
Project #2 in FMNN10 and NUMN12
c© T Stillfjord, G Söderlind 2019

Goals. In this assignment, the goal is to construct solvers for two-point
boundary value problems as well as Sturm�Liouville eigenvalue problems.
The objective is to learn the basic �nite di�erence methodology by imple-
menting it in detail. As it is too complicated to make the solver adaptive
(i.e., the mesh width varies along the solution), we only construct solvers for
equidistant grids. Likewise, because nonlinear problems present additional
di�culties, we will only consider linear problems.

Prepare yourself before you go to the computer lab! Read the entire
instruction, work out answers or formulas that you will need in your pro-
grams, and make sure that you have a plan for your work. Get started with
the programming before you go to the lab, in order to make the most of your
time there.

Part 1. 2pBVP solvers

Theory and problem statement. Consider a simple 2pBVP

y′′ = f(x, y),

y(0) = α, y(L) = β.

Introduce an equidistant grid on [0, L] with ∆x = L/(N + 1). The derivative
is discretized with a symmetric �nite di�erence quotient, so that we obtain

yi+1 − 2yi + yi−1

∆x2
= f(xi, yi),

y0 = α, yN+1 = β.

This is a system of N equations for the N unknowns y1, y2, . . . , yN , which
approximate the exact solution values, y(x1), y(x2), . . . , y(xN). If we denote
the system by F (y) = 0, then the equations are (note how the boundary
values enter)

F1(y) =
α− 2y1 + y2

∆x2
− f(x1, y1),

Fi(y) =
yi−1 − 2yi + yi+1

∆x2
− f(xi, yi), i = 1, . . . N,

FN(y) =
yN−1 − 2yN + β

∆x2
− f(xN , yN).

1

In the nonlinear case, one would have to solve F (y) = 0 iteratively, using
Newton's method. However, trying to keep things simple, we will only study
linear problems here, so as to avoid iterative equation solving.

In fact, we are only going to consider the very simplest linear problems,
where f(x, y) ≡ f(x). This means that the right-hand side of the BVP is
independent of y. In this case, we see that our system F (y) = 0 reduces to
a linear system of equations,

1

∆x2

−2 1 0 . . .

1 −2 1
1 −2 1

. . .

. . . 0 1 −2

y1

y2
...

yN

 =

−α/∆x2 + f(x1)

f(x2)
...

f(xn−1)
−β/∆x2 + f(xN)

This is a tridiagonal linear system. The matrix is sparse. Solving the system
has low complexity. The LU decomposition runs in O(N) time (3N opera-
tions, to be precise; compare to the N3/3 operations needed for a dense, full
matrix). The forward and back substitutions also run in O(N) time (a total
of 2N operations). Therefore, the solution e�ort is moderate even when N
is large, and is proportional to the number of grid points.

Task 1.1 Write a Matlab 2pBVP solver

function y = twopBVP(fvec, alpha, beta, L, N)

that solves y′′ = f(x) with boundary conditions y(0) = α and y(L) = β on an
equidistant grid having N interior points. Test your solver by implementing
a right-hand side function of your choice, so that you know what the exact
solution is. It is necessary to verify that the code functions properly in every

respect, even when changing the boundary conditions.

Note that you cannot take a �too simple� right hand side. For example,
if you take f(x) ≡ 1, the solution is a 2nd degree polynomial, and a 2nd
order method therefore solves the problem exactly. To choose a more di�-
cult problem, select the function y itself, and di�erentiate twice to �nd the
corresponding f . Don't forget that boundary conditions must match. For
your chosen problem, verify that your method works by plotting the

error in a log-log diagram in the usual way to demonstrate second

order convergence. Give all details about your computational setup.

Here are some useful hints for constructing your solver:

1. To simplify your work with Task 1.2 let your solver take fvec as an
input vector. That is, before calling twopBVP, evaluate the right hand

2

side function f of the 2pBVP at theN interior grid points x1, x2, . . . , xN
and store the results in fvec.

2. Do not plot the result from within twopBVP as you will use this solver
repeatedly below. Instead, plot the result by giving a plot command in
the script (main program) you use to call twopBVP.

3. Note that when you plot the solution, you have obtained y only on

interior points. Make sure to append the boundary values at the begin-
ning and end of your solution vector, so that you can plot the solution
all the way from boundary to boundary.

4. In Matlab and scipy.linalg you will �nd the function toeplitz,
which generates tridiagonal matrices of the structure you need. Option-
ally, you can use the command diag, in the following manner. If you
have an N − 1 vector sup, an N − 1 vector sub and an N vector main,
then you can construct a tridiagonal N × N matrix with subdiagonal
sub, main diagonal main and superdiagonal sup by the command

A = diag(sub,-1) + diag(main,0) + diag(sup,1);

Using this technique, all you need to do is to �rst generate the three
vectors sub, main, sup, and install them in their right positions in
the matrix. After constructing the matrix, using either technique, you
correct the elements in the �rst and last row of A, if necessary, so
that the boundary conditions are properly represented. The commands
toeplitz and diag are very convenient as they allow you to avoid using
for-loops and instead work with a vectorized code. However these
commands have the drawback that you work with full matrices without
exploiting the sparse tridiagonal structure. For higher performance,
you can check Matlab's help for the commands sparse and spdiags

or the Python module scipy.sparse, in particular the diags function.
Thus, using the sparsity of the tridiagonal matrices, you can choose a
matrix representation that makes your solver much faster, and also
enables you to use very large values of N . (A better alternative in high
precision computations is of course to work with higher order methods,
but higher order methods also have sparse representations that should
be exploited.)

The Beam Equation. An elastic beam under load is de�ected in accor-
dance with its material properties and the applied load. According to elas-

3

ticity theory, the de�ection u is governed by the di�erential equations

M ′′ = q(x)

u′′ = M(x)/(EI),

where q(x) is the load density (N/m); M(x) is the bending moment (Nm);
E is Young's modulus of elasticity (N/m2); I is the beam's cross-section
moment of inertia (m4); and u is the beam's centerline de�ection (m).

The beam is supported at its ends, at x = 0 and x = L. This means that
there is no de�ection there: u(0) = u(L) = 0. Further, assuming that the
beam's ends do not sustain any bending moment, we also have the boundary
conditions M(0) = M(L) = 0. We have then obtained a 2pBVP, of order 4.
The task is to solve for the de�ection u. Thus, given the load vector q, you
�rst solve a 2pBVP for the bending moment M ; then, using your calculated
M vector as data, you solve another 2pBVP for the de�ection u.

Task 1.2 Use your 2pBVP solver to write a script for solving the beam
equation for a heavy-duty railway �atcar. Its support beams have length
L = 10 m and elasticity module E = 1.9 · 1011 N/m2 (construction steel).
The beam's web is �taller� at the center section. This is modeled by a cross-
section moment of inertia that varies along the beam, according to

I(x) = 10−3 ·
(

3− 2 cos12 πx

L

)
.

Solve the problem for this beam shape, with a load of q(x) = −50 kN/m
(i.e., a load of �ve metric tonnes per meter), and plot the computed de-

�ection. Don't forget to insert the boundary conditions so that your plot
reaches all the way out to the boundary. Please be careful with your SI units
� steel is a strong material, so loads are on the order of kN, and de�ections
on the order of mm. Make sure that your computations are consistent, so
that you don't get incorrect results due to mistakes in the choice of units.

Speci�cally, make a run for N = 999 interior grid points (corre-
sponding to ∆x = 10−2) and compute the de�ection at the beam's

midpoint. Give your result to eight digits. (This will be used to check that
your code is correct.)

Part 2. Sturm�Liouville eigenvalue problems

Theory and problem statement. A fascinating aspect of applied mathe-
matics is that the very same equation may solve problems in the most diverse
areas. The Sturm�Liouville problem does just that, and and has applications

4

in e.g. materials science (oscillations in beams; buckling modes in structural
analysis) as well as in microphysics (quantum mechanics).

Sturm�Liouville problems are eigenvalue problems for di�erential opera-
tors. The standard formulation is

d

dx

(
p(x)

dy

dx

)
− q(x)y = λy

y(a) = 0; y(b) = 0

where p(x) > 0 and q(x) ≥ 0. The problem is to �nd eigenvalues λ and
eigenfunctions y(x) satisfying this 2pBVP. Eigenfunctions are often called
�eigenmodes� or just �modes,� because they can be interpreted as oscillation
modes of various frequencies. In quantum mechanics the eigenmodes are
called �wave functions,� and the eigenvalues represent �energy levels� of the
corresponding �states.�

Note that the boundary conditions in a Sturm�Liouville problem are al-
most always homogeneous; apart from the Dirichlet condition above, one also
encounters homogeneous Neumann conditions such as y′(a) = 0.

Discretization. The Sturm�Liouville problem is discretized by standard
symmetric 2nd order �nite di�erences to obtain a matrix eigenvalue problem

T∆xy = λ∆xy

where T∆x is a symmetric, tridiagonal N ×N matrix, which depends on the
functions p, q and ∆x. The discretization has exactly N real eigenvalues
λ∆x = λ + O(∆x2), due to symmetry. This re�ects the fact that the di�er-
ential operator is self�adjoint and therefore possesses an in�nite sequence of
real eigenvalues and orthogonal eigenfunctions.

You generate the matrix using the diag command as described before.
The eigenvalues of a matrix A are computed inMatlab using the command
eig(A). Depending on how you call this function, you can compute either
eigenvalues only, or eigenvalues and the corresponding eigenvectors. The lat-
ter are discrete versions of the eigenfunctions, and can be plotted to visualize
the eigenfunctions. Use help inMatlab to �nd out more, and take care with

how the outputs are ordered. In Python, the equivalent eig function resides
in scipy.linalg.

Task 2.1 Construct a Sturm�Liouville solver for the simple problem

u′′ = λu

5

with boundary conditions u(0) = u(1) = 0. Solve the problem analytically
(�nd the eigenvalues of d2/dx2). Then take your numerical solver and solve
the same problem, verifying that it is second order accurate by plotting the
error λ∆x − λ for the �rst three eigenvalues versus N , the number of
interior grid points. Make sure that the error in all three eigenvalues has the
correct slope in a loglog diagram. Speci�cally, give the eigenvalues you

obtain to eight digits for N = 499, corresponding to ∆x = 2 · 10−3.
In addition, make a separate graph where you plot the �rst three

eigenmodes. Note that by the ��rst� eigenvalues, we refer to those of small-
est absolute magnitude. Make sure that you plot the eigenfunction all the

way to the boundaries, at x = 0 and x = 1. Include the boundary points.

The Schrödinger equation. A quantum particle trapped in a one-dimensional
potential V (x) ≥ 0 has a stationary wave function ψ(x) satisfying the sta-
tionary Schrödinger equation

ψ′′ − V (x)ψ = −Eψ,

where E is the energy level of the particle. Assuming that the potential is
in�nite outside the interval [0, 1], the boundary conditions are ψ(0) = ψ(1) =
0. This is a Sturm�Liouville problem for determining the wave functions and
energy levels. In addition to the wave functions, the corresponding probability

densities |ψ|2 are of interest; they give the probability of �nding the particle
at a certain position x.

Task 2.2 Construct a solver for the stationary Schrödinger equation for any
given potential V (x). The solver should compute the �rst few eigenval-

ues (say up to six to ten eigenvalues), and plot both the wave functions ψ
and the probability densities |ψ|2. Use separate plots for wave functions
and probability densities.

Note that wave functions and probability densities need to be normalized
in order to make good plots. Use the same normalization for ψ and |ψ|2 and
let ψ̂ denote the normalized wave function. As is customary in physics, it is
a good idea to plot wave functions and probability densities �at the energy
level.� This is achieved by plotting the functions ψ̂k(x)+Ek and |ψ̂k(x)|2+Ek.
This trick �lifts� the wave function (probability density) from zero to the
energy level. To make nice plots, you may have to carefully consider how
to scale the amplitude of wave functions. Any amplitude normalization is
permissible, since the eigenvalue problem is homogeneous. You should choose
the normalization from the point of view of visualizing the eigenfunctions and
the probability densities as clearly as possible.

6

Test your code by trying it out for the case V (x) = 0 in the interval [0, 1]
and V (x) = ∞ outside the interval. This is usually referred to as a particle
in a potential box. Since the potential is in�nite outside the interval, the
probability of �nding the particle there is zero. This means that ψ(0) =
ψ(1) = 0, and that the Schrödinger equation reduces to the simple Sturm�
Liouville problem

ψ′′ = −Eψ.

As we have used this test case in task 2.1, you just need to verify that the
Schrödinger solver works correctly.

Now the task is to compute something you wouldn't be able to do by
hand. Thus, other choices of V (x) lead to the study of �potential barriers�
and phenomena like tunneling. Modify your Schrödinger code to calcu-

late wave functions and probability densities for potentials that

are nonzero in [0, 1] and in�nite outside. For example, one can try the
potential barriers V (x) = 700(0.5 − |x − 0.5|) and V (x) = 800 sin2 πx. At
what energy levels does the probability to �nd the particle at x = 0.5 become
signi�cant? Here you see the well-known e�ect of getting a �doublet state,�
i.e., two states of almost the same energy (but di�erent parity) due to the
potential barrier inside the box. There are of course more interesting poten-
tials. Can you de�ne a potential with three �wells� so that you get triplet
states? Experiment with your code � it will solve any problem, and you can
apply it to any potential of your choice. Report at least one interesting case
you have constructed yourself.

Notes concerning the report. The same rules apply as in Project 1. Be
sure to identify every plot with a title, axis labels and a caption explaining
what you see in the plot and what conclusions you can draw from it. Doc-
ument your discretizations and supply relevant code segments, functions or
scripts. Clarify your observations and conclusions. Include references, ac-
knowledge discussions with fellow students or instructors, and sum up what
you have learned from this assignment.

7

