Numerical Methods for Differential Equations

Chapter 2: Runge-Kutta and Multistep Methods

Tony Stillfjord, Gustaf Söderlind Numerical Analysis, Lund University

Contents V4.19

- 1. Runge–Kutta methods
- 2. Embedded RK methods and adaptivity
- 3. Implicit Runge-Kutta methods
- 4. Stability and the stability function
- 5. Linear multistep methods
- 6. Difference operators

1. Runge-Kutta methods

Given an IVP y' = f(t, y), $y(0) = y_0$ use numerical integration to approximate integrals

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(\tau, y(\tau)) d\tau \quad \Rightarrow$$
$$y(t_{n+1}) \approx y(t_n) + h \sum_{j=1}^{s} b_j f(t_n + c_j h, y(t_n + c_j h))$$

Let $\{Y_j\}_{j=1}^s$ denote numerical approximations to $\{y(t_n+c_jh)\}_{j=1}^s$ A Runge-Kutta method then has the form

$$y_{n+1} = y_n + \sum_{j=1}^{s} b_j hf(t_n + c_j h, Y_j)$$

The explicit Runge-Kutta computational process

Sample vector field to obtain stage derivatives

$$hY'_j = hf(t_n + c_j h, Y_j)$$

at stage values

$$\mathbf{Y}_i = y_n + \sum_{i=1}^{i-1} a_{i,j} h \mathbf{Y}_j'$$

and advance solution one step by a linear combination

$$y_{n+1} = y_n + \sum_{j=1}^s b_j h Y_j'$$

An s-stage RK method has nodes $\{c_i\}_{i=1}^s$ and weights $\{b_j\}_{i=1}^s$

The Butcher tableau of an explicit RK method is

Simplifying assumption $c_i = \sum_{j=1}^s a_{i,j}$ (row sums of RK matrix)

 \implies every stage value Y_i is 1st-order approx. of solution $y(t_i)$

A two-stage explicit RK method has *three "free" coefficients* The simplifying assumption determines the nodes

$$hY'_1 = hf(t_n, y_n)$$

$$hY'_2 = hf(t_n + c_2h, y_n + h a_{21}Y'_1)$$

$$y_{n+1} = y_n + [b_1 hY'_1 + b_2 hY'_2]$$

Butcher tableau

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
c_2 & a_{21} & 0 \\
\hline
& b_1 & b_2
\end{array}$$
 $c_1 = 0, c_2 = a_{21}$

Derivation of two-stage ERK's

Using $hY_1' = hf(t_n, y_n)$, expand hY_2' in Taylor series around t_n, y_n $hY_2' = hf(t_n + c_2h, y_n + h a_{21}f(t_n, y_n))$ $= hf + h^2 \left[c_2f_t + a_{21}f_yf\right] + \mathcal{O}(h^3)$

Insert into
$$y_{n+1} = y_n + b_1 h Y_1' + b_2 h Y_2'$$
 and use $c_2 = a_{21}$ to obtain $y_{n+1} = y_n + (b_1 + b_2)hf + h^2b_2c_2(f_t + f_y f) + \mathcal{O}(h^3)$

Expand exact solution in Taylor series and match terms

$$y' = f$$

 $y'' = f_t + f_y y' = f_t + f_y f$
 $y(t+h) = y + hf + \frac{h^2}{2}(f_t + f_y f) + \mathcal{O}(h^3)$

One-parameter family of 2nd order two-stage ERK's

Match terms to get conditions for order 2

$$b_1+b_2=1$$
 (consistency) $b_2c_2=1/2$

Note Consistent RK methods are always convergent

Two equations, three unknowns \Rightarrow there is a one-parameter family of 2nd order two-stage ERK methods with Butcher tableau

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\frac{1}{2b} & \frac{1}{2b} & 0 \\
\hline
& 1 - b & b
\end{array}$$

Put b = 1 to get the Butcher tableau

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1/2 & 1/2 & 0 \\
\hline
& 0 & 1
\end{array}$$

$$hY'_1 = hf(t_n, y_n)$$

$$hY'_2 = hf(t_n + h/2, y_n + hY'_1/2)$$

$$y_{n+1} = y_n + hY'_2$$

Second order two-stage explicit Runge-Kutta (ERK) method

Put b = 1/2 to get

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}$$

$$hY'_1 = hf(t_n, y_n)$$

 $hY'_2 = hf(t_n + h, y_n + hY'_1)$

$$y_{n+1} = y_n + (hY_1' + hY_2')/2$$

Second order two-stage ERK, compare to the trapezoidal rule

Third order three-stage ERK

Conditions for 3rd order (
$$c_2=a_{21}$$
; $c_3=a_{31}+a_{32}$)
$$b_1+b_2+b_3=1$$

$$b_2c_2+b_3c_3=1/2$$

$$b_2c_2^2+b_3c_3^2=1/3$$

$$b_3a_{32}c_2=1/6$$

Classical RK3

Nyström scheme

Exercise

Construct the Butcher tableau for the 3-stage Heun method.

$$hY'_{1} = hf(t_{n}, y_{n})$$

$$hY'_{2} = hf(t_{n} + h/3, y_{n} + hY'_{1}/3)$$

$$hY'_{3} = hf(t_{n} + 2h/3, y_{n} + 2hY'_{2}/3)$$

$$y_{n+1} = y_{n} + (hY'_{1} + 3hY'_{3})/4$$

Is the method of order 3?

The "original" RK method (1895)

$$hY'_{1} = hf(t_{n}, y_{n})$$

$$hY'_{2} = hf(t_{n} + h/2, y_{n} + hY'_{1}/2)$$

$$hY'_{3} = hf(t_{n} + h/2, y_{n} + hY'_{2}/2)$$

$$hY'_{4} = hf(t_{n} + h, y_{n} + hY'_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}(hY'_{1} + 2hY'_{2} + 2hY'_{3} + hY'_{4})$$

Classical RK4 ...

Butcher tableau

Note s-stage ERK methods of order p = s exist only for $s \le 4$

There is no 5-stage ERK of order 5

An s-stage ERK method has s + s(s-1)/2 coefficients to choose, but there are overwhelmingly many order conditions

of available coefficients

stages s	1	2	3	4	5	6	7	8	9	10	11
coefficients	1	3	6	10	15	21	28	36	45	55	66

of order conditions and min # of stages to achieve order p

order p	1	2	3	4	5	6	7	8	9	10
conditions	1	2	4	8	17	37	85	200	486	1205
min stages	1	2	3	4	6	7	9	11	?	?

2. Embedded RK methods

Two methods in a single Butcher tableau (RK34)

$$hY'_{1} = hf(t_{n}, y_{n})$$

$$hY'_{2} = hf(t_{n} + h/2, y_{n} + hY'_{1}/2)$$

$$hY'_{3} = hf(t_{n} + h/2, y_{n} + hY'_{2}/2)$$

$$hZ'_{3} = hf(t_{n} + h, y_{n} - hY'_{1} + 2hY'_{2})$$

$$hY'_{4} = hf(t_{n} + h, y_{n} + hY'_{3})$$

$$y_{n+1} = y_n + \frac{1}{6} \left(hY_1' + 2hY_2' + 2hY_3' + hY_4' \right) \qquad \text{order 4}$$

$$z_{n+1} = y_n + \frac{1}{6} \left(hY_1' + 4hY_2' + hZ_3' \right) \qquad \text{order 3}$$

The difference $y_{n+1} - z_{n+1}$ can be used as an error estimate

Use an embedded pair, e.g. RK34

Local error estimate $r_{n+1} := ||y_{n+1} - z_{n+1}|| = \mathcal{O}(h^4)$

Adjust the step size h to make local error estimate equal to a prescribed *error tolerance* TOL

Simplest step size updating scheme

$$h_{n+1} = \left(\frac{\text{TOL}}{r_{n+1}}\right)^{1/p} h_n$$

makes $r_n \approx \text{TOL}$

Time step adaptivity using local error control

There are many state-of-the-art embedded ERK methods, e.g.

- Dormand-Prince DOPRI45 (1980)
- Dormand-Prince DOPRI78 (1981)
- Cash-Karp CK5 (1990)

Advanced adaptivity uses discrete control theory and digital filters

$$h_{n+1} = \rho_n \cdot h_n$$

$$\rho_n = \left(\frac{\text{TOL}}{r_{n+1}}\right)^{\beta_1/p} \left(\frac{\text{TOL}}{r_n}\right)^{\beta_2/p} \rho_{n-1}^{-\alpha}$$

PI control, ARMA filters &c., via control parameters $(\beta_1, \beta_2, \alpha)$

3. Implicit Runge-Kutta methods (IRK)

In ERK, the matrix A in the tableau is strictly lower triangular

In IRK, A may have nonzero diagonal elements or even be full

$$hY'_{i} = hf(t_{n} + c_{i}h, y_{n} + \sum_{j=1}^{s} a_{i,j} hY'_{j})$$

 $y_{n+1} = y_{n} + \sum_{i=1}^{s} b_{i} hY'_{i}$

The method is implicit and requires equation solving to compute the stage derivatives $\{Y_i'\}_{i=1}^s$

Implicit Runge-Kutta methods...

In stage value - stage derivative form

$$Y_{i} = y_{n} + \sum_{j=1}^{s} a_{i,j} h Y'_{j}$$

$$h Y'_{i} = h f(t_{n} + c_{i}h, Y_{i})$$

$$y_{n+1} = y_n + \sum_{i=1}^s b_i h Y_i'$$

Method coefficients (A, b, c) are represented in Butcher tableau

One-stage IRK methods

Implicit Euler (order 1) Implicit midpoint method (order 2)

$$\begin{array}{c|c|c}
 & 1/2 & 1/2 \\
\hline
 & 1 & 1
\end{array}$$

$$hY'_1 = hf(t_n + c_1h, y_n + a_{11} hY'_1)$$

 $y_{n+1} = y_n + b_1 hY'_1$

Taylor expansion of $y_{n+1} = y_n + b_1 hf(t_n + c_1h, y_n + a_{11} hY'_1)$

$$y_{n+1} = y + h b_1 f + h^2 (b_1 c_1 f_t + a_{11} f_y f) + \mathcal{O}(h^3)$$

Taylor expansions for one-stage IRK

Match terms in

$$y_{n+1} = y + h b_1 f + h^2 (b_1 c_1 f_t + a_{11} f_y f) + \mathcal{O}(h^3)$$

$$y(t_{n+1}) = y + h f + \frac{h^2}{2} (f_t + f_y f) + \mathcal{O}(h^3)$$

Condition for order 1 (consistency) $b_1 = 1$

Condition for order 2 $c_1 = a_{11} = 1/2$

Conclusion Implicit Euler is of order 1 and the implicit midpoint method is the only one-stage 2nd order IRK

4. Stability

Applying an IRK to the linear test equation $y' = \lambda y$, we get

$$hY_i' = h\lambda \cdot (y_n + \sum_{j=1}^s a_{i,j}hY_j')$$

Introduce $h\mathbf{Y}'=[hY_1'\,\cdots\,hY_s']^{\mathrm{T}}$ and $\mathbf{1}=[1\,\,1\,\cdots1]^{\mathrm{T}}\in\mathbb{R}^s$

Then $(I - h\lambda A)h\mathbf{Y}' = h\lambda \mathbf{1}y_n$ so $h\mathbf{Y}' = h\lambda (I - h\lambda A)^{-1}\mathbf{1}y_n$ and

$$y_{n+1} = y_n + \sum_{j=1}^{s} b_j h Y'_j = [1 + h\lambda \mathbf{b}^{\mathrm{T}} (I - h\lambda A)^{-1} \mathbf{1}] y_n$$

The stability function

Theorem For every Runge-Kutta method applied to the linear test equation $y' = \lambda y$ we have

$$y_{n+1} = R(h\lambda)y_n$$

where the rational function

$$R(z) = 1 + z\mathbf{b}^{\mathrm{T}}(I - zA)^{-1}\mathbf{1}$$

is called the method's stability function. If the method is explicit, then R(z) is a polynomial of degree s

A-stability of RK methods

Definition The method's stability region is the set

$$\mathcal{D} = \{ z \in \mathbb{C} : |R(z)| \le 1 \}$$

Theorem If R(z) maps all of \mathbb{C}^- into the unit circle, then the method is A-stable

Corollary No explicit RK method is A-stable

(For ERK R(z) is a polynomial, and $P(z) \to \infty$ as $z \to \infty$)

A-stability and the Maximum Principle

Theorem A Runge–Kutta method with stability function R(z) is A-stable if and only if

- all poles of R have positive real parts, and
- $|R(i\omega)| \leq 1$ for all $\omega \in \mathbb{R}$

This is the Maximum Principle in complex analysis

Example

$$\begin{array}{c|cccc} 0 & 1/4 & -1/4 \\ 2/3 & 1/4 & 5/12 \\ \hline & 1/4 & 3/4 \end{array} \Rightarrow \begin{array}{c} Y_1' = f(y_n + hY_1'/4 - hY_2'/4) \\ Y_2' = f(y_n + hY_1'/4 + 5hY_2'/12) \\ y_{n+1} = y_n + h(Y_1' + 3Y_2')/4 \end{array}$$

Example...

Applied to the test equation, we get the stability function

$$y_{n+1} = \frac{1 + \frac{1}{3}h\lambda}{1 - \frac{2}{3}h\lambda + \frac{1}{6}(h\lambda)^2} y_n$$

with poles $2 \pm i\sqrt{2} \in \mathbb{C}^+$, and

$$|R(i\omega)|^2 = \frac{1 + \frac{1}{9}\omega^2}{1 + \frac{1}{9}\omega^2 + \frac{1}{36}\omega^4} \le 1$$

Conclusion $|R(h\lambda)| \le 1 \quad \forall \ h\lambda \in \mathbb{C}^-$. The method is *A-stable*

5. Linear Multistep Methods

A *multistep method* is a method of the type

$$y_{n+1} = \Phi(f, h, y_0, y_1, \dots, y_n)$$

using values from several previous steps

- Explicit Euler $y_{n+1} = y_n + h f(t_n, y_n)$
- Trapezoidal rule $y_{n+1} = y_n + h\left(\frac{f(t_n, y_n) + f(t_{n+1}, y_{n+1})}{2}\right)$
- Implicit Euler $y_{n+1} = y_n + h f(t_{n+1}, y_{n+1})$

are all one-step (RK) methods, but also LM methods

Multistep methods and difference equations

A k-step multistep method replaces the ODE y' = f(t, y) by a difference equation

$$\sum_{j=0}^{k} a_{j} y_{n+j} = h \sum_{j=0}^{k} b_{j} f(t_{n+j}, y_{n+j})$$

Generating polynomials

$$\rho(w) = \sum_{j=0}^{k} a_j w^j \qquad \qquad \sigma(w) = \sum_{j=0}^{k} b_j w^j$$

- Coefficients are normalized either by $a_k = 1$ or $\sigma(1) = 1$
- $b_k \neq 0 \Leftrightarrow implicit$; $b_k = 0 \Leftrightarrow explicit$

Trivial (one-step) examples

Explicit Euler
$$y_{n+1} - y_n = hf(t_n, y_n)$$

$$\rho(w) = w - 1 \qquad \sigma(w) = 1$$

Implicit Euler
$$y_{n+1} - y_n = hf(t_{n+1}, y_{n+1})$$

$$\rho(w) = w - 1 \qquad \sigma(w) = w$$

Trapezoidal rule
$$y_{n+1} - y_n = \frac{h}{2}(f(t_{n+1}, y_{n+1}) + f(t_n, y_n))$$

$$\rho(w) = w - 1 \qquad \sigma(w) = (w+1)/2$$

Adams methods (J.C. Adams, 1880s)

Suppose we have the first n + k approximations

$$y_m = y(t_m), \qquad m = 0, 1, \dots, n + k - 1$$

Rewrite y' = f(t, y) by integration

$$y(t_{n+k}) - y(t_{n+k-1}) = \int_{t_{n+k-1}}^{t_{n+k}} f(\tau, y(\tau)) d\tau$$

Approximate by an interpolation polynomial on t_n, t_{n-1}, \ldots

$$f(\tau, y(\tau)) \approx P(\tau)$$

As seen from Voyager 2

Neptune (1846)

Voyager 2

...and Adams got the final word 130 years later

Voyager orbit (1977-89) computed using Adams-Moulton methods

Triton, Neptune's moon

Adams-Bashforth methods (explicit)

Approximate
$$P(\tau)=f(\tau,y(\tau))+\mathcal{O}(h^k)$$
, degree $k-1$ polynomial
$$P(t_{n+j})=f(t_{n+j},y(t_{n+j})) \qquad j=0,\ldots,k-1$$

Then
$$y(t_{n+k}) = y(t_{n+k-1}) + \int_{t_{n+k-1}}^{t_{n+k}} P(\tau) d\tau + \mathcal{O}(h^{k+1})$$

Adams-Bashforth method (k-step, order p = k)

$$y_{n+k} = y_{n+k-1} + \sum_{j=0}^{k-1} b_j \, hf(t_{n+j}, y_{n+j})$$

where $b_j = h^{-1} \int_{t_{n+k-1}}^{t_{n+k}} \varphi_j(\tau) d\tau$ from Lagrange basis polynomials

Coefficients of AB1

For k=1

$$y_{n+1} = y_n + b_0 hf(t_n, y_n)$$

the coefficient is determined by

$$b_0 = h^{-1} \int_{t_n}^{t_{n+1}} \varphi_0(\tau) d\tau = h^{-1} \int_{t_n}^{t_{n+1}} 1 d\tau = 1 \quad \Rightarrow$$

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Conclusion AB1 is the explicit Euler method

Coefficients of AB2

For k=2

$$y_{n+2} = y_{n+1} + h [b_1 f(t_{n+1}, y_{n+1}) + b_0 f(t_n, y_n)]$$

with coefficients

$$b_0 = h^{-1} \int_{t_{n+1}}^{t_{n+2}} \frac{\tau - t_{n+1}}{t_n - t_{n+1}} d\tau = -\frac{1}{2}$$

$$b_1 = h^{-1} \int_{t_{n+1}}^{t_{n+2}} \frac{\tau - t_n}{t_{n+1} - t_n} d\tau = \frac{3}{2}$$

$$y_{n+2} = y_{n+1} + \frac{3}{2}hf(t_{n+1}, y_{n+1}) - \frac{1}{2}hf(t_n, y_n)$$

Initializing an Adams method

The first step of AB2 is

$$y_2 = y_1 + h \left[\frac{3}{2} f(t_1, y_1) - \frac{1}{2} f(t_0, y_0) \right]$$

While y_0 is obtained from the initial value, y_1 must be computed with a one-step method, e.g. AB1

$$y_1 = y_0 + h f(t_0, y_0)$$

$$y_{n+2} = y_{n+1} + h \left[\frac{3}{2} f(t_{n+1}, y_{n+1}) - \frac{1}{2} f(t_n, y_n) \right], \quad n \ge 0$$

Multistep software is generally self-starting (with "gearbox")

Solve $y' = -y^2 \cos t$, $y_0 = 1/2$, $t \in [0, 8\pi]$ using 48 and 480 steps

The order of a multistep method

The *order of consistency* is *p* if the local error is

$$Ly = \sum_{i=0}^{k} a_{i}y(t_{n+j}) - h\sum_{i=0}^{k} b_{i}y'(t_{n+j}) = \mathcal{O}(h^{p+1})$$

Taylor expand:

$$Ly = \sum_{j=0}^{k} a_j \Big(y(t_n) + jhy'(t_n) + (jh)^2 / 2 y''(t_n) + \cdots \Big) -$$

$$- hb_j \Big(y'(t_n) + jhy''(t_n) + (jh)^2 / 2 y^{(3)}(t_n) + \cdots \Big)$$

$$= y(t_n) \Big(\sum_{j=0}^{k} a_j \Big) + hy'(t_n) \Big(\sum_{j=0}^{k} a_j j - b_j \Big) + h^2 y''(t_n) \Big(\sum_{j=0}^{k} a_j \frac{j^2}{2} - b_j j \Big)$$

The order of a multistep method, continued

$$Ly = y(t_n) \left(\sum_{j=0}^k a_j \right) + hy'(t_n) \left(\sum_{j=0}^k a_j j - b_j \right) +$$

$$+ h^2 y''(t_n) \left(\sum_{j=0}^k \frac{a_j j^2}{2!} - b_j j \right) + h^3 y^{(3)}(t_n) \left(\sum_{j=0}^k \frac{a_j j^3}{3!} - \frac{b_j j^2}{2!} \right)$$

$$+ \cdots$$

Should be $\mathcal{O}(h^{p+1})$ for all solutions y: insert polynomials!

$$y(t) = 1 \implies \sum_{j=0}^{k} a_j = 0$$

$$y(t) = t \implies \sum_{j=0}^{k} a_j j - b_j$$

$$\vdots$$

$$y(t) = t^p \implies \sum_{j=0}^{k} \frac{a_j j^p}{p!} - \frac{b_j j^{p-1}}{(p-1)!}$$

The order of a multistep method, continued

$$Ly = y(t_n) \left(\sum_{j=0}^k a_j \right) + hy'(t_n) \left(\sum_{j=0}^k a_j j - b_j \right) +$$

$$+ h^2 y''(t_n) \left(\sum_{j=0}^k \frac{a_j j^2}{2!} - b_j j \right) + h^3 y^{(3)}(t_n) \left(\sum_{j=0}^k \frac{a_j j^3}{3!} - \frac{b_j j^2}{2!} \right)$$

$$+ \cdots$$

Note: $Ly = \mathcal{O}(h^{p+1})$ iff Ly = 0 for all polynomials of deg $\leq p$

Easy test for consistency order: insert $y = t^m$ and $y' = mt^{m-1}$

 $L(t^q)$ is a polynomial of degree q. If $L(t^q)(jh)=0$ for all j, then $L(t^q)$ must be the zero polynomial. Thus $L(t^q)(t_n+jh)=0$ for any t_n . Hence it is enough to check $t_{n+j}=jh$

Theorem A k-step method is of consistency order p if and only if it satisfies the following conditions

•
$$\sum_{j=0}^{k} j^{m} a_{j} = m \sum_{j=0}^{k} j^{m-1} b_{j}, \quad m = 0, 1, \dots, p$$

$$\bullet \sum_{j=0}^{k} j^{\mathbf{p}+1} a_j \neq (\mathbf{p}+1) \sum_{j=0}^{k} j^{\mathbf{p}} b_j$$

A multistep method of consistency order p is exact for polynomials of degree $\leq p$. Problems with solutions y = P(t) are solved exactly

Stability

Unlike RK methods there are two distinct kinds of stability notions

Finite step stability

This is concerned with for what nonzero step sizes h the method can solve the linear test equation $y' = \lambda y$ without going unstable. It determines for what problem classes the method is useful. Same idea as for RK

Zero stability

This is concerned with whether a multistep method can solve the trivial problem y'=0 without going unstable. If not, the method is useless: zero stability is necessary for convergence. Multistep methods only

Definition A polynomial $\rho(w)$ satisfies the root condition if all its zeros are on or inside the unit circle, and the zeros of unit modulus are simple

Definition A multistep method whose generating polynomial $\rho(w)$ satisfies the root condition is called **zero** stable

Examples

- $\rho(w) = (w-1)(w-0.5)$
- $\rho(w) = (w-1)(w+1)$
- $\rho(w) = (w-1)^2(w-0.5)$
- $\rho(w) = (w-1)(w^2+0.25)$

Adams methods have $\rho(w) = w^{k-1}(w-1)$ and are zero stable

The Dahlquist equivalence theorem

Theorem A multistep method is convergent if and only if it is zero-stable and consistent of order $p \ge 1$ (without proof)

Example k-step Adams-Bashforth methods are explicit methods of consistency order p=k and have $\rho(w)=w^{k-1}(w-1)\Rightarrow$ they are convergent of *convergence order* p=k

Example k-step Adams-Moulton methods are implicit methods of consistency order p = k + 1 and have $\rho(w) = w^{k-1}(w-1) \Rightarrow$ they are convergent of *convergence order* p = k + 1

Dahlquist's first barrier theorem

Theorem The maximal order of a zero-stable k-step method is

$$p = \begin{cases} k & \text{for explicit methods} \\ \begin{cases} k+1 & \text{if } k \text{ is odd} \\ k+2 & \text{if } k \text{ is even} \end{cases}$$
 for implicit methods

Construct a two-step 2nd order method of the form

$$\alpha_2 y_{n+2} + \alpha_1 y_{n+1} + \alpha_0 y_n = hf(t_{n+2}, y_{n+2})$$

Order conditions for p = 2

$$\alpha_2 + \alpha_1 + \alpha_0 = 0;$$
 $2\alpha_2 + \alpha_1 = 1;$ $4\alpha_2 + \alpha_1 = 4$

$$\frac{3}{2}y_{n+2}-2y_{n+1}+\frac{1}{2}y_n=hf(t_{n+2},y_{n+2})$$

$$\rho(w) = \frac{3}{2}(w-1)(w-\frac{1}{3})$$
 \Rightarrow BDF2 is convergent of order 2

Backward differentiation formulas (BDF)

Backward difference operator $\nabla y_{n+k} = y_{n+k} - y_{n+k-1}$ with

$$abla^{j} y_{n+k} =
abla^{j-1} y_{n+k} -
abla^{j-1} y_{n+k-1}, \quad j > 1$$

Theorem (without proof) The k-step BDF method

$$\sum_{i=1}^k \frac{\nabla^j}{j} y_{n+k} = hf(t_{n+k}, y_{n+k})$$

is convergent of order p = k if and only if $1 \le k \le 6$

Note BDF methods are designed for stiff problems

The methods are stable *outside* the indicated areas

Applying a method to $y' = \lambda y$ produces a difference equation

$$\sum_{j=0}^{k} a_j y_{n+j} = h\lambda \sum_{j=0}^{k} b_j y_{n+j}$$

The characteristic equation (with $z = h\lambda$)

$$\rho(w) - z\sigma(w) = 0$$

has k roots $w_i(z)$. The method is A-stable if and only if

$$\operatorname{Re} z \leq 0 \Rightarrow |w_i(z)| \leq 1,$$

with simple unit modulus roots (root condition)

Dahlquist's second barrier theorem

Theorem (without proof) The highest order of an A-stable multistep method is p = 2. Of all 2nd order A-stable multistep methods, the trapezoidal rule has the smallest error

Note There is no order restriction for Runge–Kutta methods, which can be A-stable for arbitrarily high orders

A multistep method can be useful although it isn't A-stable

6. Difference operators

Differentiation
$$D: y \mapsto \dot{y}$$
, where $D = d/dt$

Forward shift
$$E: y(t) \mapsto y(t+h)$$

Forward shift applied to sequences

$$y = \{y_n\}_{n=0}^{\infty}$$

 $Ey = \{y_{n+1}\}_{n=0}^{\infty}$

"Shorthand notation" $(Ey)_n = y_{n+1} \Rightarrow Ey_n = y_{n+1}$

Expand in Taylor series

$$y(t+h) = y(t) + h\dot{y}(t) + \frac{h^2}{2}\ddot{y}(t) + \dots$$

$$= \left(1 + hD + \frac{(hD)^2}{2!} + \frac{(hD)^3}{3!} + \dots\right)y(t)$$

$$= e^{hD}y(t)$$

Taylor's theorem $E = e^{hD}$

Forward difference operator

Using short-hand notation

$$\Delta y(t) = y(t+h) - y(t)$$
$$\Delta y_n = y_{n+1} - y_n$$

Note
$$\Delta = E - 1$$

Forward differences of higher order

Recursive definition

$$\Delta y_n = y_{n+1} - y_n$$
$$\Delta^k y_n = \Delta(\Delta^{k-1} y_n)$$

In particular, 2nd order difference

$$\Delta^{2} y_{n} = \Delta (y_{n+1} - y_{n})$$

$$= (y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n})$$

$$= y_{n+2} - 2y_{n+1} + y_{n}$$

Finite difference approximation of derivatives

Approximation of derivatives

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{\Delta y}{\Delta x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \approx \frac{\Delta y_n / \Delta x - \Delta y_{n-1} / \Delta x}{\Delta x}$$

$$\approx \frac{y_{n+1} - 2y_n + y_{n-1}}{\Delta x^2} \approx \frac{\Delta^2 y}{\Delta x^2}$$

Backward difference operator

Backward difference

$$\nabla y(t) = y(t) - y(t - h)$$

$$\nabla y_n = y_n - y_{n-1}$$

Bwd Difference
$$\nabla = 1 - E^{-1}$$

Backward shift $E^{-1} = e^{-hD}$

Linear operators

All operators under consideration are linear

$$L(\alpha u + \beta v) = \alpha Lu + \beta Lv$$

- Allows addition and multiplication (assoc + dist laws)
- The operators are commutative

$$(L_1 \circ L_2) u = (L_2 \circ L_1) u$$

- There is a *zero* and a *unit* operator, 0 and 1
- The operators form an operator algebra

Operator series and operator calculus

Taylor's theorem

$$e^{-hD} = 1 - \nabla$$

Formal inversion and power series expansion

$$hD = -\log(1 - \nabla) = \nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots$$

Apply to differential equation y' = f(y)

Derivation of BDF methods

Differential equation y' = f(y) implies hDy = hf(y)

Replace with *operator series* $hD = \sum_{1}^{\infty} \nabla^{j}/j$. Truncate at k terms

$$\left(\nabla + \frac{\nabla^2}{2} + \cdots + \frac{\nabla^k}{k}\right) y_n = hf(y_n)$$

This is the k-step BDF method

The formula is exact for polynomials of degree $\leq k$, but zero stable only for $k \leq 6$. BDF1–6 are convergent of order p = k