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1. Runge—Kutta methods

Given an IVP y" = f(t,y), y(0) = yo use numerical integration to
approximate integrals

y(th+1) = y(ta) + /tth f(r,y(r))dr =

Y(tar1) = y(ta) + h > bif (ta + Gih, y(ta + cjh))
j=1

Let {Yj}?_, denote numerical approximations to {y(t, + c;h)};_;
A Runge—Kutta method then has the form

Yn+l = Yn + Z bjhf(tn + ¢jh, Y))
j=1
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The explicit Runge—Kutta computational process

Sample vector field to obtain stage derivatives

hY; = hf(t, + c;h, Y))

at stage values
i-1

Yi=yn+ > aihY]
j=1

and advance solution one step by a linear combination

S
Yni1=yn+ »_bhY]
j=1
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The Butcher tableau Weights, nodes and stages

An s-stage RK method has nodes {c;}; ; and weights {b;};_;

The Butcher tableau of an explicit RK method is

0 0 o --- 0
Co 8271 0 e 0 c A
: : or
Cs | as1 asp 0 bt
by b bs

Simplifying assumption  ¢; = > 7, a;; (row sums of RK matrix)

= every stage value Y] is Ist-order approx. of solution y(t;)
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Simplest case A two-stage ERK

A two-stage explicit RK method has three “free” coefficients
The simplifying assumption determines the nodes

hyll = hf(tna)/n)
hy2/ = hf(tn+C2h7Yn+h321Y1/)
Yn+1 = )/nJF[bl hY1/+b2hY2,]

Butcher tableau

Co | a21

b1 b
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Derivation of two-stage ERK's

Using hY{| = hf(ts, yn), expand hY} in Taylor series around t,, y,

hY3 = hf(ty + c2h, yn + han f(tn, yn))
— hf + B [eafy + anf, F] + O(h?)

Insert into yp41 =y, + b1 hY] + by hY] and use to obtain
Yot1 = Yn + (b1 + b)hf + K2 byoo(f: + £,f) + O(h?)

Expand exact solution in Taylor series and match terms
y'=f

Y =fit fy = fit i f
2

h
y(t+h)=y+ hf + 3(ft+ f,f) 4+ O(h*)
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One-parameter family of 2nd order two-stage ERK's

Match terms to get conditions for order 2

b1 +by=1 (consistency)
b2C2 = 1/2

Note Consistent RK methods are always convergent

Two equations, three unknowns = there is a one-parameter
family of 2nd order two-stage ERK methods with Butcher tableau

0

L
2b

I &=

|1—-b b
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Example 1 The modified Euler method

Put b=1 to get the Butcher tableau

0
1/2 | 1/2
0 1

hY{ = hf(tn, yn)
hY} = hf(ty+ h/2,yn + hY{/2)

Yn+1 = Yn + h\/é

Second order two-stage explicit Runge-Kutta (ERK) method
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Example 2 Heun’s method

Put b=1/2 to get
0
1] 1
1/2 1/2

hY{ = hf(ta, yn)
hYy = hf(ty + h,yn + hY/)

Yn+1 = Yn + (hyll + hY2/)/2

Second order two-stage ERK, compare to the trapezoidal rule
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Third order three-stage ERK

Conditions for 3rd order ( o — a5, ¢35 — a3 + a3 )

b1+ by+b3=1

bocy + b3cs = 1/2

bycs + b3cs =1/3
bzazpc, =1/6

Classical RK3 Nystrom scheme

0 0 0 0 0 0 0 0

1/211/2 0 0 2/312/3 0 0

1 {-1 2 0 2/31 0 2/3 0
11/6 2/3 1/6 | 1/4 3/8 3/8
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Exercise

Construct the Butcher tableau for the 3-stage Heun method.

hY{ = hf(tn, yn)
hY} = hf(t, + h/3,y, + hY{/3)
hY3 = hf(t, +2h/3,y, +2hY3/3)

Ynt1 = Yn + (hyll + 3hY?:)/4

Is the method of order 37
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Classical RK4 4th order, 4-stage ERK

The “original” RK method (1895)

hYll = hf(tm)’n)

hY} = hf(ty + h/2,y, + hY{/2)
hY3 = hf(tn + h/2,yn + hY3/2)
hY; = hf(tn + h,yn + hY3)

1
Ynil = Yn + 8 (hY{ +2hY} + 2hY} + hY))
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Classical RK4 . ..

Butcher tableau

0
1/2]1/2
1/2 1/2
1 1
|1/6 1/3 1/3 1/6

Note s-stage ERK methods of order p = s exist only for s < 4

There is no 5-stage ERK of order 5
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Order conditions ... leave it to the professionals

An s-stage ERK method has s + s(s — 1)/2 coefficients to choose,
but there are overwhelmingly many order conditions

# of available coefficients

stages s 1 2 3 4 5 6 7 8 9 10 11
coefficients || 1 3 6 10 15 21 28 36 45 55 66

# of order conditions and min # of stages to achieve order p

1 2 3 4 5 6 7 8 9 10
2 4 8 17 37 85 200 486 1205
7 7

order p

conditions || 1
minstages |1 2 3 4 6 7 9 11
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2. Embedded RK methods

Two methods in a single Butcher tableau (RK34)

hyll = hf(tnaYn)

hY5 = hf(ty+ h/2,y, + hY{/2)
hY} = hf(tn+ h/2,yn + hY3/2)
hZé = hf(t, + h,y, — hYll + 2hY2/)
hY, = hf(tn+ h,yn + hY3)

1

Yn+1 Zyn+6(hY1'+2hY2/+2hYé+hYAf) order 4
1

Znt1=Yn+ 6 (hY{ +4hY; + hZ}) order 3

The difference y,+1 — zn,+1 can be used as an error estimate
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Adaptive RK methods Example

Use an embedded pair, e.g. RK34
Local error estimate 1,1 := || yni1 — zor1]| = O(h*)

Adjust the step size h to make local error estimate equal to a
prescribed error tolerance TOL

Simplest step size updating scheme

1/p
hoay = <TOL> h
rn+1

makes r, ~ TOL
Time step adaptivity using local error control
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Advanced adaptive RK methods Very high precision

There are many state-of-the-art embedded ERK methods, e.g.

e Dormand—-Prince DOPRI45  (1980)
e Dormand—Prince DOPRI78  (1981)
o Cash—Karp CK5 (1990)

Advanced adaptivity uses discrete control theory and digital filters

hn+1 = Pn- hn
ToL\ /P /1oL P2/P .
pn = pn—]_
rnt+1 I'n

Pl control, ARMA filters &c., via control parameters (/31, 52, o)
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3. Implicit Runge—Kutta methods (IRK)

In ERK, the matrix A in the tableau is strictly lower triangular

In IRK, A may have nonzero diagonal elements or even be full

s
hY! = hf(t, + cih, y, + Z ajj th’)
j=1

S
Yar1=Yn+ > bihY]
i=1

The method is implicit and requires equation solving to compute
the stage derivatives { Y/},
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Implicit Runge—Kutta methods. ..

In stage value — stage derivative form

s
Yi=yn+ Za,-’j hyj/
j=1

hY! = hf(t, + cih, Y;)

s
Yni1=Yn+ > _ bihY]
i=1

Method coefficients (A, b, c) are represented in Butcher tableau
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One-stage IRK methods

Implicit Euler (order 1) Implicit midpoint method (order 2)
11 1/2]1/2
1 1

hY{ = hf(t, + c1h, y, + a11 hYY)
Ynt1 = Yn + b1 hY{

Taylor expansion of y,11 = y, + b1 hf (t, + cih, y, + a11 hYY)

Y1 =y + hbif + P (bicify + annf, f) + O(h?)
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Taylor expansions for one-stage IRK

Match terms in
Yot1 =y + hbif + W (bicify + annf, f) + O(h?)

2

h
y(tny1) =y +hf +§(ft+fyf) +0O(h)

Condition for order 1 (consistency) by =1

Condition for order 2 a1 =1/2

Conclusion Implicit Euler is of order 1 and the implicit midpoint
method is the only one-stage 2nd order IRK
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4. Stability

Applying an IRK to the linear test equation y' = \y, we get

hY! = hX-(yn + Y aihY))
j=1

Introduce hY' = [hY] ---hY/" and 1 =[1 1 ... 1]' € R®

Then (I — hAA)hY' = hAly, so hY' = hA(/ — hAA)"!1y, and

Vo1 = Yo+ Y bihY] = [L+ hAbT (1 — hAA) 1]y,
j=1
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The stability function

Theorem For every Runge-Kutta method applied to the linear
test equation y' = \y we have

Ynt+1 = R(h)‘))/n

where the rational function
R(z) =1+ zb™(I —zA)~11

is called the method'’s stability function. If the method is explicit,
then R(z) is a polynomial of degree s
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RK4 stability region Contours of |R(z)|
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A-stability of RK methods

Definition The method'’s stability region is the set

D={zeC:|R(2)| <1}

Theorem [If R(z) maps all of C™ into the unit circle, then the
method is A-stable

Corollary No explicit RK method is A-stable

(For ERK R(z) is a polynomial, and P(z) — oo as z — o)
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A-stability and the Maximum Principle

Theorem A Runge-Kutta method with stability function R(z) is
A-stable if and only if

e all poles of R have positive real parts, and

o |R(iw)| <1 forallweR

This is the Maximum Principle in complex analysis

Example
0 [1/4 —1/4 Y] = f(yn+ hY{/4— hY}/4)

2/3|1/4 5/12 = Y, =f(y,+ hY{/4+5hY}/12)
| 1/4 3/4 Yn+1 = yn+ h(Y]{ +3Y})/4
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Example. ..

Applied to the test equation, we get the stability function

1+ 3hA
— ZhA+ ¢(h)

Yn+1 = 5 Yn

with poles 2 +1y/2 € C*, and

Conclusion [R(hX)| <1 V hX e C~. The method is A-stable
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5. Linear Multistep Methods

A multistep method is a method of the type

Ynt+1 = (b(f? h7y07.y17' . 7yn)

using values from several previous steps

e Explicit Euler y,11 = yn+ hf(tn, vn)

e Trapezoidal rule y,i1 =y, + h(f(t”’y")+f2(t”+1’y”+1))

o Implicit Euler y, 1 =y, + hf(tni1, Vni1)

are all one-step (RK) methods, but also LM methods
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Multistep methods and difference equations

A k-step multistep method replaces the ODE y’ = f(t,y) by a
difference equation

k k
> aiynri =hY bif(tarj Ynij)
j=0 Jj=0

Generating polynomials
k . k .
p(W):Zaj w! U(W):ij w!
j=0 j=0

o Coefficients are normalized either by ay = 1 or o(1) =1
o b # 0 < implicit; b, =0 < explicit
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Trivial (one-step) examples
Explicit Euler  yni1 — yn = hf(tn, yn)

pw)=w—-1 o(w)=1

Implicit Euler i1 — Yn = hf(tns1, Yni1)

p(w)=w—1 o(w)=w

. h
Trapezoidal rule Yn+1 — Yn = E(f(thrl»)/nJrl) + f(tm)/n))

p(w)=w—1 o(w)=(w+1)/2
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Adams methods (J.C. Adams, 1880s)

Suppose we have the first n + k approximations

Ym = y(tm), m=0,1,....,n+k—1

Rewrite y' = f(t, y) by integration

Y(tik) — Y(tmikr) = / " () dr

thyk—1

Approximate by an interpolation polynomial on t,, t,_1, ...

f(r,y(7)) = P(7)
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Neptune (1846) As seen from Voyager 2
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...and Adams got the final word 130 years later

VOYAGER 2 AT
NEPTUNE
CLOSEST
APPROACH
NEPTUNE
EARTH AND SUN H aH
OCCULTATION —
ZONES oH

—_—
EARTH AND SUN

VOYAGER 2 AT
TRITON

CLOSEST
APPROACH
\:5
W
. ;_<
TRITON SUN
H AND EARTH VOYAGER 2
7 OCCULTATION NEPTUNE
ZONES ENCOUNTER

Voyager orbit (1977-89) computed using Adams—Moulton methods
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Triton, Neptune's moon
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Adams—Bashforth methods (explicit)

Approximate P(7) = f(7,y(7)) + O(h*), degree k — 1 polynomial

P(tn+j): f(tn+j,y(tn+j)) _]:0,,/(*1

thtk
Then y(taik) = y(tnrie1) + / P(r)dr + (k<)

thik—1

Adams-Bashforth method (k-step, order p = k)

k—1

Yotk = Yntk-1+ Y bj hf(tns), yns))
j=0

where b; = h~! tt:k: @j(7)dr from Lagrange basis polynomials
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Coefficients of AB1

For k=1
Yn+t1 = Yn + bO hf(tna}/n)

the coefficient is determined by

1 tht1 1 th+1 -
bo=h wo(T)dr = h ldr=1
tn tn

Ynt1 =Yn+ hf(tnvyn)

Conclusion ABL is the explicit Euler method
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Coefficients of AB2

For k =2

Yn+2 = Ynt1 + h [bl f(thrl?)/nJrl) + bo f(tna)/n)]

with coefficients

the2 7t 1
bozhl/ gy = -2
tht1 tn o t"+1 2
thi2 7 _ ¢ 3
blzh_l/ ——dr==
tht1 t,—,+]_ - t" 2

3 1
Yn+2 = Yn+1 + §hf(t,,+1,y,,+1) - Ehf(t,,,y,,)
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Initializing an Adams method

The first step of AB2 is

3 1
yo=y1+h 5 f(ti,y1) — 5 f(to, y0)

While yp is obtained from the initial value, y; must be computed
with a one-step method, e.g. AB1

y1 = yo + hf(to, o)

3 1
)/n+2:)/n+1+h Ef(tn—&-l;)/n—i-l)_ Ef(tn>)/n) y n>0

Multistep software is generally self-starting (with “gearbox)
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A computational comparison AB1 vs AB2

Solve y/ = —y?cost, yo = 1/2, t € [0,87] using 48 and 480 steps

AB1: Solutions Errors

4 10°
0.8 1o /VW\
0.6

1072

0.4
o2 107°

o 10

o 10 20 30 o 10 20 30
1.2 10°

1 ]

107
0.8 4
0.6 4

107
0.4 ]

0.2 107°
o 10 20 30 o 10 20 30

AB2: Solutions Errors
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The order of a multistep method

The order of consistency is p if the local error is

k

k
Ly = ajy(tasj) — h > _ biy'(tnsj) = O(hPH)
j=0 =

Taylor expand:

k
Ly=> 3 (y(tn) + iRy (tn) + (R)?/2y" (tn) + - - ) _

Jj=0

— hby (' (ta) + by (t0) + (i0)? /2y (t) + - )

y(tn (Zaj>+hy ty (Zajj >+h2 "(t, (21(: %* ﬂ)

=0
+ ..
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The order of a multistep method, continued

k
Ly:y(tn)<2 >+hy tn (Zajj— )
j=0
2 e ajj ; 3,(3) : ajj3 bjj2
+ hoy"(tn) Zj—bjy + hyP(tn) Z?—j

j=0 j=0
4.

Should be O(hP*1) for all solutions y: insert polynomials!
y(t)=1 = YK, 2 =0
y(t) =t = Y[ gay— b

kK ajjf b; jP—1

y(t) =t = 20 % ~ (-1
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The order of a multistep method, continued

k
Ly:)/(tn)<z >+hy th (Zajj )
j=0
) a2 .\ s e bR
+ 2y ()| DS b | Ry @) DS - S
=0 “ ' '

j=0

Note: Ly = O(hP+1) iff Ly = 0 for all polynomials of deg < p

Easy test for consistency order: insert y = t™ and y’ = mt™~!

L(t9) is a polynomial of degree g. If L(t7)(jh) = O for all j, then
)

L(t9) must be the zero polynomial. Thus L(t%)(t,+jh) = 0 for any
t,. Hence it is enough to check t,,; = jh
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Order conditions, summary Multistep methods

Theorem A k-step method is of consistency order p if and only if
it satisfies the following conditions

k

k
° ijaj = ijmflbj, m=0,1,...,p
j=0 j=0

k
oZPJFl (p+1) ijb
j=0

A multistep method of consistency order p is exact for polynomials
of degree < p. Problems with solutions y = P(t) are solved exactly
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Stability

Unlike RK methods there are two distinct kinds of stability notions

e Finite step stability
This is concerned with for what nonzero step sizes h the
method can solve the linear test equation y’ = \y without
going unstable. It determines for what problem classes the
method is useful. Same idea as for RK

e Zero stability
This is concerned with whether a multistep method can solve
the trivial problem y” = 0 without going unstable. If not, the
method is useless: zero stability is necessary for convergence.
Multistep methods only
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Zero stability The root condition

Definition A polynomial p(w) satisfies the root condition if all its
zeros are on or inside the unit circle, and the zeros of unit modulus
are simple

Definition A multistep method whose generating polynomial p(w)
satisfies the root condition is called zero stable

Examples
p(w) = (w — 1)(w — 0.5)
p(w) = (w— 1)(w +1)
p(w) = (w —1)%(w — 0.5)
p(w) = (w — 1)(w? 4 0.25)

Adams methods have p(w) = w*~(w — 1) and are zero stable
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The Dahlquist equivalence theorem

Theorem A multistep method is convergent if and only if it is
zero-stable and consistent of order p > 1 (without proof)

Example k-step Adams-Bashforth methods are explicit methods
of consistency order p = k and have p(w) = w*~!(w — 1) = they
are convergent of convergence order p = k

Example k-step Adams-Moulton methods are implicit methods of
consistency order p = k + 1 and have p(w) = w* " }(w — 1) =
they are convergent of convergence order p = k + 1
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Dahlquist’s first barrier theorem

Theorem The maximal order of a zero-stable k-step method is

k for explicit methods
p= {k—i—l if k is odd

) ) for implicit methods
k+2 if k is even
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Backward differentiation methods BDF2

Construct a two-step 2nd order method of the form

Q2Ynt2 + Q1Ynt1 + aoyYn = hf(thi2, Yni2)
Order conditions for p = 2

as + a1 + ag = 0; 200 + a1 = 1; dasr + a1 =4

3 1
5Yn+2 = 2Ynt1+ §y” = hf(t,,+2,y,,+2)

1
p(w) = g(w —1)(w— §) = BDF2 is convergent of order 2
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Backward differentiation formulas (BDF)

Backward difference operator Vynik = Yn+k — Yn+k—1 With
ik =V e =V e, j>1

Theorem (without proof) The k-step BDF method

k

v/
Z TYn—i-k = hf(tnsks Ynik)
j=1

is convergent of order p = k if and only if 1 < k <6

Note BDF methods are designed for stiff problems
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BDF1-6 stability regions h\ € C

The methods are stable outside the indicated areas

Stability regions of BDF1-6 methods
20 T T

51

30 35
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A-stability of multistep methods y' = M\y

Applying a method to y’ = \y produces a difference equation

k k
> ajynii =h\Y_ biyni
Jj=0 Jj=0

The characteristic equation (with z = h\)
p(w) — z0(w) = 0
has k roots wj(z). The method is A-stable if and only if
Rez <0 = |wj(z)] <1,
with simple unit modulus roots (root condition)
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Dahlquist’'s second barrier theorem

Theorem (without proof) The highest order of an A-stable
multistep method is p = 2. Of all 2nd order A-stable multistep
methods, the trapezoidal rule has the smallest error

Note There is no order restriction for Runge—Kutta methods,

which can be A-stable for arbitrarily high orders

A multistep method can be useful although it isn't A-stable
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6. Difference operators

Differentiation D :y +— y, where D =d/dt

Forward shift E:y(t)— y(t+h)

Forward shift applied to sequences
y ={yn}nio

Ey = {yn+1}720

“Shorthand notation” (Ey), = Vnt1 = Eyn = Vnt1
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Taylor’s theorem Operator version

Expand in Taylor series

2

y(t+ ) = y(8) + h () + 5 5(0) +

<1+hD+ )2+(h5!)3+...)y(t)

e

Taylor’s theorem E = P
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Forward difference operator

Using short-hand notation

Ay(t) = y(t + h) - y(t)

A}/n = Yn+1 — Yn

Note A=E -1
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Forward differences of higher order

Recursive definition

Ayn = Ynt1 = Yn
Ak)/n = A(Akilyn)

In particular, 2nd order difference

Az)’n = A(ynJrl - Yn)
= (Ynr2 = Ynt1) — (Yntr1 — Yn)
= Yn42 — 2}/n+1 + Yn
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Finite difference approximation of derivatives

Approximation of derivatives

dy By
dx = Ax

(127)/ Ay, /Ax — Ay, 1/Ax
Ax

dx?

Yn1 = 2¥nt+ Y1 A’y
Ax? Ax?
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Backward difference operator

Backward difference

V}/n =Yn— Yn-1

Bwd Difference V=1— E1

Backward shift E-1 = e P
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Linear operators

All operators under consideration are /inear

L(ou+ Bv) = aLlu+ SLv

Allows addition and multiplication (assoc + dist laws)

The operators are commutative

(LloLz)U: (L20L1)U

There is a zero and a unit operator, 0 and 1

The operators form an operator algebra
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Operator series and operator calculus

Taylor's theorem
ehP=1-v

Formal inversion and power series expansion

AVEREN VAR Vo

Apply to differential equation y’' = f(y)
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Derivation of BDF methods
Differential equation y’ = f(y) implies hDy = hf(y)

o
Replace with operator series hD = Z Vj/j. Truncate at k terms
1

V2 \VA
<V+2+~~+k>yn=hf(y,,)

This is the k-step BDF method

The formula is exact for polynomials of degree < k, but zero stable
only for k < 6. BDF1-6 are convergent of order p = k
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