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1. Vector norms

Definition A vector norm ‖ · ‖ : X→ R satisfies

1. ‖u‖ ≥ 0 ; ‖u‖ = 0 ⇔ u = 0

2. ‖αu‖ = |α| · ‖u‖
3. ‖u‖ − ‖v‖ ≤ ‖u ± v‖ ≤ ‖u‖+ ‖v‖

A norm generalizes the notion of distance between points
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Vector norms

Definition The lp norms are defined ‖x‖p =

(
N∑

k=1

|xk |p
)1/p

Graph of the unit circle in R2 for lp norms
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2. Matrix norms

Definition The operator norm associated with the vector norm
‖ · ‖ is defined by

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

For every vector norm there is a corresponding matrix norm

Note

1. ‖Ax‖ ≤ ‖A‖ · ‖x‖
2. ‖AB‖ ≤ ‖A‖ · ‖B‖
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Vector and matrix norms Computation

Vector norm Matrix norm

‖x‖1 =
∑

i |xi | maxj
∑

i |aij |

‖x‖2 =
√∑

i |xi |2
√
ρ[AHA]

‖x‖∞ = maxi |xi | maxi
∑

j |aij |

Definition The spectral radius of a matrix is defined by

ρ[A] = max |λ[A]|
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3. Inner products

Definition A bilinear form 〈·, ·〉 : X× X→ C satisfying

1. 〈u, u〉 ≥ 0 ; 〈u, u〉 = 0 ⇔ u = 0

2. 〈u, v〉 = 〈v , u〉
3. 〈u, αv〉 = α〈u, v〉
4. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

An inner product generates the Euclidean norm 〈u, u〉 = ‖u‖2

An inner product generalizes the notion of scalar product
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Inner products Examples

1. Scalar product in Rm : 〈u, v〉 = uTv

with corresponding Euclidean vector norm ‖u‖22 =
N∑

k=1

|uk |2

2. General inner product in Cm : 〈u, v〉G = uHGv for any
symmetric positive definite matrix G

3. Inner product in L2[0, 1] : 〈u, v〉 =
∫ 1
0 uv dx

with corresponding L2 norm of functions ‖u‖2L2 =

∫ 1

0
|u|2 dx
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Inner products and operator norms

Theorem Cauchy–Schwarz inequality

|〈u, v〉| ≤ ‖u‖ · ‖v‖

Note the absolute value!
⇒ 〈u, v〉 ≥ −‖u‖ · ‖v‖ on real vector spaces

Definition The operator norm associated with 〈·, ·〉 is

‖A‖2 = sup
x 6=0

〈Au,Au〉
‖u‖2

Hence 〈Au,Au〉 ≤ ‖A‖2‖u‖2
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Interlude The problem of stability

Classical stability for ODEs

ẋ = Ax ; x(0) = x0

Characterization Elementary stability conditions

• Re λk < 0 (⇔ etA → 0 as t →∞)

• ‖etA‖ ≤ C for all t ≥ 0

• d‖etA‖/dt ≤ 0 (⇔ ‖etA‖ ≤ 1 for all t ≥ 0)
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Time-dependent linear systems

Consider non-autonomus linear system

ẋ = A(t)x ; x(0) = x0

Stability is no longer characterized by eigenvalues

Even with constant eigenvalues in the left half plane the system
can be unstable (Petrowski & Hoppenstedt)

Problem Under what conditions does ‖x(t)‖ remain bounded as
t →∞?
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The logarithmic norm Differential equations

Note that for an inner product norm,

d‖x‖2

dt
=

d〈x , x〉
dt

= 2Re〈x , ẋ〉

and that if ẋ = Ax , then

Re 〈x , ẋ〉 = Re 〈x ,Ax〉 ≤ µ[A] · 〈x , x〉

Definition The logarithmic norm is defined by

µ[A] = sup
x 6=0

Re〈x ,Ax〉
‖x‖2
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4. The logarithmic norm µ[A]

Definition For general matrix norms the logarithmic norm is
defined by

µ[A] = lim
h→0+

‖I + hA‖ − 1

h

If ẋ = Ax , the following differential inequality holds

d‖x‖/dt ≤ µ[A] · ‖x‖

Note The logarithmic norm may be negative. Solution bound

‖x(t)‖ ≤ etµ[A] · ‖x(0)‖ ; t ≥ 0
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Why the logarithmic norm?

Crude estimate

d‖x‖
dt
≤ ‖ẋ‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖

Exponentially growing bound

‖x(t)‖ ≤ et‖A‖ · ‖x(0)‖

Note Because µ[A] ≤ ‖A‖ we always have

etµ[A] ≤ et‖A‖
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Matrix and logarithmic norms Computation

Vector norm Matrix norm Log norm µ[A]

‖x‖1 =
∑

i |xi | maxj
∑

i |aij | maxj [Re ajj +
∑′

i |aij |]

‖x‖2 =
√∑

i |xi |2
√
ρ[AHA] α[(A + AH)/2]

‖x‖∞ = maxi |xi | maxi
∑

j |aij | maxi [Re aii +
∑′

j |aij |]

Definition Spectral abscissa α[A] = maxReλ[A]
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5. Logarithmic norm properties

Theorem The logarithmic norm has the following basic
properties, which hold for all matrices A and B

1. µ[A] ≤ ‖A‖

2. µ[A + zI ] = µ[A] + Re z

3. µ[αA] = αµ[A], α ≥ 0

4. µ[A + B] ≤ µ[A] + µ[B]

5. ‖etA‖ ≤ etµ[A], t ≥ 0
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Uniform Monotonicity Theorem

The condition µ[A] < 0 is akin to A being negative definite. Then
A has a bounded inverse. More precisely,

Theorem (Uniform Monotonicity Theorem) If µ[A] < 0 then A is
nonsingular and

‖A−1‖ ≤ −1/µ[A]

Proof (Here only for the Euclidean norm) Note that ∀x

xTAx ≤ µ2[A] · xTx
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Proof . . .

Suppose µ2[A] < 0 . By the Cauchy-Schwarz inequality

−‖x‖2 · ‖Ax‖2 ≤ xTAx ≤ µ2[A] · ‖x‖22 < 0

for all x 6= 0. Hence Ax 6= 0, so A−1 exists! Put x = A−1y and
rearrange to get

−‖y‖2 ≤ µ2[A] · ‖A−1y‖2 ⇒ ‖A−1y‖2
‖y‖2

≤ − 1

µ2[A]

Take maximum over y to see that ‖A−1‖2 ≤ −1/µ2[A] �
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Application The convergence of Explicit Euler

Consider Explicit Euler for ẋ = Ax + f (t)

xn+1 = xn + hAxn + hf (tn)

x(tn+1) = x(tn) + hAx(tn) + hf (tn)− h2rn

Global error en = xn − x(tn)

en+1 = en + hAen + h2rn ⇒

‖en+1‖ ≤ ‖en‖+ h‖A‖ · ‖en‖+ ‖h2rn‖
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Classical convergence analysis

Recall (Chapter 1, p.15)

Lemma If un+1 ≤ (1 + hµ)un + ch2 with u0 = 0, then

un ≤
ch

µ
[(1 + hµ)n − 1] ≤ ch

eµtn − 1

µ

if hµ ≥ 0. In case −1 < hµ < 0, we have

max
n

un ≤ −
ch

µ
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Classical convergence analysis . . .

‖en+1‖ ≤ (1 + h‖A‖) · ‖en‖+ ‖h2rn‖

The lemma applies with µ = ‖A‖ and c = maxn ‖rn‖

‖en‖ ≤ hmax
n
‖rn‖

e‖A‖tn − 1

‖A‖

“Convergence,” but exponentially growing bound

(Hopeless!)
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Modern convergence analysis

Explicit Euler for ẋ = Ax + f (t)

xn+1 = xn + hAxn + hf (tn)

x(tn+1) = x(tn) + hAx(tn) + hf (tn)− h2rn

Global error en = xn − x(tn)

en+1 = en + hAen + h2rn = (I + hA)en + h2rn ⇒

‖en+1‖ ≤ ‖I + hA‖ · ‖en‖+ ‖h2rn‖
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Modern convergence analysis . . .

Note that, using the log norm,

µ[A] = lim
h→0+

‖I + hA‖ − 1

h

we have

‖I + hA‖ = 1 + hµ[A] + O(h2)

as h‖A‖ → 0
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Modern convergence analysis . . .

Now the lemma applies with µ ≈ µ[A] and c = maxn ‖rn‖

‖en‖ / hmax
n
‖rn‖

eµ[A]tn − 1

µ[A]
; µ[A] ≥ 0

and in case −1 < hµ[A] < 0 we have

max
n
‖en‖ / −

hmaxn ‖rn‖
µ[A]

Convergence, with “realistic” error bound, as µ[A] ≤ ‖A‖
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Application Solvability in Implicit Euler

Consider Implicit Euler for ẋ = Ax + f (t)

xn+1 = xn + hAxn+1 + hf (tn+1)

x(tn+1) = x(tn) + hAx(tn+1) + hf (tn+1)− h2rn

When is it possible to solve (I − hA)xn+1 = xn + hf (tn+1)?

Uniform monotonicity theorem guarantees unique solution if

µ[hA− I ] < 0 ⇔ µ[hA] < 1

Easily satisfied, even without bound on ‖hA‖
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1. What is interpolation?

Interpolation is “the opposite” of discretization

Problem Given a discrete grid function (a vector) F = {fj}N0
defined on a grid {xj}N0 , find a continuous function f (x) with the
interpolating property f (xj) = fj

Compare digital–to–analog conversion

Typically the function f is sought among polynomials or among
trigonometric functions (Fourier analysis)
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Näıve polynomial interpolation

Pn(x) = c0 + c1x + c2x
2 + · · ·+ cnx

n

n + 1 coefficients, n + 1 interpolation conditions Pn(xj) = fj
1 x0 x20 . . . xn0
1 x1 x21 . . . xn1
...

...
...

...
1 xn x2n . . . xnn




c0
c1
...
cn

 =


f0
f1
...
fn


Vandermonde matrix, nonsingular if xi 6= xj , unique solution

Tedious and often ill-conditioned approach
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2. Lagrange interpolation Basis functions

On a grid {x0, x1, . . . , xk} construct a degree k polynomial basis

{ϕi (x)}ki=0

such that ϕi (xj) = δij (the Kronecker delta)

Theorem If the values fj = f (xj) are known for the function f (x),
then the degree k polynomial

P(x) =
k∑

j=0

ϕj(x) fj

interpolates f (x) on the grid:

P(xj) = fj with P(x) ≈ f (x) for all x
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3. Basis functions 2nd degree Lagrange

ϕ1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

30 / 48



Table of Lagrange basis polynomials

x ϕ0 ϕ1 ϕ2 f P2

x0 1 0 0 f0 f0
x1 0 1 0 f1 f1
x2 0 0 1 f2 f2

P2(x) = f0 ϕ0(x) + f1 ϕ1(x) + f2 ϕ2(x)

P2(x) = f0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+f1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+f2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
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4. Numerical integration

Numerical integration is the approximation of definite integrals

I (f ) =

∫ b

a
f (x)dx

Problem For many functions no primitive function is known. The
integral cannot be calculated analytically

Note For polynomials an integral
∫ b
a P(x)dx can always be

computed analytically

Idea Approximate f (x) ≈ P(x) and compute
∫ b
a P(x) dx
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Numerical integration. . .

Approximate f ≈ P and substitute “infinite sum” by a finite sum

The integrand is sampled at a finite number of points

I (f ) =
n∑

i=1

wi f (xi ) + Rn

Here Rn = I (f )−
∑n

i=0 wi f (xi ) is the integration error

Numerical integration method

I (f ) ≈
n∑

i=0

wi f (xi )

33 / 48



Numerical integration. . . Example

Approximate using Lagrange 2nd degree interpolant∫ b

a
f (x)dx ≈

∫ b

a

2∑
i=0

f (xi )ϕi (x) dx =
2∑

i=0

f (xi )

∫ b

a
ϕi (x) dx

Weights wi =
∫ b
a ϕi (x)dx can be computed once and for all

Numerical integration method∫ b

a
f (x)dx ≈

2∑
i=0

wi f (xi )
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1. Solving nonlinear equations f (x) = 0

We can have a single equation

x − cos x = 0

but in general we have systems

4x2 − y2 = 0

4xy2 − x = 1

Nonlinear equations may have

• no solution

• one solution

• any finite number of solutions

• infinitely many solutions
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Iteration and convergence f (x) = 0

Nonlinear equations are solved by iteration, computing a sequence
{x [k]} of approximations to the root x∗

Definition The error is defined by e [k] = x [k] − x∗

Definition The method converges if limk→∞ ‖e [k]‖ = 0

Definition The convergence is

• linear if ‖e [k+1]‖ ≤ c · ‖e [k]‖ with 0 < c < 1

• quadratic if ‖e [k+1]‖ ≤ c · ‖e [k]‖p with p = 2

• superlinear if p > 1;

• cubic if p = 3, etc.
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2. Fixed points

Definition x is called a fixed point of the function g if

x = g(x)

Definition A function g is called contractive if

‖g(x)− g(y)‖ ≤ L[g ] · ‖x − y‖

with L[g ] < 1 for all x , y in the domain of g

A contraction map reduces the distance between points
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Fixed Point Theorem

Theorem Assume that g is Lipschitz continuous on the compact
interval I . Further,

• If g : I → I there exists an x∗ ∈ I such that x∗ = g(x∗)

• If in addition L[g ] < 1 on I , then x∗ is unique, and

xn+1 = g(xn)

converges to the fixed point x∗ for all x0 ∈ I

Note Both conditions are absolutely essential!
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Fixed Point Theorem Existence and uniqueness
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Fixed Point Theorem Existence and uniqueness
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Error bound in fixed point iteration

By the Lipschitz condition

x [k+1] − x∗ = g(x [k])− g(x∗)

= g(x [k])− g(x [k+1]) + g(x [k+1])− g(x∗)

we have

‖x [k+1] − x∗‖ ≤ L[g ] · ‖x [k] − x [k+1]‖+ L[g ] · ‖x [k+1] − x∗‖

Theorem If L[g ] < 1, then the error in fixed point iteration is
bounded by

‖x [k+1] − x∗‖ ≤ L[g ]

1− L[g ]
‖x [k] − x [k+1]‖
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3. Newton’s method

Newton’s method solves f (x) = 0 using repeated linearizations.
Linearize at the point (x [k], f (x [k]))
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Newton’s method . . .

Straight line equation

y − f (x [k]) = f ′(x [k]) · (x − x [k])

Define x = x [k+1] ⇒ y = 0, so that

−f (x [k]) = f ′(x [k]) · (x [k+1] − x [k])

Solve for x = x [k+1], to get Newton’s method

x [k+1] = x [k] − f (x [k])

f ′(x [k])
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Newton’s method . . . Systems of equations

Expand f (x [k+1]) in a Taylor series around x [k]

f (x [k+1]) = f (x [k] + (x [k+1] − x [k]))

≈ f (x [k]) + f ′(x [k]) · (x [k+1] − x [k]) := 0

⇒

x [k+1] = x [k] −
(
f ′(x [k])

)−1
f (x [k])

Definition f ′(x [k]) is the Jacobian matrix of f , defined by

f ′(x) =

{
∂fi
∂xj

}
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Newton’s method . . . Convergence

Write Newton’s method as a fixed point iteration x [k+1] = g(x [k])
with iteration function

g(x) := x − f (x)/f ′(x)

Note Newton’s method converges fast if f ′(x∗) 6= 0, because
g ′(x∗) = f (x∗)f ′′(x∗)/f ′(x∗)2 = 0

Expand g(x) in a Taylor series around x∗

g(x [k])− g(x∗) ≈ g ′(x∗)(x [k] − x∗) +
g ′′(x∗)

2
(x [k] − x∗)2

x [k+1] − x∗ ≈ g ′′(x∗)

2
(x [k] − x∗)2
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Newton’s method . . . Convergence

Define the error by ε[k] = x [k] − x∗, then

ε[k+1] ∼
(
ε[k]
)2

Newton’s method is quadratically convergent

Fixed point iterations are typically only linearly convergent

ε[k+1] ≈ g ′(x∗) · ε[k]

A problem with Newton’s method is that starting values need to
be close enough to the root
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Convergence order and rate

Definition The convergence order is p with (asymptotic) error
constant Cp, if

0 < lim
k→∞

‖ε[k+1]‖
‖ε[k]‖p

= Cp <∞

Special cases

p = 1 Linear convergence
Fixed point iteration Cp = |f ′(x∗)|

p = 2 Quadratic convergence

Newton iteration Cp =
∣∣ f ′′(x∗)
2f ′(x∗)

∣∣
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Application Newton vs Fixed point in Implicit Euler

As yn+1 = yn + hf (yn+1) we need to solve an equation

y = hf (y) + ψ

Note All implicit methods lead to an equation of this form

Theorem Fixed point iterations converge if L[hf ] < 1, restricting
the step size to h < 1/L[f ]

Note For stiff equations L[hf ]� 1 so fixed point iterations will
not converge; it is necessary to use Newton’s method
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