Numerical Methods for Differential Equations

Chapter 3: FDM for 2p-BVPs and Sturm-Liouville

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

Contents V4.19

- 1. Finite difference approximation of derivatives
- 2. Finite difference methods for 2p-BVPs $\mathcal{L}u = f$
- 3. Newton's method
- 4. Boundary conditions
- 5. Adaptive grids
- 6. Sturm-Liouville eigenvalue problems $\mathcal{L}u = \lambda u$
- 7. Toeplitz matrices
- 8. Convergence: The Lax Principle

1. Approximation of derivatives

First order approximations

Forward difference

$$y'(x) = \frac{y(x + \Delta x) - y(x)}{\Delta x} + O(\Delta x)$$

Backward difference

$$y'(x) = \frac{y(x) - y(x - \Delta x)}{\Delta x} + O(\Delta x)$$

Spatial symmetric approximation of derivatives

Second order approximations

Symmetric difference quotients

$$y'(x) = \frac{y(x + \Delta x) - y(x - \Delta x)}{2\Delta x} + O(\Delta x^{2})$$

$$y''(x) = \frac{y(x + \Delta x) - 2y(x) + y(x - \Delta x)}{\Delta x^2} + O(\Delta x^2)$$

Derivatives \rightarrow finite differences \rightarrow matrices

Matrix representation of forward difference

$$y'(x) = \frac{y(x + \Delta x) - y(x)}{\Delta x} + O(\Delta x)$$

Introduce vectors $y = \{y(x_i)\}$ and $y' = \{y'(x_i)\}$

$$\begin{pmatrix} y_0' \\ y_1' \\ \vdots \\ y_N' \end{pmatrix} \approx \frac{1}{\Delta x} \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N+1} \end{pmatrix}$$

From derivatives to matrices

Note Forward difference $\sim (N+1) \times (N+2)$ matrix

$$\begin{pmatrix} y_0' \\ y_1' \\ \vdots \\ y_N' \end{pmatrix} \approx \frac{1}{\Delta x} \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N+1} \end{pmatrix}$$

Nullspace spanned by $y = (1 \ 1 \ 1 \dots 1)^{T}$

Compare nullspace of d/dx, $y = 1 \Rightarrow y' \equiv 0$

Analogous result for backward difference

From derivatives to matrices...

Central difference

$$y'(x) \approx \frac{y(x + \Delta x) - y(x - \Delta x)}{2\Delta x}$$

Matrix representation

$$\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_N' \end{pmatrix} \approx \frac{1}{2\Delta x} \begin{pmatrix} -1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N+1} \end{pmatrix}$$

From derivatives to matrices...

Note $N \times (N+2)$ matrix

$$\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_N' \end{pmatrix} \approx \frac{1}{2\Delta x} \begin{pmatrix} -1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N+1} \end{pmatrix}$$

Nullspace is now two-dimensional

$$\bar{y} = (1 \ 1 \ 1 \dots 1)^{\mathrm{T}}$$
 and $\tilde{y} = (1 \ -1 \ 1 \ -1 \dots 1)^{\mathrm{T}}$

From derivatives to matrices...

"False" nullspace

$$\tilde{y} = (1 \ -1 \ 1 \ -1 \dots 1)^{\mathrm{T}}$$
 does not converge to a C^1 function!

Compare difference equation $y_{n+1} - y_{n-1} = 0$, with characteristic equation

$$z^2 - 1 = 0 \quad \Rightarrow \quad z = \pm 1$$

and two solutions $\bar{y}_n = 1$ and $\tilde{y}_n = (-1)^n$

Central difference

$$y''(x) \approx \frac{y(x + \Delta x) - 2y(x) + y(x - \Delta x)}{\Delta x^2}$$

$$\begin{pmatrix} y_1'' \\ y_2'' \\ \vdots \\ y_N'' \end{pmatrix} \approx \frac{1}{\Delta x^2} \begin{pmatrix} 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N+1} \end{pmatrix}$$

Note $N \times (N+2)$ matrix with 2D nullspace spanned by

$$\bar{y} = (1 \ 1 \dots 1)^{\mathrm{T}}$$
 and $\hat{y} = (0 \ 1 \ 2 \ 3 \dots N + 1)^{\mathrm{T}}$

2nd order derivatives...

Nullspace of d^2/dx^2

$$y = 1$$
 and $y = x$ both have $y'' \equiv 0$

Compare difference equation $y_{n+1} - 2y_n + y_{n-1} = 0$, with characteristic equation

$$z^2 - 2z + 1 = 0 \Rightarrow z = 1, 1$$

and two solutions $\bar{y}_n = 1$ and $\hat{y}_n = n$, respectively

This corresponds directly to y = 1 and y = x

2. Finite difference methods for 2p-BVP

Consider simplest problem

$$y'' = f(x, y)$$

$$y(0) = \alpha; \quad y(1) = \beta$$

Introduce equidistant grid with $\Delta x = 1/(N+1)$

FDM discretization

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} = f(x_i, y_i) \qquad i = 1: N$$

$$y_0 = \alpha$$
; $y_{N+1} = \beta$

$$F_1(y) = \frac{\alpha - 2y_1 + y_2}{\Delta x^2} - f(x_1, y_1)$$

$$F_i(y) = \frac{y_{i-1} - 2y_i + y_{i+1}}{\Delta x^2} - f(x_i, y_i)$$

$$F_N(y) = \frac{y_{N-1} - 2y_N + \beta}{\Delta x^2} - f(x_N, y_N)$$

A (nonlinear) system F(y) = 0 for N unknowns y_1, y_2, \dots, y_N

Note how boundary values enter

3. Newton's method

Let $y^{(k)}$ approximate the solution y and expand in Taylor series

$$0 = F(y) = F(y^{(k)} + y - y^{(k)}) \approx F(y^{(k)}) + F'(y^{(k)}) \cdot (y - y^{(k)})$$

Define
$$y^{(k+1)}$$
 by $0 =: F(y^{(k)}) + F'(y^{(k)}) \cdot (y^{(k+1)} - y^{(k)})$

Newton's method (mathematical formulation)

$$y^{(k+1)} := y^{(k)} - [F'(y^{(k)})]^{-1} F(y^{(k)})$$

For the FDM the 2p-BVP Jacobian matrix is

$$F'(y) = \operatorname{tridiag} (1/\Delta x^2, -2/\Delta x^2 - \frac{\partial f}{\partial v_i}, 1/\Delta x^2)$$

Tridiagonal matrix, with

- Super- and subdiagonal elements $1/\Delta x^2$
- Diagonal elements $-2/\Delta x^2 \partial f/\partial y_i$
- Sparse LU decomposition runs in O(N) time
- Solution effort moderate even when N is large

Newton's method for F(y) = 0

Newton iteration

- 1. Compute Jacobian $F'(y^{(k)}) = \{\partial F_i/\partial y_j\}$
- 2. Factorize Jacobian matrix $F'(y^{(k)}) \rightarrow LU$
- 3. Solve linear system $LU\delta y^{(k)} = -F(y^{(k)})$
- 4. Update $y^{(k+1)} := y^{(k)} + \delta y^{(k)}$

Newton's method is quadratically convergent

Quadratic convergence

Newton's method converges if

- $||F'(y^{(k)})^{-1}|| \leq C'$
- $||F''(y^{(k)})|| \le C''$
- $\|y^{(0)} y\| < \varepsilon$ (close enough starting value)

Then convergence is quadratic

$$||y^{(k+1)} - y|| \le C \cdot ||y^{(k)} - y||^2$$

4. Boundary conditions come in many types

In many cases the problem is linear, but boundary conditions vary

Dirichlet conditions

$$y(0) = \alpha$$
; $y(1) = \beta$ straightforward to implement

Neumann conditions

$$y'(0) = \gamma$$
; $y(1) = \beta$ requires special attention

Robin conditions

$$y(0) + c \cdot y'(0) = \kappa$$
; $y(1) = \beta$ requires same attention

for the method's convergence order to be preserved

Neumann problem

Example
$$y'' = f(x, y)$$
 $y(0) = \alpha;$ $y'(1) = \beta$

For second-order convergence, we must approximate also y'(1) to second order

Standard symmetric approximation

$$\frac{y(x+\Delta x)-y(x-\Delta x)}{2\Delta x}$$

requires points to the right of x = 1

What grid to use?

Neumann problem, approach 1

Example
$$y'' = f(x, y)$$

 $y(0) = \alpha; \quad y'(1) = \beta$

Equidistant grid, $x_n = n\Delta x$ with $\Delta x = \frac{1}{N}$ and $x_{N+1} = 1 + \Delta x$

$$y'(1) = \beta \quad \rightarrow \quad \frac{y_{N+1} - y_{N-1}}{2\Delta x} = \beta$$

 $\Rightarrow y_{N+1} := 2\beta \Delta x + y_{N-1}$ is of second order at x = 1

Neumann problem, approach 2

Example
$$y'' = f(x, y)$$
 $y(0) = \alpha;$ $y'(1) = \beta$

Equidistant grid,
$$x_n=n\Delta x$$
 with $\Delta x=\frac{1}{N+1/2}$ and $x_N+\Delta x/2=1=x_{N+1}-\Delta x/2$
$$y'(1)=\beta \quad \rightarrow \quad \frac{y_{N+1}-y_N}{\Delta x}=\beta$$

$$\Rightarrow y_{N+1} := \beta \Delta x + y_N$$
 is of second order at $x = 1$

Need to approximate $y(1) \approx \frac{y_N + y_{N+1}}{2}$

Neumann problem, approach 3

Example
$$y'' = f(x, y)$$
 $y(0) = \alpha; \quad y'(1) = \beta$

Equidistant grid,
$$x_n = n\Delta x$$
 with $\Delta x = \frac{1}{N+1}$ and $x_{N+1} = 1$

$$y'(1) = \beta \quad \rightarrow \quad \frac{y_{N-1} - 4y_N + 3y_{N+1}}{2\Delta x} = \beta$$

$$\Rightarrow y_{N+1} := \frac{1}{3} \left(2\beta \Delta x + 4y_N - y_{N-1} \right)$$
 is of second order at $x = 1$

All three approaches work! It's a matter of taste.

Robin problem

Example
$$y'' = f(x, y)$$
$$y(0) = \alpha; \quad y(1) + cy'(1) = \kappa$$

Equidistant grid, with x = 1 between grid points

$$x_N + \Delta x/2 = 1 = x_{N+1} - \Delta x/2$$

$$y(1) + cy'(1) = \kappa$$
 \rightarrow $\frac{y_{N+1} + y_N}{2} + c \frac{y_{N+1} - y_N}{\Delta x} = \kappa$

$$\Rightarrow y_{N+1} := \frac{(2c - \Delta x)y_N + 2\kappa \Delta x}{2c + \Delta x}$$

Other two approaches analogous

5. FDM on adaptive grids

Left and right divided differences

$$D^{-}y_{i} = \frac{y_{i} - y_{i-1}}{x_{i} - x_{i-1}} = \frac{y_{i} - y_{i-1}}{h^{-}} \qquad D^{+}y_{i} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} = \frac{y_{i+1} - y_{i}}{h^{+}}$$

Then approximate derivatives by finite differences

$$y_i' \approx \frac{h^- D^+ y_i + h^+ D^- y_i}{h^+ + h^-}$$

 $y_i'' \approx 2 \frac{D^+ y_i - D^- y_i}{h^+ + h^-}$

This is 2nd order only on smooth grids with $h^+/h^- = 1 + O(N^{-1})$

Nonuniform grids

6. Sturm-Liouville eigenvalue problems

Diffusion problem

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(p(x) \frac{\partial u}{\partial x} \right) ; \qquad u(t, a) = u(t, b) = 0$$

Separation of variables (one space dimension)

$$u(t,x) := y(x) \cdot v(t)$$
 \Rightarrow $\frac{\dot{v}}{v} = \frac{(p(x)y')'}{v} =: \lambda$

Sturm-Liouville eigenvalue problem

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \lambda y$$
 $y(a) = 0, \ y(b) = 0$

Sturm-Liouville eigenvalue problems...

Wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}; \qquad u(t, a) = u(t, b) = 0$$

Express solution as $u(t,x) = y(x) e^{i\omega t} \Rightarrow$

$$-\omega^2 y = c^2 y''$$
 $y(a) = y(b) = 0$

Sturm-Liouville eigenvalue problem

$$y'' = \lambda y$$
 with $\lambda = -\omega^2/c^2$

Why Sturm-Liouville eigenvalue problems?

Öresund bridge

Fluid-structure interaction

Tacoma Narrows Bridge 1940

Tuned mass dampers

Stockbridge damper (1926) – anti-fatigue devices

Taipei 101

Somewhat larger tuned mass damper (660 000 kg)

It rocks

Gustaf Söderlind: Mathematics rocks too!

Music instruments

Compression loads, buckling and sun kinks

Quantum mechanics

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V(x)\psi = E\psi$$

This is a Sturm–Liouville eigenvalue problem, with energy levels E_k defined by the eigenvalues

Sturm-Liouville eigenvalue problem

Find eigenvalues λ and eigenfunctions y(x) with

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right)+q(x)y=\lambda y; \qquad y(a)=y(b)=0$$

Discretization Matrix eigenvalue problem

$$T_{\Delta x} y = \lambda_{\Delta x} y$$

Note Analytic eigenvalue problem converts to algebraic!

Symmetric discretizations

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right)\Big|_{x=x_i} \approx \frac{\left(p(x)y'(x)\right)\Big|_{x_i+\frac{\Delta x}{2}} - \left(p(x)y'(x)\right)\Big|_{x_i-\frac{\Delta x}{2}}}{\Delta x}$$

$$p(x_i + \frac{\Delta x}{2}) y'(x)|_{x_i + \frac{\Delta x}{2}} \approx p\left(x_i + \frac{\Delta x}{2}\right) \frac{y(x_{i+1}) - y(x_i)}{\Delta x}$$

(similar for $x_i - \frac{\Delta x}{2}$) lead to

$$\frac{p_{i-1/2}y_{i-1} - (p_{i-1/2} + p_{i+1/2})y_i + p_{i+1/2}y_{i+1}}{\Delta x^2} + q(x_i)y_i = \lambda y_i$$
$$y_0 = y_{N+1} = 0$$

$$\frac{p_{i-1/2}y_{i-1} - (p_{i-1/2} + p_{i+1/2})y_i + p_{i+1/2}y_{i+1}}{\Delta x^2} + q(x_i)y_i = \frac{\lambda_{\Delta x}}{2}y_i$$

$$y_0=y_{N+1}=0$$

Symmetric tridiagonal $N \times N$ eigenvalue problem

$$T_{\Delta x} y = \lambda_{\Delta x} y$$

There are *N* eigenvalues $\lambda_{\Delta x,n} = \lambda_n + O(\Delta x^2)$

Consider $y'' = \lambda y$ with boundary conditions y(0) = y(1) = 0

Analytic solution

$$y(x) = A \sin \sqrt{-\lambda} x + B \cos \sqrt{-\lambda} x$$

Boundary values $\Rightarrow B = 0$ and $A \sin \sqrt{-\lambda} = 0$

Eigenvalues and eigenfunctions for k = 1, 2, ...

$$\lambda_k = -(k\pi)^2$$
$$y_k(x) = \sin k\pi x$$

Fourier modes (harmonic analysis) associated with d^2/dx^2

Discretization of $y'' = \lambda y$ with BVs \Rightarrow

$$\frac{y_{i-1} - 2y_i + y_{i+1}}{\Delta x^2} = \lambda_{\Delta x} y_i$$

$$y_0 = y_{N+1} = 0; \qquad \Delta x = 1/(N+1)$$

Tridiagonal $N \times N$ matrix formulation

$$\frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & \\ & & \ddots & \\ & & 1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = \lambda_{\Delta x} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

Discrete Sturm-Liouville problem...

Algebraic eigenvalue problem

$$T_{\Delta x} y = \lambda_{\Delta x} y$$

Smallest eigenvalue $\lambda_{\Delta x} = -\pi^2 + O(\Delta x^2)$

The first few eigenvalues are well approximated, but the approximation gradually gets worse

Note There are only N discrete eigenvalues

Discrete Sturm-Liouville problem

Note

- Lowest eigenvalues are more accurate
- Good approximations for \sqrt{N} first eigenvalues

(Here approximately first 4 - 5 modes)

7. Toeplitz matrices

A Toeplitz matrix is constant along diagonals

Example (symmetric)

$$T_{\Delta x} = \frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & 0 & \dots \\ 1 & -2 & 1 & \\ & 1 & -2 & 1 \\ & & & \ddots \\ & \dots & 0 & 1 & -2 \end{pmatrix}$$

Toeplitz matrices...

Much is known about Toeplitz matrices

- Eigenvalues
- Norms
- Inverses
- etc.

They can be generated in $\ensuremath{\mathrm{MATLAB}}$ using the built-in function toeplitz

Eigenvalues of Toeplitz matrices

Example Solve the eigenvalue problem $Ty = \lambda y$ for

$$T = \left(\begin{array}{cccc} -2 & 1 & 0 & \dots \\ 1 & -2 & 1 & \\ & 1 & -2 & 1 \\ & & & \ddots \\ & \dots & 0 & 1 & -2 \end{array}\right)$$

Note
$$\lambda[T] = -2 + \lambda[S]$$

Eigenvalues...

... the problem gets simplified

$$Sy = \begin{pmatrix} 0 & 1 & 0 & \dots \\ 1 & 0 & 1 & & \\ & 1 & 0 & 1 & \\ & & \ddots & 1 \\ & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = \lambda y$$

Find eigenvalues $\lambda[S]$, noting that the n^{th} equation of $Sy = \lambda y$ is

$$y_{n+1} + y_{n-1} = \lambda y_n$$

Eigenvalues and difference equations

Linear difference equation $y_{n+1} + y_{n-1} = \lambda y_n$ with boundary values $y_0 = 0 = y_{N+1}$

Characteristic equation $z^2 - \lambda z + 1 = 0$

Two roots z and 1/z (product 1) implies general solution

$$y_n = Az^n + Bz^{-n}$$

Boundary condition $y_0 = 0 = A + B \implies y_n = A(z^n - z^{-n})$

Eigenvalues and difference equations. . .

Boundary condition
$$y_{N+1} = 0 = A(z^{N+1} - z^{-(N+1)}) \Rightarrow$$

$$z^{2(N+1)} = 1 \Rightarrow z_k = \exp\left(\frac{k\pi i}{N+1}\right) \qquad k = 1:N$$

Sum of the roots of $z^2 - \lambda z + 1 = 0$ are

$$\lambda_k[S] = z_k + 1/z_k = 2\cos\frac{k\pi}{N+1}$$

Hence

$$\lambda_k[T] = -2 + 2\cos\frac{k\pi}{N+1} = -4\sin^2\frac{k\pi}{2(N+1)}$$

Eigenvalue locations

Eigenvalues of Toeplitz matrices

Theorem The $N \times N$ Toeplitz matrix

$$T = \begin{pmatrix} -2 & 1 & 0 & \dots \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 & \\ & & & \ddots & \\ & \dots & 0 & 1 & -2 \end{pmatrix}$$

has N real eigenvalues (k = 1 : N)

$$\lambda_k[T] = -4\sin^2\frac{k\pi}{2(N+1)} \in (-4,0)$$

Eigenvalues of Toeplitz matrices...

Consider $T_{\Delta x}:=T/\Delta x^2$ with $\Delta x=1/(N+1)$ as an operator approximation

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \quad \leftrightarrow \quad T_{\Delta x}$$

on $x \in [0, 1]$

Corollary The eigenvalues of $T_{\Delta x}$ are

$$\lambda_k[T_{\Delta x}] = -4(N+1)^2 \sin^2 \frac{k\pi}{2(N+1)} \approx -k^2\pi^2 = \lambda_k[d^2/dx^2]$$

for $k \ll N$

What are the norms of T?

Lemma For a symmetric matrix A, it holds

$$||A||_2 = \max_k |\lambda_k|$$

Lemma For a symmetric matrix A, it holds

$$\mu_2[A] = \max_k \lambda_k$$

(Both results actually hold for normal matrices)

Proofs. Norm

Definition

$$||A||_2^2 = \max_{x^T x \neq 0} \frac{x^T A^T A x}{x^T x}$$

Find stationary points of the *Rayleigh quotient* of $A^{T}A$, given by $\rho(x) = x^{T}A^{T}Ax/x^{T}x$

$$\frac{\mathrm{d}}{\mathrm{d}x}\rho(x) = (2x^{\mathrm{T}}A^{\mathrm{T}}Ax^{\mathrm{T}}x - 2x^{\mathrm{T}}x^{\mathrm{T}}A^{\mathrm{T}}Ax)/(x^{\mathrm{T}}x)^{2} := 0$$

$$\Rightarrow \quad x^{\mathrm{T}}A^{\mathrm{T}}A = x^{\mathrm{T}}\rho(x) \quad \Rightarrow \quad A^{2}x = \rho(x)x$$

So
$$\rho(x) = \lambda^2$$
, therefore $||A||_2 = \max |\lambda[A]|$ if $A^T = A$

Proofs. Logarithmic norm

Definition (real A)

$$\mu_2[A] = \max_{x^{\mathrm{T}} x \neq 0} \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x}$$

Find stationary points of the *Rayleigh quotient* of *A*, given by $\rho(x) = x^{\mathrm{T}} A x / x^{\mathrm{T}} x$

$$\frac{\mathrm{d}}{\mathrm{d}x}\rho(x) = [x^{\mathrm{T}}(A + A^{\mathrm{T}})x^{\mathrm{T}}x - 2x^{\mathrm{T}}x^{\mathrm{T}}Ax]/(x^{\mathrm{T}}x)^{2} := 0$$

$$\frac{1}{2}x^{\mathrm{T}}(A + A^{\mathrm{T}})x = x^{\mathrm{T}}\rho(x) \quad \Rightarrow \quad Ax = \rho(x)x$$

So
$$\rho(x) = \lambda$$
, therefore $\mu_2[A] = \max \lambda[A]$

What are the norms of T_{Δ_X} ?

Eigenvalues of $T_{\Delta x} = T/\Delta x^2$ are

$$\lambda_k[T_{\Delta x}] = -4(N+1)^2 \sin^2 \frac{k\pi}{2(N+1)}$$

So
$$\|T_{\Delta x}\|_2 = |\lambda_N|$$
 and $\mu_2[T_{\Delta x}] = \lambda_1$

Theorem The Euclidean norms of $T_{\Delta \times}$ are

$$\|T_{\Delta x}\|_2 \approx \frac{4}{\Delta x^2}$$
 $\mu_2[T_{\Delta x}] \approx -\pi^2$

The norm of $T_{\Delta x}^{-1}$

Recall that
$$\,\mu[A] < 0 \ \Rightarrow \ \|A^{-1}\| \leq -1/\mu[A]$$

Approximate
$$y''=f(x)$$
 with $y(0)=y(1)=0$ by
$$T_{\Delta x}u=q$$

Note $\mu_2[T_{\Delta x}] \approx -\pi^2$ implies the existence of a *unique solution*, as

$$\|T_{\Delta x}^{-1}\|_2 \lesssim \frac{1}{\pi^2}$$

The norm of a function is measured in the L^2 norm

$$||u||_{L^2}^2 = \int_0^1 u(x)^2 dx$$

A corresponding discrete function (vector) is then measured in the root mean square (RMS) norm

$$||u||_{\Delta x}^2 = \sum_{i=1}^N u(x_i)^2 \Delta x = \frac{1}{N+1} \sum_{i=1}^N u(x_i)^2 = \frac{1}{N+1} ||u||_2^2$$

Note For the operator norm, $\|T_{\Delta x}^{-1}\|_{\Delta x} \equiv \|T_{\Delta x}^{-1}\|_{2}$

8. Convergence of finite difference methods

Simplest model problem (1D Poisson equation)

$$y'' = f(x)$$

$$y(0) = \alpha; \quad y(1) = \beta$$

Equidistant discretization

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} = f(x_i)$$

$$y_0 = \alpha; \quad y_{N+1} = \beta$$

Insert exact continuous solution y(x) into discretization

$$\frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{\Delta x^2} = f(x_i, y(x_i)) - I(x_i)$$

Taylor expansion of local error, using $f(x_i) = y''(x_i)$

$$-I(x_i) = 2\left(\frac{\Delta x^2}{4!}y^{(4)}(x_i) + \frac{\Delta x^4}{6!}y^{(6)}(x_i) + \dots\right)$$

Only even powers of Δx due to symmetry. In particular, we get

$$||I||_{\Delta x} \le \Delta x^2 \frac{1}{12} \max_{\xi \in [0,1]} |y^{(4)}(\xi)|$$

Definition The global error is defined by $e(x_i) = y_i - y(x_i)$

Convergence

Will show that $e(x) \to 0$ as $\Delta x \to 0$, or more specifically

$$||e||_{\Delta x} = c_1 \Delta x^2 + c_2 \Delta x^4 + \dots$$

Again only even powers due to symmetry

Convergence

Consider the problem y'' = f discretized by 2nd order FDM

$$T_{\Delta x}u = f(x)$$

with $T_{\Delta x}$ tridiagonal. Then

Numerical solution
$$T_{\Delta x}u = f(x)$$

Exact solution
$$T_{\Delta x}y(x) = f(x) - I(x)$$

Error equation
$$T_{\Delta x}e(x) = I(x)$$

where e(x) = u - y(x) is the global error

Convergence...

Solve
$$T_{\Delta \times} u = f$$
 formally to get

Numerically
$$u = T_{\Delta x}^{-1} \cdot f(x)$$

Exact $y(x) = T_{\Delta x}^{-1} \cdot (f(x) - I(x))$
Global error $e(x) = T_{\Delta x}^{-1} \cdot I(x)$
Error bound $\|e\|_{\Delta x} \le \|T_{\Delta x}^{-1}\|_2 \cdot \|I\|_{\Delta x}$

Convergence...

Recall

- $\mu_2[T_{\Delta x}] \approx -\pi^2 \Rightarrow \|T_{\Delta x}^{-1}\|_2 \lesssim 1/\pi^2$
- $\|e\|_{\Delta x} \le \|T_{\Delta x}^{-1}\|_2 \cdot \|I\|_{\Delta x}$
- $||I||_{\Delta_X} \le \Delta_X^2 \frac{1}{12} \max_{\xi \in [0,1]} |y^{(4)}(\xi)|$

We therefore have

$$||e||_{\Delta x} \le C \cdot ||I||_{\Delta x} = \frac{C}{12} \max_{\xi \in [0,1]} |y^{(4)}(\xi)| \Delta x^2$$

and we have convergence as $\Delta x \rightarrow 0$

The Lax Principle

Conclusion

```
Consistency local error l \to 0 as \Delta x \to 0

Stability \|T_{\Delta x}^{-1}\|_2 \le C as \Delta x \to 0

Convergence global error e \to 0 as \Delta x \to 0
```

Theorem (Lax Principle)

 $Consistency + Stability \Rightarrow Convergence$

"Fundamental theorem of numerical analysis"