZ-1=0 = z=+1

and two solutions ¥, =1 and y, = (—1)"
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2nd order derivatives — matrices y" = d?y/dx?

Central difference

y(x 4+ Ax) = 2y(x) + y(x = Ax)

" ~
.y (X) ~ AXQ
1
.y:}/ 1 _2 1 }/O
Y2 N 1 . n
LT Ax2 - :
I 1 -2 1
YN YN+1

Note N x (N + 2) matrix with 2D nullspace spanned by

y=@1 1...1)T and 9=(0 1 2 3...N+1)T
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2nd order derivatives. . .

Nullspace of d?/dx?

y =1 and y = x both have y” =0

Compare difference equation y,11 — 2y, + yn,—1 = 0, with
characteristic equation

22-2z41=0 = =z=1,1

and two solutions ¥, =1 and y, = n, respectively

This corresponds directly to y =1 and y = x

11/67



2. Finite difference methods for 2p-BVP

Consider simplest problem

y” - f(xv)/)
y(0)=0q; y(1)=2

Introduce equidistant grid with Ax =1/(N + 1)
FDM discretization

Yiv1 — 2yi +yi-1
Ax?

:f(Xi,)/i) i=1:N

yo=q;, yni1=27p
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Discrete 2pBVP Equation system F(y) =0

a=2y1+y

f(Xlayl)

Yi-1 = 2Yi + Yit1
Fily) =" — flay)

12wt B

(XN, yn)

A (nonlinear) system F(y) = 0 for N unknowns y1,y>,...,yn

Note how boundary values enter
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3. Newton’s method F(y)=0

Let y(k) approximate the solution y and expand in Taylor series

0="F(y)=Fy™ +y -y~ Fy®)+ F(y®). (y — y)

Define y(kt1) by 0 =: F(y(k)) 4 F/(y(R)) . (y(k+1) — (k)

Newton’s method (mathematical formulation)

yUt o=y — [P (U F(y 1)
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Jacobian matrix F'(y) = {OF;/0y;}

For the FDM the 2p-BVP Jacobian matrix is

of

F'(y) = tridiag (1/Ax?>, —2/Ax* — -
Yi

1/Ax?%)
Tridiagonal matrix, with

e Super- and subdiagonal elements 1/Ax?
o Diagonal elements —2/Ax? — 9f /y;
e Sparse LU decomposition runs in O(/N) time

e Solution effort moderate even when N is large
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Newton's method for F(y) =0

Newton iteration

—

. Compute Jacobian F'(y(X)) = {0F; /dy;}
2. Factorize Jacobian matrix F'(y(¥)) — LU

3. Solve linear system LUSy(K) = —F(y(¥)

o

. Update y(k“) = y(k) + 5y(k)

Newton's method is quadratically convergent
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Quadratic convergence

Newton's method converges if
o [y <
o [F"(y )] < C”
o |y —y|| <& (close enough starting value)

Then convergence is quadratic

ly* D —y| < C- [y — y2
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4. Boundary conditions come in many types

In many cases the problem is linear, but boundary conditions vary

e Dirichlet conditions

0) =« straightforward to implement
y

e Neumann conditions

y'(0) =~ requires special attention

e Robin conditions

y(0)+c-y'(0) ==k requires same attention

for the method’s convergence order to be preserved
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Neumann problem

Example y' = f(x,y)

For second-order convergence, we must approximate also y’(1) to
second order

Standard symmetric approximation

y(x + Bx) — y(x — AX)
2Ax

requires points to the right of x =1

What grid to use?
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Neumann problem, approach 1

Example y' = f(x,y)
y(0)=a; y'(1)=5

Equidistant grid, x, = nAx with Ax = % and xy4+1 =1+ Ax

yQ)=6 — 5 =8

= yn+1 =28 Ax + yn—_1 is of second order at x =1
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Neumann problem, approach 2

Example y' = f(x,y)
y(0)=a; y'(1)=5

Equidistant grid, x, = nAx with Ax = ﬁlﬂ and

xy+ Ax/2=1= xy41 — Ax/2

/ - YN+1 YN _
yW) =8 — (=5

= yn+1 = B Ax+ yp is of second order at x =1

Need to approximate y(1) ~ %
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Neumann problem, approach 3

Example y' = f(x,y)
y(0)=a; y'(1)=5

Equidistant grid, x, = nAx with Ax = ﬁ and xy.11 =1

—1—4yn + 3yn+1
1) — YN—1 _
y1)y= - > Ax B

= YNyl = % (28Ax + 4yy — yn—1) is of second order at x =1

All three approaches work! It's a matter of taste.
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Robin problem

Example y' =f(x,y)
y(0) =a; y(1)+co/'(1)=x

Equidistant grid, with x = 1 between grid points

xy+Ax/2 =1 = xyp1 — Ax/2

Yn+1+ YN YN+1 — YN
1 "(1) = —
(D) + /(1) = s I S

I
=

(2c — Ax)yn + 2k AX
2c + Ax

= YN41 =

Other two approaches analogous
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5. FDM on adaptive grids

Left and right divided differences

D~ y; = Yi—Yi-1 _ Vi _i/i—l D*y,- _Yirlr Vi )/i+1+— Yi
Xi — Xj-1 h Xit+1 — Xi h

Then approximate derivatives by finite differences

, _ h DTy +h"Dy,

Yi &~ ht + h-
y(/ ~ 2 D+}/i — D7y;
' h*t + h~

This is 2nd order only on smooth grids with h* /h~ =1+ O(N~1)
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Nonuniform grids
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Adaptive grids

u” + 100" = 100

0 i . to co diffulsion b r dary Ia\I(er probllem
02t
0.4
>-0.6
-0.8
-1 - ++—+—+—+—+—F—+—+—+ + + +
1.2 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0).(5 0.6 0.7 0.8 0.9
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6. Sturm—-Liouville eigenvalue problems

Diffusion problem

gl;éi((p(x)gl;) ; u(t,a) = u(t,b) =0

Separation of variables (one space dimension)

y AV
u(tx) = y(x) () = L Yy
v y
Sturm—Liouville eigenvalue problem
d dy
S (L) = @ =0, se) =0
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Sturm—Liouville eigenvalue problems. . .

Wave equation

Pu 282
92 =S o u(t,a) = u(t,b) =0
Express solution as  u(t,x) = y(x)e“! =

—w?y = c?y” y(a) = y(b) =0

Sturm—Liouville eigenvalue problem

= \y with \=—w?/c?
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Why Sturm-Liouville eigenvalue problems?

IR NN RN RN RN U

Oresund bridge
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Fluid—structure interaction

Tacoma Narrows Bridge 1940
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Tuned mass dampers

Stockbridge damper (1926) — anti-fatigue devices
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Taipei 101

91st Floor [390.60 m]
(Outdoor Observation Deck)

89th Floor [382.20 m
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Somewhat larger tuned mass damper (660 000 kg)
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It rocks

Gustaf Soderlind: Mathematics rocks too!
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Music instruments

Metropolitan Opera Orchestra

Conddimme Conntoi
Doris
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Compression loads, buckling and sun kinks
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Stationary Schrodinger equation Particle in a box

Quantum mechanics

This is a Sturm—Liouville eigenvalue problem, with energy levels Ej
defined by the eigenvalues
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Sturm—Liouville eigenvalue problem

Find eigenvalues X\ and eigenfunctions y(x) with

5 (PR ) Fatar =i @) =) =0

Discretization Matrix eigenvalue problem

TAXy - )\Axy
Note Analytic eigenvalue problem converts to algebraic!
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Sturm—Liouville problem Discretization

Symmetric discretizations

(PO O], o — (PG, a0
() = = '

s+ 50y e p (3 5 ) LY

X=X; Ax

(similar for x; — %) lead to

Pi-1/2Yi-1 — (Pi—1/2 + Pi+1/2))/i + Pit1/2Yit+1

Ax2 +q(xi)yi = Ayi

yo=yn+1 =0
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Sturm—Liouville problem Discretization 11

Pi—1/2Yi-1 — (Pi—1/2 + Pit1/2)Yi + Pit1/2Yit1
Ax?

+ q(xi)yi = Aaxyi

yo=yn+1 =0

Symmetric tridiagonal N x N eigenvalue problem

TAXy = )‘Axy

There are N eigenvalues Aay , = Ay + O(Ax?)
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Sturm—Liouville problem A simple example

Consider y” = Ay with boundary conditions y(0) = y(1) =0
Analytic solution
y(x) =AsinvV—=Ax+ B cosvV—\x

Boundary values = B =0 and Asiny/—A =0

Eigenvalues and eigenfunctions for k =1,2, ...

A = —(kw)2
yk(x) = sinkmx

Fourier modes (harmonic analysis) associated with d?/dx?
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Discrete Sturm—Liouville problem Benchmark test

Discretization of y” = \y with BVs =

Yi-1 = 2yi +Yit1
Ax?
Yo =yn+1=0; Ax =1/(N+1)

= AAxYi

Tridiagonal N x N matrix formulation

-2 1 Y1 %1
1 1 -2 1 y2 y2
Ax2 - : = Aax

1 -2 YN YN
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Discrete Sturm—Liouville problem. . .

Algebraic eigenvalue problem

TAXy = )\Axy

Smallest eigenvalue Ap, = —72 + O(Ax?)

The first few eigenvalues are well approximated, but the
approximation gradually gets worse

Note There are only N discrete eigenvalues
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Discrete Sturm—Liouville problem

0.4

0.3

0.2

0.1

First three eigenvectors of Ta, at N =19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Computation
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Discrete Sturm—Liouville problem Eigenvalues N = 19

Discrete eigenvalues Aa, —9.8493 —39.1548

Exact eigenvalues A —9.8696 —39.4784
Relative errors 0.21% 0.82%
Note

e Lowest eigenvalues are more accurate
e Good approximations for v/ first eigenvalues

(Here approximately first 4 — 5 modes)

—87.1948
—88.8264
1.84%
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Discrete Sturm—Liouville problem High modes

Eigenvectors 7, 13, 19 of Ta, at N =19
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7. Toeplitz matrices

A Toeplitz matrix is constant along diagonals

Example (symmetric)

-2 1 0
) 1 -2 1
1 -2 1
TAX— Ax2 .
0 1 -2
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Toeplitz matrices. . .

Much is known about Toeplitz matrices

Eigenvalues
e Norms

e Inverses

e etc.

They can be generated in MATLAB using the built-in function
toeplitz
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Eigenvalues of Toeplitz matrices

Example Solve the eigenvalue problem Ty = Ay for

2 1 0
1 -2 1
T_ 1 -2 1
0 1 -2

Note M\[T]= -2+ \[S]
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Eigenvalues. . .

...the problem gets simplified

0 1 0 71
1 0 1 ¥
Sy = 1 0 1 =\y
S
0 1 0 YN

Find eigenvalues A\[S], noting that the n'® equation of Sy = \y is

Yn+1 + Yn—1 = )\Yn
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Eigenvalues and difference equations

Linear difference equation y,+1 + ya—1 = Ay, with boundary values
Yo =0=ynt1

Characteristic equation z> — Az +1 =0

Two roots z and 1/z (product 1) implies general solution

yn=Az"+ Bz™"

Boundary condition yp =0=A+B = y,=A(z"—2z")
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Eigenvalues and difference equations. . .

Boundary condition yy 1 =0 = A(zVt!t — z=(N+1)y =

2N+ =1 = Zx = exp (Nkj—il) k=1:N
Sum of the roots of z2 — Az +1 =0 are
A[S] = 2 cos Nkj_r 1
Hence
M[T] = —4sin? 2(;1 D
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Eigenvalue locations [ T]




Eigenvalues of Toeplitz matrices

Theorem The N x N Toeplitz matrix

—2 1 0
1 -2 1
T = 1 -2 1
0 1 -2

has N real eigenvalues (k =1 : N)

M[T] = —4sin? € (—4,0)

km
2(N+1)
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Eigenvalues of Toeplitz matrices. . .

Consider Ta, := T/Ax? with Ax = 1/(N + 1) as an operator
approximation

on x € [0,1]

Corollary The eigenvalues of Ta, are

km
. 2 -2
)\k[TAx] = 4(N+1) sin 72(N+1)

Q

—k?m? = \([d?/dx?]

for k < N

54 /67



What are the norms of T7

Lemma For a symmetric matrix A, it holds

Al = max A

Lemma For a symmetric matrix A, it holds

H2 [A] = mEX /\k

(Both results actually hold for normal matrices)
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Proofs. Norm

Definition
xTAT Ax

IAlZ = max =

xTx#£0 X=X

Find stationary points of the Rayleigh quotient of AT A, given by
p(x) = xTAT Ax/xTx

dip(x) = (2xTATAxTx — 2xTxTAT Ax) /(xTx)? := 0
X

= xTATA=xTp(x) = A%x=p(x)x

So p(x) = A\?, therefore ||Al|> = max |\[A]| if AT = A
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Proofs. Logarithmic norm

Definition (real A)

T

x+ Ax
A =

N2[ ] X[p)?;é(o XTX

Find stationary points of the Rayleigh quotient of A, given by

p(x) = xTAx/xTx

%p(x) = [xT(A+ AD)xTx — 2xTxTAx] /(xTx)? == 0

1
ixT(A + AN =xTp(x) =  Ax=p(x)x

So p(x) = A, therefore pn[A] = max A[A]
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What are the norms of Ta,?

Eigenvalues of Ta, = T/Ax? are

km
Ml Tax] = —4(N +1)?sin® ————
k[ Tax] (N +1)sin SN+ 1)
So || Taxllz = [An| and o[ Tax] = M
Theorem The Euclidean norms of T, are
4 2
| Taxll2 = +— w2 Tax] = —m

Ax?
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The norm of TA_)}

Recall that pu[A] <0 = |A7Y] < —1/u[A]

Approximate y” = f(x) with y(0) = y(1) = 0 by

Taxu = q

Note /i2[Tax] ~ —m? implies the existence of a unique solution,
as
1
-1
172k 5 =
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What norms to use Euclidean and RMS norms

The norm of a function is measured in the L2 norm

1
lula = /O u(x)? dx

A corresponding discrete function (vector) is then measured in the
root mean square (RMS) norm

N

N
1 1
2 2 2 2
e = 3wl = g 3wl = g o

Note For the operator norm, [T (lax = [|TAL2
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8. Convergence of finite difference methods

Simplest model problem (1D Poisson equation)

y"' =f(x)
y(0)=0a; y(1)=2

Equidistant discretization

Yit1 — 2Yi +Yyic1
Ax?2 = f(x)
Yo=0o; yny1 =0
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Error definitions Local error

Insert exact continuous solution y(x) into discretization

y(xi—1) — 22(:2') +y(xis1) = f(xi, y(xi)) — 1(x)

Taylor expansion of local error, using f(x;) = y"(x;)

Only even powers of Ax due to symmetry. In particular, we get

1
< 2~ (4)
1/|ax < Ax 12 (M Ly ()]

62/67



Error definitions Global error

Definition The global error is defined by e(x;) = yi — y(x;)

Convergence
Will show that e(x) — 0 as Ax — 0, or more specifically

llellax = alAx® + o Ax* + ...

Again only even powers due to symmetry
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Convergence

Consider the problem y” = f discretized by 2nd order FDM
Taxu = f(x)
with Ta, tridiagonal. Then
Numerical solution  Tpa,u = f(x)
Exact solution  Tpa,y(x) = f(x) — I(x)

Error equation  Taxe(x) = I(x)

where e(x) = u — y(x) is the global error
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Convergence. . .

Solve Tayu = f formally to get

Numerically
Exact
Global error

Error bound

u= Ty f(x)
y(x) = Tax - (F(x) = 1(x))
e(x) = T&i - 1(x)

lellax < I Taxll2 - I1/llax
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Convergence. . .

Recall

o 1o[Tax]l = —72 = || Tatlla S 1/
o |lellax < | Tarllz - 1/ ax
o |lllax < Ax2E maxecpo.1y ly™ (€]

We therefore have

lellax < C-[[/lax = x [y (&)|ax?

12 ce [o 1]

and we have convergence as Ax—0
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The Lax Principle

Conclusion

Consistency local error | — 0 as Ax — 0
Stability || Tarl2 < C as Ax — 0
Convergence global error e -0 as Ax — 0

Theorem (Lax Principle)

Consistency + Stability = Convergence

“Fundamental theorem of numerical analysis”
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