Numerical Methods for Differential Equations Mathematical and Computational Tools

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

Contents

Part 1. Vector norms, matrix norms and logarithmic norms

- Vector norms
- Matrix norms
- Inner products
- The logarithmic norm
- Logarithmic norm properties
- Applications

Definition A vector norm $\|\cdot\| : \mathbb{X} \to \mathbb{R}$ satisfies

1.
$$||u|| \ge 0$$
; $||u|| = 0 \Leftrightarrow u = 0$
2. $||\alpha u|| = |\alpha| \cdot ||u||$
3. $||u|| - ||v|| \le ||u \pm v|| \le ||u|| + ||v||$

A norm generalizes the notion of *distance* between points

Vector norms

Definition The l^p norms are defined $||x||_p = \left(\sum_{k=1}^N |x_k|^p\right)^{1/p}$

Graph of the unit circle in \mathbb{R}^2 for I^p norms

Unit circles for p = 1, p = 2 (Euclidean norm), and $p = \infty$

Definition The operator norm associated with the vector norm $\|\cdot\|$ is defined by

$$|A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

For every vector norm there is a corresponding matrix norm

Note

1. $||Ax|| \le ||A|| \cdot ||x||$ 2. $||AB|| \le ||A|| \cdot ||B||$

Vector and matrix norms

Computation

Vector norm	Matrix norm
$\ x\ _1 = \sum_i x_i $	$\max_j \sum_i a_{ij} $
$ x _2 = \sqrt{\sum_i x_i ^2}$	$\sqrt{ ho[A^{ m H}A]}$
$\ x\ _{\infty} = \max_{i} x_{i} $	$\max_i \sum_j a_{ij} $

Definition The *spectral radius* of a matrix is defined by $\rho[A] = \max |\lambda[A]|$

Definition A bilinear form $\langle \cdot, \cdot \rangle$: $\mathbb{X} \times \mathbb{X} \to \mathbb{C}$ satisfying

1.
$$\langle u, u \rangle \ge 0$$
; $\langle u, u \rangle = 0 \Leftrightarrow u = 0$
2. $\langle u, v \rangle = \overline{\langle v, u \rangle}$
3. $\langle u, \alpha v \rangle = \alpha \langle u, v \rangle$
4. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$

An inner product generates the Euclidean norm $\langle u, u \rangle = ||u||^2$

An inner product generalizes the notion of scalar product

1. Scalar product in \mathbb{R}^m : $\langle u, v \rangle = u^T v$ with corresponding Euclidean vector norm $||u||_2^2 = \sum_{k=1}^N |u_k|^2$

2. General inner product in \mathbb{C}^m : $\langle u, v \rangle_G = u^H G v$ for any symmetric positive definite matrix G

3. Inner product in $L^2[0,1]: \langle u, v \rangle = \int_0^1 uv \, dx$ with corresponding L^2 norm of functions $||u||_{L^2}^2 = \int_0^1 |u|^2 \, dx$

Inner products and operator norms

Theorem Cauchy–Schwarz inequality

 $|\langle u,v\rangle| \leq \|u\| \cdot \|v\|$

Note the absolute value!

 $\Rightarrow \langle u,v\rangle \geq -\|u\|\cdot\|v\|$ on real vector spaces

Definition The operator norm associated with $\langle \cdot, \cdot \rangle$ is

$$\|A\|^2 = \sup_{x \neq 0} \frac{\langle Au, Au \rangle}{\|u\|^2}$$

Hence $\langle Au, Au \rangle \leq ||A||^2 ||u||^2$

Interlude

The problem of stability

Classical stability for ODEs

$$\dot{x} = Ax; \quad x(0) = x_0$$

Characterization Elementary stability conditions

- $\operatorname{Re} \lambda_k < 0 \quad (\Leftrightarrow e^{tA} \to 0 \text{ as } t \to \infty)$
- $\|e^{tA}\| \le C$ for all $t \ge 0$
- $d \|e^{tA}\|/dt \le 0$ ($\Leftrightarrow \|e^{tA}\| \le 1$ for all $t \ge 0$)

Time-dependent linear systems

Consider non-autonomus linear system

 $\dot{x} = A(t)x; \quad x(0) = x_0$

Stability is no longer characterized by eigenvalues

Even with constant eigenvalues in the left half plane the system can be unstable (Petrowski & Hoppenstedt)

Problem Under what conditions does ||x(t)|| remain bounded as $t \to \infty$?

The logarithmic norm

Differential equations

Note that for an inner product norm,

$$\frac{\mathrm{d}\|x\|^2}{\mathrm{d}t} = \frac{\mathrm{d}\langle x, x\rangle}{\mathrm{d}t} = 2\mathrm{Re}\langle x, \dot{x}\rangle$$

and that if $\dot{x} = Ax$, then

$$\operatorname{Re}\langle x,\dot{x}\rangle = \operatorname{Re}\langle x,Ax\rangle \leq \mu[A]\cdot\langle x,x\rangle$$

Definition The logarithmic norm is defined by

$$\mu[A] = \sup_{x \neq 0} \frac{\operatorname{Re}\langle x, Ax \rangle}{\|x\|^2}$$

4. The logarithmic norm $\mu[A]$

Definition For general matrix norms the logarithmic norm is defined by

$$\mu[A] = \lim_{h \to 0+} \frac{\|I + hA\| - 1}{h}$$

If $\dot{x} = Ax$, the following differential inequality holds $d\|x\|/dt \leq \mu[A] \cdot \|x\|$

Note The logarithmic norm may be *negative*. Solution bound $||x(t)|| \le e^{t\mu[A]} \cdot ||x(0)||$; $t \ge 0$

Why the logarithmic norm?

Crude estimate

$$\frac{\mathrm{d}\|\boldsymbol{x}\|}{\mathrm{d}t} \le \|\dot{\boldsymbol{x}}\| = \|\boldsymbol{A}\boldsymbol{x}\| \le \|\boldsymbol{A}\| \cdot \|\boldsymbol{x}\|$$

Exponentially growing bound

 $\|x(t)\| \le \mathrm{e}^{t\|\boldsymbol{A}\|} \cdot \|x(0)\|$

Note Because $\mu[A] \le ||A||$ we always have $e^{t\mu[A]} < e^{t||A||}$

Matrix and logarithmic norms

Computation

Vector norm	Matrix norm	Log norm $\mu[A]$
$\ x\ _1 = \sum_i x_i $	$\max_j \sum_i a_{ij} $	$\max_{j} [\operatorname{Re} a_{jj} + \sum_{i}^{\prime} a_{ij}]$
$\ x\ _2 = \sqrt{\sum_i x_i ^2}$	$\sqrt{ ho[A^{ m H}A]}$	$lpha[({\cal A}+{\cal A}^{ m H})/2]$
$\ x\ _{\infty} = \max_i x_i $	$\max_i \sum_j a_{ij} $	$\max_i [\operatorname{Re} a_{ii} + \sum_j' a_{ij}]$

Definition Spectral abscissa $\alpha[A] = \max \operatorname{Re} \lambda[A]$

5. Logarithmic norm properties

Theorem The logarithmic norm has the following basic properties, which hold for all matrices A and B

- 1. $\mu[A] \leq ||A||$
- 2. $\mu[A + zI] = \mu[A] + \operatorname{Re} z$
- 3. $\mu[\alpha A] = \alpha \, \mu[A], \qquad \alpha \ge 0$
- 4. $\mu[A + B] \le \mu[A] + \mu[B]$
- 5. $\|\mathbf{e}^{tA}\| \leq \mathbf{e}^{t\mu[A]}, \qquad t \geq 0$

Uniform Monotonicity Theorem

The condition $\mu[A] < 0$ is akin to A being *negative definite*. Then A has a bounded inverse. More precisely,

Theorem (Uniform Monotonicity Theorem) If $\mu[A] < 0$ then A is nonsingular and

 $\|A^{-1}\| \le -1/\mu[A]$

Proof (Here only for the Euclidean norm) Note that $\forall x$

 $x^{\mathrm{T}}Ax \leq \mu_2[A] \cdot x^{\mathrm{T}}x$

Suppose $\mu_2[A] < 0$. By the Cauchy-Schwarz inequality

$$-\|x\|_{2} \cdot \|Ax\|_{2} \le x^{\mathrm{T}}Ax \le \mu_{2}[A] \cdot \|x\|_{2}^{2} < 0$$

for all $x \neq 0$. Hence $Ax \neq 0$, so A^{-1} exists! Put $x = A^{-1}y$ and rearrange to get

$$-\|y\|_{2} \leq \mu_{2}[A] \cdot \|A^{-1}y\|_{2} \quad \Rightarrow \quad \frac{\|A^{-1}y\|_{2}}{\|y\|_{2}} \leq -\frac{1}{\mu_{2}[A]}$$

Take maximum over y to see that $||A^{-1}||_2 \leq -1/\mu_2[A]$ \Box

Application

The convergence of Explicit Euler

Consider Explicit Euler for $\dot{x} = Ax + f(t)$

$$x_{n+1} = x_n + hAx_n + hf(t_n)$$

$$x(t_{n+1}) = x(t_n) + hAx(t_n) + hf(t_n) - h^2r_n$$

Global error $e_n = x_n - x(t_n)$

$$e_{n+1} = e_n + hAe_n + h^2r_n \quad \Rightarrow$$

 $||e_{n+1}|| \le ||e_n|| + h||A|| \cdot ||e_n|| + ||h^2 r_n||$

Classical convergence analysis

Recall (Chapter 1, p.15)

Lemma If $u_{n+1} \leq (1 + h\mu)u_n + ch^2$ with $u_0 = 0$, then

$$u_n \leq rac{ch}{\mu}[(1+h\mu)^n-1] \leq ch \, rac{\mathrm{e}^{\mu t_n}-1}{\mu}$$

if $\ h\mu \geq 0.$ In case $\ -1 < h\mu < 0,$ we have

$$\max_n u_n \leq -\frac{ch}{\mu}$$

Classical convergence analysis ...

$$||e_{n+1}|| \le (1+h||A||) \cdot ||e_n|| + ||h^2 r_n||$$

The lemma applies with $\mu = ||A||$ and $c = \max_n ||r_n||$

$$||e_n|| \le h \max_n ||r_n|| \frac{\mathrm{e}^{||A||t_n} - 1}{||A||}$$

"Convergence," but *exponentially growing bound* (Hopeless!)

Modern convergence analysis

Explicit Euler for $\dot{x} = Ax + f(t)$

$$x_{n+1} = x_n + hAx_n + hf(t_n)$$

$$x(t_{n+1}) = x(t_n) + hAx(t_n) + hf(t_n) - h^2r_n$$

Global error $e_n = x_n - x(t_n)$

$$e_{n+1} = e_n + hAe_n + h^2r_n = (I + hA)e_n + h^2r_n \quad \Rightarrow$$

 $||e_{n+1}|| \le ||I + hA|| \cdot ||e_n|| + ||h^2 r_n||$

Modern convergence analysis ...

Note that, using the log norm,

$$\mu[A] = \lim_{h \to 0+} \frac{\|I + hA\| - 1}{h}$$

we have

$$||I + hA|| = 1 + h\mu[A] + O(h^2)$$

as $h||A|| \rightarrow 0$

Modern convergence analysis ...

Now the lemma applies with $\mu \approx \mu[A]$ and $c = \max_n \|r_n\|$

$$\|e_n\| \lesssim h \max_n \|r_n\| \frac{\mathrm{e}^{\mu[A]t_n} - 1}{\mu[A]}; \quad \mu[A] \ge 0$$

and in case $-1 < h\mu[A] < 0$ we have

$$\max_{n} \|e_{n}\| \lesssim -\frac{h \max_{n} \|r_{n}\|}{\mu[A]}$$

Convergence, with *"realistic" error bound*, as $\mu[A] \leq ||A||$

Application

Solvability in Implicit Euler

Consider Implicit Euler for $\dot{x} = Ax + f(t)$

$$x_{n+1} = x_n + hAx_{n+1} + hf(t_{n+1})$$

x(t_{n+1}) = x(t_n) + hAx(t_{n+1}) + hf(t_{n+1}) - h^2r_n

When is it possible to solve $(I - hA)x_{n+1} = x_n + hf(t_{n+1})?$

Uniform monotonicity theorem guarantees unique solution if

$$\mu[hA - I] < 0 \Leftrightarrow \mu[hA] < 1$$

Easily satisfied, even without bound on ||hA||

Part 2. Interpolation

- Polynomial interpolation
- Lagrange interpolation
- Basis functions
- Numerical integration

1. What is interpolation?

Interpolation is "the opposite" of discretization

Problem Given a discrete grid function (a vector) $F = \{f_j\}_0^N$ defined on a grid $\{x_j\}_0^N$, find a continuous function f(x) with the *interpolating property* $f(x_j) = f_j$

Compare digital-to-analog conversion

Typically the function *f* is sought among polynomials or among trigonometric functions (Fourier analysis)

Naïve polynomial interpolation

$$P_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

n+1 coefficients, n+1 interpolation conditions $P_n(x_j) = f_j$

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{pmatrix}$$

Vandermonde matrix, nonsingular if $x_i \neq x_j$, unique solution

Tedious and often ill-conditioned approach

2. Lagrange interpolation

Basis functions

On a grid $\{x_0, x_1, \dots, x_k\}$ construct a degree k polynomial basis

$\{\varphi_i(x)\}_{i=0}^k$

such that $\varphi_i(x_j) = \delta_{ij}$ (the Kronecker delta)

Theorem If the values $f_j = f(x_j)$ are known for the function f(x), then the degree k polynomial

$$P(x) = \sum_{j=0}^{k} \varphi_j(x) f_j$$

interpolates f(x) on the grid:

 $P(x_j) = f_j$ with $P(x) \approx f(x)$ for all x

3. Basis functions

2nd degree Lagrange

$$\varphi_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

Table of Lagrange basis polynomials

$$P_{2}(x) = f_{0} \varphi_{0}(x) + f_{1} \varphi_{1}(x) + f_{2} \varphi_{2}(x)$$

$$P_2(x) = f_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

4. Numerical integration

Numerical integration is the approximation of definite integrals

$$I(f) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Problem For many functions *no primitive function is known*. The integral cannot be calculated analytically

Note For *polynomials* an integral $\int_a^b P(x) dx$ can always be computed analytically

Idea Approximate $f(x) \approx P(x)$ and compute $\int_a^b P(x) dx$

Numerical integration...

Approximate $f \approx P$ and substitute "infinite sum" by a finite sum

The integrand is sampled at a finite number of points

$$I(f) = \sum_{i=1}^{n} w_i f(x_i) + \mathbf{R}_n$$

Here $R_n = I(f) - \sum_{i=0}^n w_i f(x_i)$ is the *integration error*

Numerical integration method

$$I(f) \approx \sum_{i=0}^{n} w_i f(x_i)$$

Numerical integration...

Approximate using Lagrange 2nd degree interpolant

$$\int_a^b f(x) \, \mathrm{d}x \approx \int_a^b \sum_{i=0}^2 f(x_i) \varphi_i(x) \, \mathrm{d}x = \sum_{i=0}^2 f(x_i) \int_a^b \varphi_i(x) \, \mathrm{d}x$$

Weights $w_i = \int_a^b \varphi_i(x) dx$ can be computed once and for all

Numerical integration method

$$\int_a^b f(x) \, \mathrm{d}x \approx \sum_{i=0}^2 w_i f(x_i)$$

Example

Part 3. Nonlinear equations

- Solving nonlinear equations
- Fixed points
- Newton's method
- Application. Newton vs Fixed point in Implicit Euler

1. Solving nonlinear equations

We can have a single equation

 $x - \cos x = 0$

but in general we have systems

$$4x^2 - y^2 = 0$$
$$4xy^2 - x = 1$$

Nonlinear equations may have

- no solution
- one solution
- any finite number of solutions
- infinitely many solutions

f(x) = 0

f(x)=0

Nonlinear equations are solved by *iteration*, computing a *sequence* $\{x^{[k]}\}\$ of approximations to the root x^*

Definition The error is defined by $e^{[k]} = x^{[k]} - x^*$

Definition The method converges if $\lim_{k\to\infty} ||e^{[k]}|| = 0$

Definition The convergence is

- *linear* if $||e^{[k+1]}|| \le c \cdot ||e^{[k]}||$ with 0 < c < 1
- quadratic if $||e^{[k+1]}|| \le c \cdot ||e^{[k]}||^p$ with p = 2
- superlinear if p > 1;
- *cubic* if p = 3, etc.

2. Fixed points

Definition *x* is called a fixed point of the function *g* if

x = g(x)

Definition A function g is called contractive if $\|g(x) - g(y)\| \le L[g] \cdot \|x - y\|$

with L[g] < 1 for all x, y in the domain of g

A contraction map reduces the distance between points

Theorem Assume that g is Lipschitz continuous on the compact interval 1. Further,

- If $g: I \rightarrow I$ there exists an $x^* \in I$ such that $x^* = g(x^*)$
- If in addition L[g] < 1 on I, then x^* is unique, and

 $x_{n+1} = g(x_n)$

converges to the fixed point x^* for all $x_0 \in I$

Note Both conditions are absolutely essential!

Fixed Point Theorem

Existence and uniqueness

LeftNo condition satisfied - no x*CenterFirst condition satisfied - maybe multiple x*RightBoth conditions satisfied - unique x*

Fixed Point Theorem

Existence and uniqueness

Left	No condition satisfied – no x*
Center	First condition satisfied – maybe multiple x^*
Right	Both conditions satisfied – unique x^*
Exercise	Only second condition satisfied – ?

Error bound in fixed point iteration

By the Lipschitz condition

$$egin{aligned} &x^{[k+1]} - x^* = g(x^{[k]}) - g(x^*) \ &= g(x^{[k]}) - g(x^{[k+1]}) + g(x^{[k+1]}) - g(x^*) \end{aligned}$$

we have

$$||x^{[k+1]} - x^*|| \le L[g] \cdot ||x^{[k]} - x^{[k+1]}|| + L[g] \cdot ||x^{[k+1]} - x^*||$$

Theorem If L[g] < 1, then the error in fixed point iteration is bounded by

$$||x^{[k+1]} - x^*|| \le \frac{L[g]}{1 - L[g]} ||x^{[k]} - x^{[k+1]}||$$

3. Newton's method

Newton's method solves f(x) = 0 using repeated linearizations. Linearize at the point $(x^{[k]}, f(x^{[k]}))$

Straight line equation

$$y - f(x^{[k]}) = f'(x^{[k]}) \cdot (x - x^{[k]})$$

Define
$$x = x^{[k+1]} \Rightarrow y = 0$$
, so that
 $-f(x^{[k]}) = f'(x^{[k]}) \cdot (x^{[k+1]} - x^{[k]})$

Solve for $x = x^{[k+1]}$, to get *Newton's method* $x^{[k+1]} = x^{[k]} - \frac{f(x^{[k]})}{f'(x^{[k]})}$

Systems of equations

Expand $f(x^{[k+1]})$ in a Taylor series around $x^{[k]}$

$$f(x^{[k+1]}) = f(x^{[k]} + (x^{[k+1]} - x^{[k]}))$$

$$\approx f(x^{[k]}) + f'(x^{[k]}) \cdot (x^{[k+1]} - x^{[k]}) := 0$$

$$\Rightarrow$$

$$x^{[k+1]} = x^{[k]} - (f'(x^{[k]}))^{-1} f(x^{[k]})$$

Definition $f'(x^{[k]})$ is the *Jacobian matrix* of f, defined by

$$f'(x) = \left\{\frac{\partial f_i}{\partial x_j}\right\}$$

Convergence

Write Newton's method as a fixed point iteration $x^{[k+1]} = g(x^{[k]})$ with iteration function

g(x) := x - f(x)/f'(x)

Note Newton's method *converges fast if* $f'(x^*) \neq 0$, because $g'(x^*) = f(x^*)f''(x^*)/f'(x^*)^2 = 0$

Expand g(x) in a Taylor series around x^*

$$g(x^{[k]}) - g(x^*) \approx g'(x^*)(x^{[k]} - x^*) + \frac{g''(x^*)}{2}(x^{[k]} - x^*)^2$$
$$x^{[k+1]} - x^* \approx \frac{g''(x^*)}{2}(x^{[k]} - x^*)^2$$

Define the error by $\varepsilon^{[k]} = x^{[k]} - x^*$, then

 $\varepsilon^{[k+1]} \sim \left(\varepsilon^{[k]}\right)^2$

Newton's method is *quadratically convergent*

Fixed point iterations are typically only linearly convergent

 $\varepsilon^{[k+1]} \approx g'(x^*) \cdot \varepsilon^{[k]}$

A problem with Newton's method is that *starting values need to be close enough* to the root

Convergence order and rate

Definition The convergence order is p with (asymptotic) error constant C_p , if

$$0 < \lim_{k \to \infty} \frac{\|\varepsilon^{[k+1]}\|}{\|\varepsilon^{[k]}\|^{p}} = C_{p} < \infty$$

Special cases

p = 1 Linear convergence Fixed point iteration

$$C_p = |f'(x^*)|$$

p = 2 Quadratic convergence Newton iteration $C_p = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$

Application Newton vs Fixed point in Implicit Euler

As $y_{n+1} = y_n + hf(y_{n+1})$ we need to solve an equation

 $y = hf(y) + \psi$

Note All implicit methods lead to an equation of this form

Theorem Fixed point iterations converge if L[hf] < 1, restricting the step size to h < 1/L[f]

Note For stiff equations $L[hf] \gg 1$ so fixed point iterations will not converge; it is *necessary to use Newton's method*