Numerical Methods for Differential Equations Mathematical and Computational Tools

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

Part 1. Vector norms, matrix norms and logarithmic norms

- Vector norms
- Matrix norms
- Inner products
- The logarithmic norm
- Logarithmic norm properties
- Applications

1. Vector norms

Definition A vector norm $\|\cdot\|: \mathbb{X} \rightarrow \mathbb{R}$ satisfies

1. $\|u\| \geq 0 ; \quad\|u\|=0 \Leftrightarrow u=0$
2. $\|\alpha u\|=|\alpha| \cdot\|u\|$
3. $\|u\|-\|v\| \leq\|u \pm v\| \leq\|u\|+\|v\|$

A norm generalizes the notion of distance between points

Vector norms

Definition The Ip norms are defined $\|x\|_{p}=\left(\sum_{k=1}^{N}\left|x_{k}\right|^{p}\right)^{1 / p}$

Graph of the unit circle in \mathbb{R}^{2} for I^{p} norms

Unit circles for $p=1, p=2$ (Euclidean norm), and $p=\infty$

2. Matrix norms

Definition The operator norm associated with the vector norm $\|\cdot\|$ is defined by

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

For every vector norm there is a corresponding matrix norm
Note

1. $\|A x\| \leq\|A\| \cdot\|x\|$
2. $\|A B\| \leq\|A\| \cdot\|B\|$

Vector and matrix norms

Vector norm	Matrix norm		
$\\|x\\|_{1}=\sum_{i}\left\|x_{i}\right\|$	$\max _{j} \sum_{i}\left\|a_{i j}\right\|$		
$\\|x\\|_{2}=\sqrt{\sum_{i}\left\|x_{i}\right\|^{2}}$	$\sqrt{\rho\left[A^{\mathrm{H}} A\right]}$		
$\\|x\\|_{\infty}=\max _{i}\left\|x_{i}\right\|$	$\max _{i} \sum_{j}\left\|a_{i j}\right\|$		

Definition The spectral radius of a matrix is defined by

$$
\rho[A]=\max |\lambda[A]|
$$

3. Inner products

Definition A bilinear form $\langle\cdot, \cdot\rangle: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{C}$ satisfying

$$
\begin{aligned}
& \text { 1. }\langle u, u\rangle \geq 0 ; \quad\langle u, u\rangle=0 \Leftrightarrow u=0 \\
& \text { 2. }\langle u, v\rangle=\overline{\langle v, u\rangle} \\
& \text { 3. }\langle u, \alpha v\rangle=\alpha\langle u, v\rangle \\
& \text { 4. }\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle
\end{aligned}
$$

An inner product generates the Euclidean norm $\langle u, u\rangle=\|u\|^{2}$

An inner product generalizes the notion of scalar product

Inner products

1. Scalar product in $\mathbb{R}^{m}:\langle u, v\rangle=u^{T} v$
with corresponding Euclidean vector norm $\|u\|_{2}^{2}=\sum_{k=1}^{N}\left|u_{k}\right|^{2}$
2. General inner product in $\mathbb{C}^{m}:\langle u, v\rangle_{G}=u^{\mathrm{H}} G v$ for any symmetric positive definite matrix G
3. Inner product in $L^{2}[0,1]:\langle u, v\rangle=\int_{0}^{1} u v \mathrm{~d} x$
with corresponding L^{2} norm of functions $\|u\|_{L^{2}}^{2}=\int_{0}^{1}|u|^{2} \mathrm{~d} x$

Inner products and operator norms

Theorem Cauchy-Schwarz inequality

$$
|\langle u, v\rangle| \leq\|u\| \cdot\|v\|
$$

Note the absolute value!

$$
\Rightarrow\langle u, v\rangle \geq-\|u\| \cdot\|v\| \text { on real vector spaces }
$$

Definition The operator norm associated with $\langle\cdot, \cdot\rangle$ is

$$
\|A\|^{2}=\sup _{x \neq 0} \frac{\langle A u, A u\rangle}{\|u\|^{2}}
$$

Hence $\langle A u, A u\rangle \leq\|A\|^{2}\|u\|^{2}$

Interlude

The problem of stability

Classical stability for ODEs

$$
\dot{x}=A x ; \quad x(0)=x_{0}
$$

Characterization Elementary stability conditions

- $\operatorname{Re} \lambda_{k}<0\left(\Leftrightarrow \mathrm{e}^{t A} \rightarrow 0\right.$ as $\left.t \rightarrow \infty\right)$
- $\left\|\mathrm{e}^{t A}\right\| \leq C$ for all $t \geq 0$
- $\mathrm{d}\left\|\mathrm{e}^{t A}\right\| / \mathrm{d} t \leq 0 \quad\left(\Leftrightarrow\left\|\mathrm{e}^{t A}\right\| \leq 1\right.$ for all $\left.t \geq 0\right)$

Time-dependent linear systems

Consider non-autonomus linear system

$$
\dot{x}=A(t) x ; \quad x(0)=x_{0}
$$

Stability is no longer characterized by eigenvalues
Even with constant eigenvalues in the left half plane the system can be unstable (Petrowski \& Hoppenstedt)

Problem Under what conditions does $\|x(t)\|$ remain bounded as $t \rightarrow \infty$?

The logarithmic norm

Note that for an inner product norm,

$$
\frac{\mathrm{d}\|x\|^{2}}{\mathrm{~d} t}=\frac{\mathrm{d}\langle x, x\rangle}{\mathrm{d} t}=2 \operatorname{Re}\langle x, \dot{x}\rangle
$$

and that if $\dot{x}=A x$, then

$$
\operatorname{Re}\langle x, \dot{x}\rangle=\operatorname{Re}\langle x, A x\rangle \leq \mu[A] \cdot\langle x, x\rangle
$$

Definition The logarithmic norm is defined by

$$
\mu[A]=\sup _{x \neq 0} \frac{\operatorname{Re}\langle x, A x\rangle}{\|x\|^{2}}
$$

4. The logarithmic norm $\mu[A]$

Definition For general matrix norms the logarithmic norm is defined by

$$
\mu[A]=\lim _{h \rightarrow 0+} \frac{\|I+h A\|-1}{h}
$$

If $\dot{x}=A x$, the following differential inequality holds

$$
\mathrm{d}\|x\| / \mathrm{d} t \leq \mu[A] \cdot\|x\|
$$

Note The logarithmic norm may be negative. Solution bound

$$
\|x(t)\| \leq \mathrm{e}^{t \mu[A]} \cdot\|x(0)\| ; \quad t \geq 0
$$

Why the logarithmic norm?

Crude estimate

$$
\frac{\mathrm{d}\|x\|}{\mathrm{d} t} \leq\|\dot{x}\|=\|A x\| \leq\|A\| \cdot\|x\|
$$

Exponentially growing bound

$$
\|x(t)\| \leq \mathrm{e}^{t\|A\|} \cdot\|x(0)\|
$$

Note Because $\mu[A] \leq\|A\|$ we always have

$$
\mathrm{e}^{t \mu[A]} \leq \mathrm{e}^{t\|A\|}
$$

Vector norm	Matrix norm	$\log \operatorname{norm} \mu[A]$		
$\\|x\\|_{1}=\sum_{i}\left\|x_{i}\right\|$	$\max _{j} \sum_{i}\left\|a_{i j}\right\|$	$\max _{j}\left[\operatorname{Re} a_{j j}+\sum_{i}^{\prime}\left\|a_{i j}\right\|\right]$		
$\\|x\\|_{2}=\sqrt{\sum_{i}\left\|x_{i}\right\|^{2}}$	$\sqrt{\rho\left[A^{\mathrm{H}} A\right]}$	$\alpha\left[\left(A+A^{\mathrm{H}}\right) / 2\right]$		
$\\|x\\|_{\infty}=\max _{i}\left\|x_{i}\right\|$	$\max _{i} \sum_{j}\left\|a_{i j}\right\|$	$\max _{i}\left[\operatorname{Re} a_{i i}+\sum_{j}^{\prime}\left\|a_{i j}\right\|\right]$		

Definition Spectral abscissa $\alpha[A]=\max \operatorname{Re} \lambda[A]$

5. Logarithmic norm properties

Theorem The logarithmic norm has the following basic properties, which hold for all matrices A and B

1. $\mu[A] \leq\|A\|$
2. $\mu[A+z I]=\mu[A]+\operatorname{Re} z$
3. $\mu[\alpha A]=\alpha \mu[A], \quad \alpha \geq 0$
4. $\mu[A+B] \leq \mu[A]+\mu[B]$
5. $\left\|\mathrm{e}^{t A}\right\| \leq \mathrm{e}^{t \mu[A]}, \quad t \geq 0$

Uniform Monotonicity Theorem

The condition $\mu[A]<0$ is akin to A being negative definite. Then A has a bounded inverse. More precisely,

Theorem (Uniform Monotonicity Theorem) If $\mu[A]<0$ then A is nonsingular and

$$
\left\|A^{-1}\right\| \leq-1 / \mu[A]
$$

Proof (Here only for the Euclidean norm) Note that $\forall x$

$$
x^{\mathrm{T}} A x \leq \mu_{2}[A] \cdot x^{\mathrm{T}} x
$$

Proof ...

Suppose $\mu_{2}[A]<0$. By the Cauchy-Schwarz inequality

$$
-\|x\|_{2} \cdot\|A x\|_{2} \leq x^{\mathrm{T}} A x \leq \mu_{2}[A] \cdot\|x\|_{2}^{2}<0
$$

for all $x \neq 0$. Hence $A x \neq 0$, so A^{-1} exists! Put $x=A^{-1} y$ and rearrange to get

$$
-\|y\|_{2} \leq \mu_{2}[A] \cdot\left\|A^{-1} y\right\|_{2} \quad \Rightarrow \quad \frac{\left\|A^{-1} y\right\|_{2}}{\|y\|_{2}} \leq-\frac{1}{\mu_{2}[A]}
$$

Take maximum over y to see that $\left\|A^{-1}\right\|_{2} \leq-1 / \mu_{2}[A] \quad \square$

Application

The convergence of Explicit Euler

Consider Explicit Euler for $\dot{x}=A x+f(t)$

$$
\begin{aligned}
x_{n+1} & =x_{n}+h A x_{n}+h f\left(t_{n}\right) \\
x\left(t_{n+1}\right) & =x\left(t_{n}\right)+h A x\left(t_{n}\right)+h f\left(t_{n}\right)-h^{2} r_{n}
\end{aligned}
$$

Global error $e_{n}=x_{n}-x\left(t_{n}\right)$

$$
\begin{gathered}
e_{n+1}=e_{n}+h A e_{n}+h^{2} r_{n} \quad \Rightarrow \\
\left\|e_{n+1}\right\| \leq\left\|e_{n}\right\|+h\|A\| \cdot\left\|e_{n}\right\|+\left\|h^{2} r_{n}\right\|
\end{gathered}
$$

Classical convergence analysis

Recall (Chapter 1, p.15)
Lemma If $u_{n+1} \leq(1+h \mu) u_{n}+c h^{2}$ with $u_{0}=0$, then

$$
u_{n} \leq \frac{c h}{\mu}\left[(1+h \mu)^{n}-1\right] \leq c h \frac{\mathrm{e}^{\mu t_{n}}-1}{\mu}
$$

if $h \mu \geq 0$. In case $-1<h \mu<0$, we have

$$
\max _{n} u_{n} \leq-\frac{c h}{\mu}
$$

Classical convergence analysis ...

$$
\left\|e_{n+1}\right\| \leq(1+h\|A\|) \cdot\left\|e_{n}\right\|+\left\|h^{2} r_{n}\right\|
$$

The lemma applies with $\mu=\|A\|$ and $c=\max _{n}\left\|r_{n}\right\|$

$$
\left\|e_{n}\right\| \leq h \max _{n}\left\|r_{n}\right\| \frac{\mathrm{e}^{\|A\| t_{n}}-1}{\|A\|}
$$

"Convergence," but exponentially growing bound
(Hopeless!)

Modern convergence analysis

Explicit Euler for $\dot{x}=A x+f(t)$

$$
\begin{aligned}
x_{n+1} & =x_{n}+h A x_{n}+h f\left(t_{n}\right) \\
x\left(t_{n+1}\right) & =x\left(t_{n}\right)+h A x\left(t_{n}\right)+h f\left(t_{n}\right)-h^{2} r_{n}
\end{aligned}
$$

Global error $e_{n}=x_{n}-x\left(t_{n}\right)$

$$
\begin{gathered}
e_{n+1}=e_{n}+h A e_{n}+h^{2} r_{n}=(I+h A) e_{n}+h^{2} r_{n} \quad \Rightarrow \\
\left\|e_{n+1}\right\| \leq\|I+h A\| \cdot\left\|e_{n}\right\|+\left\|h^{2} r_{n}\right\|
\end{gathered}
$$

Modern convergence analysis ...

Note that, using the log norm,

$$
\mu[A]=\lim _{h \rightarrow 0+} \frac{\|I+h A\|-1}{h}
$$

we have

$$
\|I+h A\|=1+h \mu[A]+\mathrm{O}\left(h^{2}\right)
$$

as $h\|A\| \rightarrow 0$

Modern convergence analysis ...

Now the lemma applies with $\mu \approx \mu[A]$ and $c=\max _{n}\left\|r_{n}\right\|$

$$
\left\|e_{n}\right\| \lesssim h \max _{n}\left\|r_{n}\right\| \frac{\mathrm{e}^{\mu[A] t_{n}}-1}{\mu[A]} ; \quad \mu[A] \geq 0
$$

and in case $-1<h \mu[A]<0$ we have

$$
\max _{n}\left\|e_{n}\right\| \lesssim-\frac{h \max _{n}\left\|r_{n}\right\|}{\mu[A]}
$$

Convergence, with "realistic" error bound, as $\mu[A] \leq\|A\|$

Application

Solvability in Implicit Euler

Consider Implicit Euler for $\dot{x}=A x+f(t)$

$$
\begin{aligned}
x_{n+1} & =x_{n}+h A x_{n+1}+h f\left(t_{n+1}\right) \\
x\left(t_{n+1}\right) & =x\left(t_{n}\right)+h A x\left(t_{n+1}\right)+h f\left(t_{n+1}\right)-h^{2} r_{n}
\end{aligned}
$$

When is it possible to solve $(I-h A) x_{n+1}=x_{n}+h f\left(t_{n+1}\right)$?
Uniform monotonicity theorem guarantees unique solution if

$$
\mu[h A-I]<0 \Leftrightarrow \mu[h A]<1
$$

Easily satisfied, even without bound on $\|h A\|$

Part 2. Interpolation

- Polynomial interpolation
- Lagrange interpolation
- Basis functions
- Numerical integration

1. What is interpolation?

Interpolation is "the opposite" of discretization

Problem Given a discrete grid function (a vector) $F=\left\{f_{j}\right\}_{0}^{N}$ defined on a grid $\left\{x_{j}\right\}_{0}^{N}$, find a continuous function $f(x)$ with the interpolating property $f\left(x_{j}\right)=f_{j}$

Compare digital-to-analog conversion

Typically the function f is sought among polynomials or among trigonometric functions (Fourier analysis)

Naïve polynomial interpolation

$$
P_{n}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

$n+1$ coefficients, $n+1$ interpolation conditions $P_{n}\left(x_{j}\right)=f_{j}$

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Vandermonde matrix, nonsingular if $x_{i} \neq x_{j}$, unique solution
Tedious and often ill-conditioned approach

2. Lagrange interpolation

On a grid $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ construct a degree k polynomial basis

$$
\left\{\varphi_{i}(x)\right\}_{i=0}^{k}
$$

such that $\varphi_{i}\left(x_{j}\right)=\delta_{i j}$ (the Kronecker delta)

Theorem If the values $f_{j}=f\left(x_{j}\right)$ are known for the function $f(x)$, then the degree k polynomial

$$
P(x)=\sum_{j=0}^{k} \varphi_{j}(x) f_{j}
$$

interpolates $f(x)$ on the grid:

$$
P\left(x_{j}\right)=f_{j} \quad \text { with } \quad P(x) \approx f(x) \quad \text { for all } x
$$

3. Basis functions

2nd degree Lagrange

$$
\varphi_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}
$$

Table of Lagrange basis polynomials

x	φ_{0}	φ_{1}	φ_{2}	f	P_{2}
x_{0}	1	0	0	f_{0}	f_{0}
x_{1}	0	1	0	f_{1}	f_{1}
x_{2}	0	0	1	f_{2}	f_{2}

$$
P_{2}(x)=f_{0} \varphi_{0}(x)+f_{1} \varphi_{1}(x)+f_{2} \varphi_{2}(x)
$$

$$
P_{2}(x)=f_{0} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+f_{1} \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+f_{2} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
$$

4. Numerical integration

Numerical integration is the approximation of definite integrals

$$
I(f)=\int_{a}^{b} f(x) \mathrm{d} x
$$

Problem For many functions no primitive function is known. The integral cannot be calculated analytically

Note For polynomials an integral $\int_{a}^{b} P(x) \mathrm{d} x$ can always be computed analytically

Idea Approximate $f(x) \approx P(x)$ and compute $\int_{a}^{b} P(x) \mathrm{d} x$

Numerical integration. . .

Approximate $f \approx P$ and substitute "infinite sum" by a finite sum

The integrand is sampled at a finite number of points

$$
I(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+R_{n}
$$

Here $R_{n}=I(f)-\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)$ is the integration error

Numerical integration method

$$
I(f) \approx \sum_{i=0}^{n} w_{i} f\left(x_{i}\right)
$$

Numerical integration...

Approximate using Lagrange 2nd degree interpolant

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \int_{a}^{b} \sum_{i=0}^{2} f\left(x_{i}\right) \varphi_{i}(x) \mathrm{d} x=\sum_{i=0}^{2} f\left(x_{i}\right) \int_{a}^{b} \varphi_{i}(x) \mathrm{d} x
$$

Weights $w_{i}=\int_{a}^{b} \varphi_{i}(x) \mathrm{d} x$ can be computed once and for all

Numerical integration method

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{2} w_{i} f\left(x_{i}\right)
$$

Part 3. Nonlinear equations

- Solving nonlinear equations
- Fixed points
- Newton's method
- Application. Newton vs Fixed point in Implicit Euler

1. Solving nonlinear equations

We can have a single equation

$$
x-\cos x=0
$$

but in general we have systems

$$
\begin{aligned}
& 4 x^{2}-y^{2}=0 \\
& 4 x y^{2}-x=1
\end{aligned}
$$

Nonlinear equations may have

- no solution
- one solution
- any finite number of solutions
- infinitely many solutions

Iteration and convergence

Nonlinear equations are solved by iteration, computing a sequence $\left\{x^{[k]}\right\}$ of approximations to the root x^{*}

Definition The error is defined by $\mathrm{e}^{[k]}=x^{[k]}-x^{*}$

Definition The method converges if $\lim _{k \rightarrow \infty}\left\|e^{[k]}\right\|=0$

Definition The convergence is

- linear if $\left\|e^{[k+1]}\right\| \leq c \cdot\left\|e^{[k]}\right\|$ with $0<c<1$
- quadratic if $\left\|e^{[k+1]}\right\| \leq c \cdot\left\|e^{[k]}\right\|^{p}$ with $p=2$
- superlinear if $p>1$;
- cubic if $p=3$, etc.

2. Fixed points

Definition x is called a fixed point of the function g if

$$
x=g(x)
$$

Definition A function g is called contractive if

$$
\|g(x)-g(y)\| \leq L[g] \cdot\|x-y\|
$$

with $L[g]<1$ for all x, y in the domain of g

A contraction map reduces the distance between points

Fixed Point Theorem

Theorem Assume that g is Lipschitz continuous on the compact interval I. Further,

- If $g: I \rightarrow I$ there exists an $x^{*} \in I$ such that $x^{*}=g\left(x^{*}\right)$
- If in addition $L[g]<1$ on I, then x^{*} is unique, and

$$
x_{n+1}=g\left(x_{n}\right)
$$

converges to the fixed point x^{*} for all $x_{0} \in I$

Note Both conditions are absolutely essential!

Fixed Point Theorem

Existence and uniqueness

Left \quad No condition satisfied - no x^{*}
Center First condition satisfied - maybe multiple x^{*} Right Both conditions satisfied - unique x^{*}

Fixed Point Theorem

Left \quad No condition satisfied - no x^{*}
Center First condition satisfied - maybe multiple x^{*}
Right Both conditions satisfied - unique x^{*}
Exercise Only second condition satisfied - ?

Error bound in fixed point iteration

By the Lipschitz condition

$$
\begin{aligned}
x^{[k+1]}-x^{*} & =g\left(x^{[k]}\right)-g\left(x^{*}\right) \\
& =g\left(x^{[k]}\right)-g\left(x^{[k+1]}\right)+g\left(x^{[k+1]}\right)-g\left(x^{*}\right)
\end{aligned}
$$

we have

$$
\left\|x^{[k+1]}-x^{*}\right\| \leq L[g] \cdot\left\|x^{[k]}-x^{[k+1]}\right\|+L[g] \cdot\left\|x^{[k+1]}-x^{*}\right\|
$$

Theorem If $L[g]<1$, then the error in fixed point iteration is bounded by

$$
\left\|x^{[k+1]}-x^{*}\right\| \leq \frac{L[g]}{1-L[g]}\left\|x^{[k]}-x^{[k+1]}\right\|
$$

3. Newton's method

Newton's method solves $f(x)=0$ using repeated linearizations. Linearize at the point $\left(x^{[k]}, f\left(x^{[k]}\right)\right)$

Newton's method ...

Straight line equation

$$
y-f\left(x^{[k]}\right)=f^{\prime}\left(x^{[k]}\right) \cdot\left(x-x^{[k]}\right)
$$

Define $x=x^{[k+1]} \Rightarrow y=0$, so that

$$
-f\left(x^{[k]}\right)=f^{\prime}\left(x^{[k]}\right) \cdot\left(x^{[k+1]}-x^{[k]}\right)
$$

Solve for $x=x^{[k+1]}$, to get Newton's method

$$
x^{[k+1]}=x^{[k]}-\frac{f\left(x^{[k]}\right)}{f^{\prime}\left(x^{[k]}\right)}
$$

Newton's method ...

Systems of equations

Expand $f\left(x^{[k+1]}\right)$ in a Taylor series around $x^{[k]}$

$$
\begin{aligned}
f\left(x^{[k+1]}\right) & =f\left(x^{[k]}+\left(x^{[k+1]}-x^{[k]}\right)\right) \\
& \approx f\left(x^{[k]}\right)+f^{\prime}\left(x^{[k]}\right) \cdot\left(x^{[k+1]}-x^{[k]}\right):=0 \\
& \Rightarrow \\
x^{[k+1]} & =x^{[k]}-\left(f^{\prime}\left(x^{[k]}\right)\right)^{-1} f\left(x^{[k]}\right)
\end{aligned}
$$

Definition $f^{\prime}\left(x^{[k]}\right)$ is the Jacobian matrix of f, defined by

$$
f^{\prime}(x)=\left\{\frac{\partial f_{i}}{\partial x_{j}}\right\}
$$

Newton's method ...

Write Newton's method as a fixed point iteration $x^{[k+1]}=g\left(x^{[k]}\right)$ with iteration function

$$
g(x):=x-f(x) / f^{\prime}(x)
$$

Note Newton's method converges fast if $f^{\prime}\left(x^{*}\right) \neq 0$, because $g^{\prime}\left(x^{*}\right)=f\left(x^{*}\right) f^{\prime \prime}\left(x^{*}\right) / f^{\prime}\left(x^{*}\right)^{2}=0$

Expand $g(x)$ in a Taylor series around x^{*}

$$
\begin{aligned}
g\left(x^{[k]}\right)-g\left(x^{*}\right) & \approx g^{\prime}\left(x^{*}\right)\left(x^{[k]}-x^{*}\right)+\frac{g^{\prime \prime}\left(x^{*}\right)}{2}\left(x^{[k]}-x^{*}\right)^{2} \\
x^{[k+1]}-x^{*} & \approx \frac{g^{\prime \prime}\left(x^{*}\right)}{2}\left(x^{[k]}-x^{*}\right)^{2}
\end{aligned}
$$

Newton's method ...

Define the error by $\varepsilon^{[k]}=x^{[k]}-x^{*}$, then

$$
\varepsilon^{[k+1]} \sim\left(\varepsilon^{[k]}\right)^{2}
$$

Newton's method is quadratically convergent

Fixed point iterations are typically only linearly convergent

$$
\varepsilon^{[k+1]} \approx g^{\prime}\left(x^{*}\right) \cdot \varepsilon^{[k]}
$$

A problem with Newton's method is that starting values need to be close enough to the root

Convergence order and rate

Definition The convergence order is p with (asymptotic) error constant C_{p}, if

$$
0<\lim _{k \rightarrow \infty} \frac{\left\|\varepsilon^{[k+1]}\right\|}{\left\|\varepsilon^{[k]}\right\|^{p}}=C_{p}<\infty
$$

Special cases

$$
\begin{array}{lll}
p=1 & \text { Linear convergence } & \\
& \text { Fixed point iteration } & C_{p}=\left|f^{\prime}\left(x^{*}\right)\right| \\
p=2 & \begin{array}{l}
\text { Quadratic convergence }
\end{array} \\
& \text { Newton iteration } & C_{p}=\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|
\end{array}
$$

Application

As $y_{n+1}=y_{n}+h f\left(y_{n+1}\right)$ we need to solve an equation

$$
y=h f(y)+\psi
$$

Note All implicit methods lead to an equation of this form

Theorem Fixed point iterations converge if $L[h f]<1$, restricting the step size to $h<1 / L[f]$

Note For stiff equations $L[h f] \gg 1$ so fixed point iterations will not converge; it is necessary to use Newton's method

