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1. Initial value problems

Standard formulation of a system of ODEs
y'=f(t,y);  y(0) =y
with £ : R x R™ — R™
Theorem If f(t,y) is continuous for t € [0, T| and satisfies the
Lipschitz condition
1t u) = £t V)| < L[] - flu—v]

for all u,v € R™ with Lipschitz constant L[f] < oo, then there
exists a unique solution to the initial value problem on [0, T| for
every initial value y(0) = yo
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Existence and uniqueness
Some problems always satisfy Lipschitz conditions on R

Example A linear constant coefficient differential equation

y=Ay;  y(0)=yo
has Lipschitz constant

JAu—Avl Ayl _
lu—vl ~ 5% Tyl

L[f] = max A
7] = max Al

The matrix norm ||A|| is a Lipschitz constant for f(y) = Ay
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Existence and uniqueness

Note Most nonlinear problems do not satisfy a Lipschitz condition
on all of R™

Example The problem

y=y% y(0) =y >0

has solution

Yo
t) =
y(t) T ot

The solution blows up at t = 1/yy (“Finite escape time")
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Standard form

Given y” = f(t,y,y") with y(0) = yo, y'(0) = ¥}
Standard substitution Introduce new variables

X1 =Yy
X2 :y/

to obtain a system of first order equations

X{ = X2

xb = f(t,x1,x)

with x1(0) = yo and x2(0) = y;

x" = F(t, x)
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2. The Explicit Euler method (1768)

Replace y" in y' = f(t,y) by finite difference approximation

y(ta + h) — y(tn)
h

y'(ta) =

Let y, denote the numerical approximation to y(t,) in

L
Lhy” = f(tn,yn), Yo =y(to)

Explicit Euler method Compute {y,} recursively from

Ynt1 =Yn + hf(tnayn)
t,+h

tn+1
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Explicit Euler Taylor series expansion

Taylor series expansion

2

y(t+h) = y(£) + hy/() + oy (©)

= y(t) + hf(t,y(t)) + O(H*) =

y(t+ h) = y(t) + hf(t,y(t))

Explicit Euler method obtained by dropping higher order terms

Ynt1 = Yn + hf(tnayh)
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Explicit Euler Geometric interpretation

“Take a step of size h in the direction of the tangent”

09 r

08 1 1 1 1 1 1 1
0.8 1 1.2 1.4 1.6 1.8 2 22 24

Ending up on a different solution trajectory (dashed curves), each step
introduces a /local error, eventually accumulating a large global error
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Geometric interpretation
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Explicit Euler

Geometric interpretation

“Take a step of size h in the direction of the tangent”
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introduces a /local error, eventually accumulating a large global error
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Explicit Euler Example

y' = —ycost; y(0)=1; tel0,2n]

Stepsize h = 2w /N with N = 24 gives h = 7 /12

The numerical solution is a sequence of points (t,, y,)
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3. Convergence

Analytical and numerical solutions at h = 7/8 and h = /128

N=64 N=64*16

The numerical solution approaches the exact solution as h — 0

Definition A method is convergent if, for every ODE with a
Lipschitz vector field f, and every fixed T = N - h, it holds that
lim [lynn —y(T)[ =0
N—oo
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Local and global errors

1.15

>1.05¢

y(t)

Y(tn+1)

0.95 L L L
13 1.35 1.4 1.45 15 1.55 16 1.65 17 175 18

Global error e, =y, —y(t,) and ent1= ynr1 — ¥(tnt1)

Local error /i1 = ¥ntr1 — y(tnt1)
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The local error Explicit Euler

Insert exact data y(t,) and y(t,11)

Y(tat1) = y(ta) + hf (tn, y(tn)) — Int1

The residual is the local error
Taylor series y(tn+1) = y(tn) + hy'(t,) + %2y”(tn) +... =
Explicit Euler local error [, 1 ~ — %2 y"(tn)

The local error is evaluated along exact solution (solid curve)
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Error propagation From local to global error

Explicit Euler (numerical solution)

Ynt1 =Yn+ hf(tm)/n)

Subtract Taylor series expansion of exact solution

h2

y(ta+1) = y(ta) + hf (tn, y(tn)) + ?y”(tn) +..

Global error recursion

€nt1 = €p+ hf(tmy(tn) + en) - hf(tmy“n)) + l”+1

shows how local errors accumulate into global error
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Error propagation . ..

ent1 = en + hf(tn, y(tn) + en) — hf (tn, y(tn)) + Int1

Take norms and use Lipschitz condition

lentall < [lenll + AL[F] - [lenll + [[/n+1 ]l

Lemma Assume that a non-negative sequence {a,} satisfies
ant1 < (1+ hp)a, + ch®

with ag = 0 and n > 0. Then, for all n > 0,

h unh _ 1
an< U1 hp) —1<ehS——=
" "
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Convergence of the Euler method

Theorem The explicit Euler method is convergent

Proof Suppose f is sufficiently differentiable. Given h > 0 and a
fixed T = Nh, let e, , = ynn — y(tn)

Apply the lemma to global error recursion, to get
LI _ 4

[(L+ AL —1] < chT

C
< —— h
len,nll < G

with
¢ = max|| ]}/ ~ max |yl /2

16 /41



Convergence of the Euler method . ..

c
nbll < —=h(e™fl—1)=Cc(T) - h
lensll < g (™1 = 1) = €(T)
implies the method is convergent, as limp_o ||e, || =0

Note

1) The global error can be made arbitrarily small
2) The error bound is way too large for practical purposes

3) Better error bounds can be obtained
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Theoretical error bound ... Is hopeless!

Example
y'=-100y, y(0)=1

Then L[f] = 100 and the exact solution is y(t) = e 100 with
y"(t) = 1002109 'so ¢ = 1007 /2, with bound

1 2
lennll < 5oros (T~ 1)

Error estimate at T =1 is ||eyn] < 50 he!® ~ 1.4 -10%h!

Actual error As y, = (1 — 100h)", the error at T = 1 for h < 1/50
is Hen,hH - ‘(1 — 100/N)N — efIOO‘ <3.7- 10744h!

The error is overestimated by at least 89 orders of magnitude

18/41



y =My —sint) + cost

Computational test

0.2, with initial condition y(7/4) =1/y/2

A\ =

24

06

t

h=m/20

t

h=m/10
Note Local error O(h?), global error O(h)!
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4. Order of consistency

Always insert exact data and find the residual
If voi1 = Pu(f, th, ¥n, Yn—1,--- ), then the local error is

Y(tn+1) = ¢h(f7 tnv)/(tn)v}/(tnfl)v e ) — In+1

Definition The order of consistency is p if

Y(tn+1) - cbh(fv ha)/(tn)ay(tnfl)v - ) - O(hp+1)

as h — 0, for every analytic f. The local error is then O(hP*1)

Alternative The order of consistency is p if the formula is exact
for all polynomials y = P(t) of degree p or less
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Order of consistency Explicit Euler

Example Expanding in Taylor series,

Y(tas1) = [y(ta) + hf(ta, y(ta))] = O(h?)

so the method’s consistency order is one

Alternatively, suppose y(t) =1 with f =y’ = 0. Then
y(tnt1) = y(tn) + hf(tn, y(tn)) =1+ h-0 =1, so exact

Next take 1st degree polynomial y(t) =t with f =y’ = 1. Then
h=y(tnt1) = y(ta) + hf(tn,y(ta)) =0+ h-1=h

For 2nd degree polynomial y(t) = t? with f = y/ = 2t we get
h? = y(tny1) = y(ta) + hf (tn, y(ta)) =0+ h-0 =0 # h?
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5. The trapezoidal rule

Explicit Euler linearizes at t, with slope y'(t,). Instead, take
average of y/(t,) and y'(t,+1) and approximate

V(1) % S1F (b y(80)) + F(tns1, (b 1))

This gives the trapezoidal rule

h
Ynt1 = Yn + E[f(tm)/n) + f(tnt1, Ynt1)]
The method is implicit

Nonlinear equation solving is required on each step
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Trapezoidal rule Order and convergence

Insert exact solution and expand in Taylor series

Y{tni1) = (1 (t) + 217 Y (80)) + (b, (102 ))])
2

3
=y (t) + by (1) + Ty (1) + Ty (8) + O(Y)

2 6
2
— e+ 5 (Y00 + D) + by (1) + e )}
3
_ fz ’”(tn) C)(h4)

Theorem The trapezoidal rule is convergent of order two
(No proof given here)
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The dramatic impact of 2nd order convergence

y'=—ycost; y(0)=1; te]0,8n]

Stepsize h = 8w /N with N = 96 gives h = 7/12

N=96 Trapezoidal rule N=96 Explicit Euler

Numerical solutions with Trapezoidal rule and Explicit Euler
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Implicit methods Implicit Euler
Implicit Euler Ynt1 = Yn + h f(tn—O—la)/n—O—l)
We need to solve a nonlinear equation to compute y, 1
The extra cost is motivated if we can take larger steps

There are some problems where implicit methods can take
enormously large time steps without losing accuracy!

We will return to how to solve nonlinear equations

25 /41



Implicit methods Implicit Midpoint Rule

We can also approximate the derivative y’(t) by

th + the1 + 1
_y/(t) ~ f( Z 2’7+ ’Yn 2)’n+ >7 te [tmtn-i-l]

resulting in the 2nd order Implicit Midpoint Method

th +tht1 Yo+ }/n+1)

)/n+1:_)/n+hf< 5 ) 5
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6. Theta methods

Approximate y’ by a convex combination of y'(t,) and y'(t,+1)

Yn+1 = Yn t+ h [Hf(tn-i-l»)/n-i-l) + (1 - e)f(tmyn)]: 0 e [07 1]

o Explicit Euler 6 =0
e Trapezoidal rule (implicit) 6 =1/2

o Implicit Euler 0 =1 = y,1 =yn+ hf(thr1, Yni1)
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Theta methods Order and convergence

Use Taylor series expansion to get

Y(tn+1) = y(ta) = h{0F (tni1, y(tar1)) + (1 = 0)F (tn, y(tn))]

1
2

2

3)h3y"/(tn) +O(h")

2y () — ~(6

= (0 ,

If @ = 1/2 the method is of order 2; otherwise it is of order 1

Theorem (without proof) The Theta-methods are convergent
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7. Numerical tests Explicit Euler

y=Ay—sint)+cost with \=-0.2

14 B e N 4 RIS --=

h=m/10 h=m/20

Local error O(h?), global error O(h)
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Numerical tests Implicit Euler

y=Ay—sint)+cost with A= -0.2

h=m/10 h=m/20

Local error O(h?), global error O(h)
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Numerical tests Implicit Euler

y =AMy —sint)+cost with A= -10

1 T T T T T T T T 1 T T T T T T T T

h=m/10 h=m/20

Local error O(h?), global error O(h)
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Numerical tests

y =AMy —sint) + cost

Explicit Euler

with A =—-10

\

09k 09|
137 >oe
07k 07|
06 06|
°%s 08 1 12 1.4 75 1.8 2 22 24 06 08 1 12 1.4 s 1.8 2 22 24

h=m/10

Numerical instability!
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8. The linear test equation

Definition The linear test equation is

y' =My, y(0)=1, t>0, XeC

As y(t) = e, we have

y(t) <K <« Re(\)<0

Mathematical stability Bounded solutions if Re(A\) <0
When does a numerical method have this property?

Does Re(A) < 0 imply numerical stability?
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Numerical stability Stability region

Definition The stability region D of a method is the set of all
hX € C such that |y,| < K when the method is applied to the test

equation

Example For Euler's method, y,+1 = (1 + h\)y,, implying that
Yn remains bounded if and only if |1+ hA| <1

DEuler:{Ze C: ‘1+Z| Sl}
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A-stability

Definition A method is called A-stable if C— C D

gl}_(C

so Re(z) < 0 implies that y, remains bounded for any h > 0

For the trapezoidal rule

1
1+§Z
1

DTR:{ZGCZ

The explicit Euler method is not A-stable but the implicit Euler
method and the trapezoidal rule are A-stable

Common idea — “If the original problem is stable, then an A-stable
method will replicate that behavior numerically”
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Relevance of linear test equation

Assume that y’ = Ay is diagonalizable, with AT = TA
Then u = Ty satisfies 1/ = Au (scalar equations)
If the explicit Euler method is applied to y' = Ay, we get

Ynt1 = (I + hA)yn
Putting u, = T 'y, leads to
up+1 = (I + hN\)up,
T diagonalizes the differential equation and its discretization

Interpret \ in linear test equation as eigenvalue of A
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9. Stiff ODEs

Example Solve y = A(y —sint) 4 cost with A = —500

Solution
Particular yp(t) = S|n t
Homogeneous  yy(t) = e
General y(t) = Mt=0)(y(ty) —sintg) +sint

Study the flow of this equation and numerical solutions
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Flow (solution trajectories) A= —50

1.2 T T T T T T T T T T T 1 T L} T T T T T T
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Stiffness

Stiff differential equations are characterized by homogeneous
solutions being strongly damped

Example y = A\(y —sint) + cos t with A < —1

Explicit methods have bounded stability regions putting strong
stability restrictions on the step size h
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Stiffness Explicit methods

With Explicit Euler the solution approaches sint as t — oo if and
only if h < 1/250

The step size h must be kept small, not to keep errors small, but
to maintain numerical stability

The Trapezoidal Rule solution approaches sint as t — oo
for every h > 0

The step size must only be kept small to keep errors small

For A-stable methods, there is no stability restriction, only an
accuracy restriction
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Stiffness Implicit methods

Implicit methods with unbounded stability regions put no stability
restrictions on h

The stepsize is only restricted by accuracy requirements

Example The implicit Euler applied to the problem above only

requires
h2yu h2
I, ~ ~ — sint,

2 2
to be sufficiently small, independently of A
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