Numerical Methods for Differential Equations
 Course objectives and preliminaries

Tony Stillfjord, Gustaf Söderlind

Numerical Analysis, Lund University

1. Course structure and objectives
2. What is Numerical Analysis?
3. The four principles of Numerical Analysis

1. Course structure and objectives Learning by doing

Main objectives

- Learn basic scientific computing for solving differential equations
- Understand mathematics-numerics interaction, and how to match numerical method to mathematical properties
- Understand correspondence between principles in physics and mathematical equations
- Construct and use elementary Matlab/Python programs for differential equations

A motto

The computer is to mathematics what the telescope is to astronomy, and the microscope is to biology

- Peter D Lax

The operators we will deal with

Initial value problems

$$
\frac{\mathrm{d}}{\mathrm{~d} t}
$$

The operators we will deal with

Boundary value problems

$$
\frac{d^{2}}{d x^{2}}
$$

The operators we will deal with

Partial differential operators

Parabolic

Hyperbolic

$$
\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}
$$

Course topics

- IVP Initial value problems first-order equations; higher-order equations; systems of differential equations
- BVP Boundary value problems two-point boundary value problems; Sturm-Liouville eigenvalue problems
- PDE Partial differential equations diffusion equation; advection equation; convection-diffusion; wave equation
- Applications in all three areas

Initial value problems

A first-order equation without elementary analytical solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=y-\mathrm{e}^{-t^{2}}, \quad y(0)=y_{0}
$$

A second-order equation Motion of a pendulum

$$
\ddot{\theta}+\frac{g}{L} \sin \theta=0, \quad \theta(0)=\theta_{0}, \quad \dot{\theta}(0)=\dot{\theta}_{0}
$$

A system of equations Predator-prey model

$$
\begin{aligned}
& \dot{y}_{1}=k_{1} y_{1}-k_{2} y_{1} y_{2} \\
& \dot{y}_{2}=k_{3} y_{1} y_{2}-k_{4} y_{2}
\end{aligned}
$$

where y_{1} is the prey population and y_{2} is the predator species

Boundary value problems

Second-order two-point BVP Electrostatic potential u between concentric metal spheres

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} u}{\mathrm{~d} r}=0, \quad u\left(R_{1}\right)=V_{1}, \quad u\left(R_{2}\right)=0
$$

at distance r from the center

A Sturm-Liouville eigenvalue problem Euler buckling of a slender column

$$
y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=0, \quad y(1)=0
$$

Find eigenvalues λ and eigenfunctions y

Some application areas in ODEs

Initial value problems

- mechanics
- electrical circuits

$$
\begin{aligned}
& M \ddot{q}=F(q) \\
& C \dot{v}=-I(v) \\
& \dot{c}=f(c)
\end{aligned}
$$

Boundary value problems

- materials
- microphysics
$u^{\prime \prime}=M / E I$
- eigenmodes

$$
-\frac{\hbar}{2 m} \psi^{\prime \prime}=E \psi
$$

$-u^{\prime \prime}=\lambda u$

Partial differential equations

The Poisson Equation

$$
u_{x x}+u_{y y}=f(x, y)
$$

subject to

$$
u(x, y)=g(x, y)
$$

on the boundary $x=0 \vee x=1$, and $y=0 \vee y=1$ is an elliptic PDE modelling e.g. the displacement u of an elastic membrane under load f

Partial differential equations

The Diffusion Equation

$$
u_{t}=u_{x x}+f(x)
$$

subject to

$$
\begin{aligned}
& u(x, 0)=g(x), \quad x \in[0, L] \\
& u(0, t)=c_{1}, \quad u(L, t)=c_{2}, \quad t \in[0, T]
\end{aligned}
$$

is a parabolic PDE modelling e.g. temperature u as a funtion of time, in a rod with temperature c_{1} and c_{2} at its ends, with initial temperature distribution $g(x)$ and source term $f(x)$

Partial differential equations

The Wave Equation

$$
u_{t t}=u_{x x}
$$

subject to

$$
\begin{aligned}
& u(x, 0)=g(x), \quad x \in[0, L] \\
& u(0, t)=0, \quad u(L, t)=0, \quad t \in[0, T]
\end{aligned}
$$

is a hyperbolic PDE modelling e.g. the displacement u of a vibrating elastic string fixed at $x=0$ and $x=a$

2. What is Numerical Analysis?

Categories of mathematical problems

Category	Algebra	Analysis
linear	computable	not computable
nonlinear	not computable	not computable

Algebra Only finite constructs
Analysis Limits, derivatives, integrals etc. (transfinite)
Computable Exact solution obtained with finite computation

What is Numerical Analysis?

Categories of mathematical problems

Category	Algebra	Analysis
linear	computable	not computable
nonlinear	not computable	not computable

Problems from all four categories can be solved numerically:

Numerical analysis aims to construct and analyze quantitative methods for the automatic computation of approximate solutions to mathematical problems

Goal Construction of mathematical software

3. The four principles of numerical analysis

There are four basic principles in numerical analysis. Every computational method is constructed from these principles

- Discretization

To replace a continuous problem by a discrete one

- Linear algebra tools, including polynomials All techniques that are computable
- Linearization

To approximate a nonlinear problem by a linear one

- Iteration

To apply a computation repeatedly (until convergence)

Discretization

From function to vector

A continuous function is sampled at discrete points

Discretization ...

Reduces the amount of information to a finite set

Select a subset $\Omega_{N}=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of distinct points from the interval $\Omega=[0,1]$

Continuous function $f(x)$ is replaced by vector $F=\left\{f\left(x_{k}\right)\right\}_{0}^{N}$

The subset Ω_{N} is called the grid

The vector F is called a grid function or discrete function

Discretization yields a computable problem. Approximations are computed only at a finite set of grid points

Discretization

Approximation of derivatives

Definition of derivative

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Take $\Delta x=x_{k+1}-x_{k}$ finite and approximate

$$
f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}+\Delta x\right)-f\left(x_{k}\right)}{\Delta x}=\frac{F_{k+1}-F_{k}}{x_{k+1}-x_{k}}
$$

How accurate is this approximation?

Error and accuracy

Expand in Taylor series

$$
\begin{aligned}
\frac{f\left(x_{k}+\Delta x\right)-f\left(x_{k}\right)}{\Delta x} & \approx \frac{f\left(x_{k}\right)+\Delta x f^{\prime}\left(x_{k}\right)+\mathcal{O}\left(\Delta x^{2}\right)-f\left(x_{k}\right)}{\Delta x} \\
& =f^{\prime}\left(x_{k}\right)+\mathcal{O}(\Delta x)
\end{aligned}
$$

The error is proportional to Δx

Try this formula for $f(x)=\mathrm{e}^{x}$ at $x_{k}=1$ for various Δx

Numerical differentiation

Error in numerically calculated derivative of e^{x} at $x=1$

Loglog plot of error vs. step size Δx

Error in numerically calculated derivative of e^{x} at $x=1$

Loglog plot of error vs. step size Δx

Better alternative

Symmetric approximation

$$
\frac{f\left(x_{k}+\Delta x\right)-f\left(x_{k}-\Delta x\right)}{2 \Delta x}=\frac{F_{k+1}-F_{k-1}}{x_{k+1}-x_{k-1}}=f^{\prime}\left(x_{k}\right)+\mathcal{O}\left(\Delta x^{2}\right)
$$

The approximation is $2 n d$ order accurate because error is Δx^{2}

Whenever you have a power law, plot in log-log diagram

$$
\text { err } \approx C \cdot \Delta x^{p} \quad \Rightarrow \quad \log \mathrm{err} \approx \log C+p \log \Delta x
$$

This is a straight line of slope p, easy to identify

Numerical 2nd order differentiation

Error in numerically calculated derivative of e^{x} at $x=1$

Loglog plot of error vs. step size Δx

Second order approximation

Good news, bad news

Error in numerically calculated derivative of e^{x} at $x=1$

Loglog plot of error vs. step size Δx

1st and 2nd order comparison

Error in numerically calculated derivative of e^{x} at $x=1$

2nd order approximation has much higher accuracy!

Discretization of a differential equation

Problem Solve $\dot{y}=q y$ numerically on $[0, T]$, with $y(0)=y_{0}$

The analytical solution is a function $y(t)=y_{0} \mathrm{e}^{q t}$
The numerical solution is a vector $y=\left\{y_{k}\right\}_{k=0}^{N}$ with $y_{k} \approx y\left(t_{k}\right)$, where $t_{k}=k T / N$

Method Approximate derivative by difference quotient, using step size

$$
\Delta t=t_{k+1}-t_{k}=T / N
$$

Discretization of a differential equation ...

Discretization method Approximate derivative by finite difference quotient

$$
\frac{y_{k+1}-y_{k}}{t_{k+1}-t_{k}} \approx \dot{y}\left(t_{k}\right)
$$

to get the linear algebraic equation system $(k=0,1, \ldots, N)$

$$
\frac{y_{k+1}-y_{k}}{t_{k+1}-t_{k}}=q y_{k}
$$

or

$$
y_{k+1}=\left(1+\frac{q T}{N}\right) y_{k} \quad \Rightarrow \quad y_{N}=\left(1+\frac{q T}{N}\right)^{N} y_{0}
$$

Discretization of a differential equation...

Note The numerical approximation at time T is

$$
y_{N}=\left(1+\frac{q T}{N}\right)^{N} y_{0}
$$

But

$$
\lim _{N \rightarrow \infty}\left(1+\frac{q T}{N}\right)^{N}=\mathrm{e}^{q T}
$$

The numerical approximation converges to the exact solution as $N \rightarrow \infty$

Main course objective

The course centers on discretization methods for differential equations of all types

We will also encounter the other three principles of numerical analysis as we go

- linear algebra methods and polynomial techniques
- linearization
- and iterative methods

