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1. Vector norms

Definition A vector norm || - || : X — R satisfies
1. Jju|| > 0; lu| =0 < u=0
2. o]l = |af - [|u]

3 [lull = vl < flu = vi[ < flull + lv]

A norm generalizes the notion of distance between points
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Vector norms

N 1/p
Definition The /P norms are defined ||x|, = (Z xk|p)
k=1

Graph of the unit circle in R? for /P norms

o.s - o.s /\ B o.5 -

Unit circles for p=1, p=2 (Euclidean norm), and p = oo
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2. Matrix norms

Definition The operator norm associated with the vector norm

| - || is defined by

A
Al = sup 12X

x#0 H H

For every vector norm there is a corresponding matrix norm

Note
L [JAx| < [|A][ - {1l
2. |AB| < [IA]l - Bl
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Vector and matrix norms Computation

Vector norm Matrix norm

[Ixlle =225 il max; >, |aj|
Ixlle = /32 %l | V/pl[ATA]

1|l = max;|x;| | max; Zj |ajj|

Definition The spectral radius of a matrix is defined by

plA] = max |A[A]|
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3.

Inner products

Definition A bilinear form (-,-) : X x X — C satisfying

1. (u,u) > (uyuy=0 < u=0
2. (u,v) = < u)
3. (u,av) = a(u,v)
4. (u,v+w) = (u,v)+ (u,w)
An inner product generates the Euclidean norm {(u, u) = ||ul|?

An inner product generalizes the notion of scalar product
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Inner products Examples

1. Scalar product in R™: (u,v) =u'v

N

with corresponding Euclidean vector norm ||ul[3 = Z |uy |2
k=1

2. General inner product in C™: (u,v)s = u"'Gv for any
symmetric positive definite matrix G

3. Inner product in  L2[0,1]: (u,v) = fol uv dx

with corresponding L? norm of functions |[|u[|7, = / lul? dx
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Inner products and operator norms

Theorem Cauchy—Schwarz inequality
[{u, ) < lulf- [ v]]

Note the absolute value!
= (u,v) > —||ul| - ||v]| on real vector spaces

Definition The operator norm associated with (-,-) is

(Au, Au)

IA][? = sup
x#o  |lulf?

Hence (Au, Au) < || A|?||ull?
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Interlude The problem of stability

Classical stability for ODEs

x=Ax; x(0)=xo

Characterization Elementary stability conditions

e Re)\y <0 (& e —0ast— o0)
o |leA| < C forallt>0

o dlle®|/dt <0 (& [le”] <1 for all t > 0)
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Time-dependent linear systems

Consider non-autonomus linear system

x=A(t)x; x(0)=xo

Stability is no longer characterized by eigenvalues

Even with constant eigenvalues in the left half plane the system
can be unstable (Petrowski & Hoppenstedt)

Problem Under what conditions does ||x(t)|| remain bounded as
t—o0?
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The logarithmic norm Differential equations

Note that for an inner product norm,

dlxI? _ d(x,x)

T i - 2Re(x, x)

and that if x = Ax, then

Re (x, x) = Re (x, Ax) < p[A] - (x, x)

Definition The logarithmic norm is defined by

Re(x, Ax)
ulA] = sup HobeAX)
<0 IxII?

X

12/48



4. The logarithmic norm p[A]

Definition For general matrix norms the logarithmic norm is
defined by

.1+ hA|| -1
Al= lim ———
HlAl hL'Bl h

If x = Ax, the following differential inequality holds

dlfx|l/dt < plA] - Ix]]

Note The logarithmic norm may be negative. Solution bound

Ix(£)]| < ™A x(0)]; t>0
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Why the logarithmic norm?

Crude estimate

dlixl

g S IXIE= A< (AL - flx]

Exponentially growing bound

Ix(2)]] < AT [1x(0))]

Note Because u[A] < ||Al| we always have

otHlAl < GtllAl
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Matrix and logarithmic norms Computation

Vector norm Matrix norm | Log norm p[A]

Ix[lx = >2; Ixil max; >, [aj| | maxj[Re a; + Y |a]]

Ixlla = /32 1% | Vo[AHAL | o[(A+ AT)/2]

[x[[oc = max; [x;| | max; 3 ;[aj| | maxj[Reaj + Zj |ajj]

Definition Spectral abscissa a[A] = maxRe A[A]
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5. Logarithmic norm properties

Theorem The logarithmic norm has the following basic
properties, which hold for all matrices A and B

—

- WA < [IA]

N

. u[A+ zl] = u[A] + Rez
3. plaA] = aplA], a>0

4. u[A+ Bl < p[A] + pu[B]

o1

et < et t>0
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Uniform Monotonicity Theorem
The condition p[A] < 0 is akin to A being negative definite. Then
A has a bounded inverse. More precisely,

Theorem (Uniform Monotonicity Theorem) If u[A] < 0 then A is
nonsingular and

IATH] < —1/ulA]

Proof (Here only for the Euclidean norm) Note that Vx

xTAx < pafA] - xTx
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Proof ...

Suppose 2[A] < 0. By the Cauchy-Schwarz inequality

—[Ix]l2 - [Ax]l2 < xTAx < pofA] - |Ix]13 <0

for all x # 0. Hence Ax # 0, so A~! exists! Put x = A~'y and
rearrange to get

A7yl 1
M = el

—llyll2 < pelA]- [A ]2 =

Take maximum over y to see that ||[A7 Yo < —1/us[A] O
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Application The convergence of Explicit Euler

Consider Explicit Euler for x = Ax + f(t)

Xn+1 = Xn + hAX, + hf(tp)
X(tar1) = x(tn) + hAX(t,) + hf(t,) — h°r,

Global error e, = x, — x(t,)

ent+1 = €n + hAe, + h2r,7 =

lent1ll < lleall + AlIAI - lleall + [[h*rall
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Classical convergence analysis

Recall (Chapter 1, p.15)

Lemma If wu,i1 < (14 hp)u, + ch®> with ug = 0, then

eftn — 1

h
Un < (1 + hp)" — 1] < ch
1

if hp>0. Incase —1 < hu <0, we have

ch
max u, < — —
n 2
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Classical convergence analysis . ..

lens1ll < (1 + AIAI) - leall + [1h?ral

The lemma applies with 1 = ||A|| and ¢ = max, ||r,||

lAlltn — 1

en|| < h _—
H n|| — m,?xHr,,H HAH

“Convergence,” but exponentially growing bound

(Hopeless!)
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Modern convergence analysis

Explicit Euler for x = Ax + f(t)

Xn+1 = Xn + hAX, + hf(tp)
X(tar1) = x(tn) + hAX(t,) + hf(t,) — h°r,

Global error e, = x, — x(t,)

eni1 = en + hAe, + h°r, = (I + hA)e, + h?r, =

lensall < 11+ hAI| - lleall + || rall
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Modern convergence analysis . ..

Note that, using the log norm,

. |I1+hA| -1
Al = | R
HAl th(L h

we have

|1+ hA| = 1+ hu[A] + O(h?)

as h||/A|| — 0
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Modern convergence analysis . ..

Now the lemma applies with 1~ p[A] and ¢ = max, ||r,]|

1At 1
leall  hmax|iral| =

W' n[A] =0

and in case —1 < hu[A] <0 we have

hmaxp, ||rs]]
1[A]

max [[e;|| 5 —
n

Convergence, with “realistic” error bound, as u[A] < ||A||

24/48



Application Solvability in Implicit Euler

Consider Implicit Euler for x = Ax + f(t)

Xn41 = Xp + hAxny1 + hf (tns1)
X(tns1) = x(tn) + hAX(tni1) + hf(tns1) — Hry

When is it possible to solve (/ — hA)xp+1 = x, + hf (th41)?
Uniform monotonicity theorem guarantees unique solution if

plhA—11 <0 &« plhAl <1

Easily satisfied, even without bound on || hA||
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1. What is interpolation?

Interpolation is “the opposite” of discretization

Problem Given a discrete grid function (a vector) F = {6}(’)\’
defined on a grid {x;}Y, find a continuous function f(x) with the
interpolating property f(x;) = f;

Compare digital-to—analog conversion

Typically the function f is sought among polynomials or among
trigonometric functions (Fourier analysis)
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Naive polynomial interpolation
P.(x) = cg + cix 4+ &x® 4+ - - + cpx”

n+ 1 coefficients, n + 1 interpolation conditions P,(x;) = f;

1 xp Xg oo Xy o)) fo

1 xg X12 cooo x| 1 fi
2 n

1 xp x5 ... X[ Ch fn

Vandermonde matrix, nonsingular if x; # x;, unique solution

Tedious and often ill-conditioned approach

28/48



2. Lagrange interpolation Basis functions

On a grid {xo, x1, ..., Xk} construct a degree k polynomial basis

{pit)} o

such that ¢;(x;) = J;; (the Kronecker delta)

Theorem [f the values f; = f(x;) are known for the function f(x),
then the degree k polynomial

interpolates f(x) on the grid:

P(x;j) = f; with P(x)~ f(x) forall x
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3. Basis functions 2nd degree Lagrange

(x —x0)(x — x2)
x1 —xo0)(x1 — x2)

p1(x) = (

0.8

0.6

0.4

0.2r

0.5 1 1.5 2 25 3 35
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Table of Lagrange basis polynomials

x| o1 w2 £ P
X0 1 0 0 fE) fE)
X1 0 1 0 fl fl
xp | O 0 1 Hh hH

Pa(x) = fo po(x) + fip1(x) + f2 p2(x)

(x — x1)(x — x2) (x — x0)(x — x2) (x — x0)(x — x1)
(X0 — x1)(x0 — x2) h (31— x0)(xa — ><2)+f2 (x2 — x0)(x2 — x1)

P2(X) = fo
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4. Numerical integration

Numerical integration is the approximation of definite integrals

Problem For many functions no primitive function is known. The
integral cannot be calculated analytically

Note For polynomials an integral fab P(x)dx can always be
computed analytically

Idea Approximate f(x) ~ P(x) and compute fab P(x) dx
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Numerical integration. ..

Approximate f &~ P and substitute “infinite sum” by a finite sum

The integrand is sampled at a finite number of points
n
I(F) = wif(x) + Ra
i=1
Here R, = I(f) — Y., wif(x;) is the integration error
Numerical integration method

I(f) =~ Z w;f(x;)
i=0
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Numerical integration. .. Example

Approximate using Lagrange 2nd degree interpolant

2

/abf(x)dx%/abzf(x, )ei(x ifxl / o1(x) dx

i=0 i=
Weights w; = f ©i(x) dx can be computed once and for all

Numerical integration method

/ab f(x)dx ~ w;f (x;)

1M
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1. Solving nonlinear equations f(x)=0

We can have a single equation

x —cosx =0
but in general we have systems

4x° — y2 =0

4xy2—X:1

Nonlinear equations may have

no solution

one solution

any finite number of solutions

infinitely many solutions
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lteration and convergence f(x)

Nonlinear equations are solved by iteration, computing a sequence
{xIK} " of approximations to the root x*

*

Definition The error is defined by elkl = xIKI — x
Definition The method converges if lim;_, . ||eld| =0

Definition The convergence is
o linear if el <c-|eld|| with 0<c<1
e quadratic if el < c-|eld||P with p=2
e superlinear if p>1;
e cubic if p =3, etc.
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2. Fixed points

Definition x is called a fixed point of the function g if

x = g(x)

Definition A function g is called contractive if

18(x) — eIl < Llgl - lIx =yl

with L[g| <1 for all x,y in the domain of g

A contraction map reduces the distance between points
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Fixed Point Theorem

Theorem Assume that g is Lipschitz continuous on the compact
interval |. Further,

o Ifg: | — | there exists an x* € | such that x* = g(x")

e Ifin addition L[g] < 1 on I, then x* is unique, and

Xnt1 = &(Xn)

converges to the fixed point x* for all xg € |

Note Both conditions are absolutely essential!
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Fixed Point Theorem Existence and uniqueness

Left No condition satisfied — no x*

Center  First condition satisfied — maybe multiple x*
Right Both conditions satisfied — unique x*
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Fixed Point Theorem

o.o

o.s

o.a

o.a

o.=

Existence and uniqueness

o.o o.o

o.s o.s

o.7

o.a o.a

o.a o.a

o.2 oz

T R R R Y N |
4 ) n

Left
Center
Right
Exercise

No condition satisfied — no x*

First condition satisfied — maybe multiple x*
Both conditions satisfied — unique x*

Only second condition satisfied — 7
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Error bound in fixed point iteration

By the Lipschitz condition
X[k+1] BV g(X[k]) - g(X*)
= g(xM) — (1) 4 g(xIF ) — g(x*)
we have

I — o < gl - [ — Xl L] - T

Theorem [f L[g] < 1, then the error in fixed point iteration is
bounded by
HX[k—i-l _x || [g] ”X[k] - X[k+1] H
~1-L[g]
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3. Newton’s method

Newton's method solves f(x) = 0 using repeated linearizations.
k

Linearize at the point (x!K], £(xl

0.8

0.6

041

021
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Newton's method . ..

Straight line equation

y = F(xH) = £/(xH) - (x - x4

Define x = xkt11 =y =0, so that
—F(xKy = £/ (K (TR TR

k+1]

Solve for x = x| , to get Newton's method

[K]
L) ok )
f/(x[K)
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Newton's method . .. Systems of equations

Expand f(x!¥*1]) in a Taylor series around x!X]

k) = (K (kT kIKDY)

(Y 4 (xR (D xIKy =

~
~

sk — K] (f’(X[k]))_lf(X[k])
Definition f'(x[X) is the Jacobian matrix of f, defined by
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Newton's method ... Convergence

Write Newton's method as a fixed point iteration x[¥*1 = g(xIk])
with iteration function

8(x) == x — f(x)/f'(x)

Note Newton's method converges fast if f'(x*) # 0, because

g'(x*) = F(x")f"(x*) /' (x*)? =

Expand g(x) in a Taylor series around x*

g(X[k]) - g(x*) ~ /(X*)(X[k] o X*) + g//(X*)(X[k] - X*)2

X[k+1] X g”(X*) (X[k] B X*)Z

0

Q
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Newton's method ... Convergence

Define the error by 4l = xIKI — x* then

k] (g[kl)2

Newton's method is quadratically convergent

Fixed point iterations are typically only linearly convergent

Sk [k]

g'(x")-e

A problem with Newton's method is that starting values need to
be close enough to the root
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Convergence order and rate

Definition The convergence order is p with (asymptotic) error
constant Cp, if

e+

0< lim

HWWW|:Q<W

Special cases

p =1 Linear convergence
Fixed point iteration Co = | (x*)]

p =2 Quadratic convergence

3 . f//
Newton iteration Cp = ‘2f, )
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Application Newton vs Fixed point in Implicit Euler

As Vo111 =yn+ hf(yn+1) we need to solve an equation

y = hf(y) +

Note All implicit methods lead to an equation of this form

Theorem Fixed point iterations converge if L[hf| < 1, restricting
the step size to h < 1/L[f]

Note For stiff equations L[hf] > 1 so fixed point iterations will
not converge; it is necessary to use Newton's method
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