Numerical Methods for Differential Equations Course objectives and preliminaries

Tony Stillfjord, Gustaf Söderlind Numerical Analysis, Lund University

Contents V4.19

- 1. Course structure and objectives
- 2. What is Numerical Analysis?
- 3. The four principles of Numerical Analysis

1. Course structure and objectives Learning by doing

Main objectives

- Learn basic scientific computing for solving differential equations
- Understand *mathematics-numerics interaction*, and how to match numerical method to mathematical properties
- Understand correspondence between principles in physics and mathematical equations
- Construct and use *elementary* MATLAB/*Python programs* for differential equations

A motto

The computer is to mathematics what the telescope is to astronomy, and the microscope is to biology

- Peter D Lax

The operators we will deal with

Initial value problems

$$\frac{\mathrm{d}}{\mathrm{d}t}$$

The operators we will deal with

Boundary value problems

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}$$
 $\frac{\mathrm{d}}{\mathrm{d}x}$

The operators we will deal with

Partial differential operators

Parabolic

Hyperbolic

$$\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$$

$$\frac{\partial}{\partial t} - \frac{\partial}{\partial x}$$

Course topics

- IVP Initial value problems first-order equations;
 higher-order equations; systems of differential equations
- BVP Boundary value problems two-point boundary value problems; Sturm-Liouville eigenvalue problems
- PDE Partial differential equations diffusion equation; advection equation; convection—diffusion; wave equation
- Applications in all three areas

A first-order equation without elementary analytical solution

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y - \mathrm{e}^{-t^2}, \qquad y(0) = y_0$$

A second-order equation Motion of a pendulum

$$\ddot{\theta} + \frac{g}{I}\sin\theta = 0, \qquad \theta(0) = \theta_0, \quad \dot{\theta}(0) = \dot{\theta}_0$$

A system of equations Predator-prey model

$$\dot{y}_1 = k_1 y_1 - k_2 y_1 y_2$$

 $\dot{y}_2 = k_3 y_1 y_2 - k_4 y_2$

where y_1 is the prey population and y_2 is the predator species

Second-order two-point BVP Electrostatic potential *u* between concentric metal spheres

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}u}{\mathrm{d}r} = 0, \qquad u(R_1) = V_1, \quad u(R_2) = 0$$

at distance r from the center

A Sturm-Liouville eigenvalue problem Euler buckling of a slender column

$$y'' = \lambda y$$
, $y'(0) = 0$, $y(1) = 0$

Find eigenvalues λ and eigenfunctions y

Some application areas in ODEs

Initial value problems

- mechanics $M\ddot{q} = F(q)$ • electrical circuits $C\dot{v} = -I(v)$
- chemical reactions $\dot{c} = f(c)$

Boundary value problems

- materials u'' = M/EI
- microphysics $-\frac{\hbar}{2m}\psi'' = E\psi$
- eigenmodes $-u'' = \lambda u$

Partial differential equations

The Poisson Equation

$$u_{xx} + u_{yy} = f(x, y)$$

subject to

$$u(x,y)=g(x,y)$$

on the boundary $x=0 \lor x=1$, and $y=0 \lor y=1$ is an *elliptic PDE* modelling e.g. the displacement u of an elastic membrane under load f

The Diffusion Equation

$$u_t = u_{xx} + f(x)$$

subject to

$$u(x,0) = g(x), x \in [0,L]$$

 $u(0,t) = c_1, u(L,t) = c_2, t \in [0,T]$

is a *parabolic PDE* modelling e.g. temperature u as a funtion of time, in a rod with temperature c_1 and c_2 at its ends, with initial temperature distribution g(x) and source term f(x)

Partial differential equations

The Wave Equation

$$u_{tt} = u_{xx}$$

subject to

$$u(x,0) = g(x), x \in [0,L]$$

 $u(0,t) = 0, u(L,t) = 0, t \in [0,T]$

is a *hyperbolic PDE* modelling e.g. the displacement u of a vibrating elastic string fixed at x = 0 and x = a

2. What is Numerical Analysis?

Categories of mathematical problems

Category	Algebra	Analysis
linear	computable	not computable
nonlinear	not computable	not computable

Algebra Only finite constructs

Analysis Limits, derivatives, integrals etc. (transfinite)

Computable Exact solution obtained with finite computation

What is Numerical Analysis?

Categories of mathematical problems

Category	Algebra	Analysis
linear	computable	not computable
nonlinear	not computable	not computable

Problems from all four categories can be solved numerically:

Numerical analysis aims to construct and analyze quantitative methods for the automatic computation of approximate solutions to mathematical problems

Goal Construction of mathematical software

3. The four principles of numerical analysis

There are four basic principles in numerical analysis. Every computational method is constructed from these principles

- Discretization
 To replace a continuous problem by a discrete one
- Linear algebra tools, including polynomials All techniques that are computable
- Linearization
 To approximate a nonlinear problem by a linear one
- Iteration

 To apply a computation repeatedly (until convergence)

A continuous function is sampled at discrete points

Discretization . . .

Reduces the amount of information to a finite set

Select a subset $\Omega_N = \{x_0, x_1, \dots, x_N\}$ of distinct points from the interval $\Omega = [0, 1]$

Continuous function f(x) is replaced by vector $F = \{f(x_k)\}_0^N$

The subset Ω_N is called *the grid*

The vector *F* is called a *grid function* or discrete function

Discretization yields a *computable problem*. Approximations are computed only at a finite set of grid points

Definition of derivative

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Take $\Delta x = x_{k+1} - x_k$ finite and approximate

$$f'(x_k) \approx \frac{f(x_k + \Delta x) - f(x_k)}{\Delta x} = \frac{F_{k+1} - F_k}{x_{k+1} - x_k}$$

How accurate is this approximation?

Error and accuracy

Expand in Taylor series

$$\frac{f(x_k + \Delta x) - f(x_k)}{\Delta x} \approx \frac{f(x_k) + \Delta x f'(x_k) + \mathcal{O}(\Delta x^2) - f(x_k)}{\Delta x}$$
$$= f'(x_k) + \mathcal{O}(\Delta x)$$

The error is proportional to Δx

Try this formula for $f(x) = e^x$ at $x_k = 1$ for various Δx

Numerical differentiation

Error in numerically calculated derivative of e^x at x = 1

Loglog plot of error vs. step size Δx

Error in numerically calculated derivative of e^x at x = 1

Loglog plot of error vs. step size Δx

$$\frac{f(x_k + \Delta x) - f(x_k - \Delta x)}{2\Delta x} = \frac{F_{k+1} - F_{k-1}}{x_{k+1} - x_{k-1}} = f'(x_k) + \mathcal{O}(\Delta x^2)$$

The approximation is 2nd order accurate because error is Δx^2

Whenever you have a power law, plot in log-log diagram

$$\operatorname{err} \approx C \cdot \Delta x^{p} \Rightarrow \log \operatorname{err} \approx \log C + p \log \Delta x$$

This is a *straight line of slope p*, easy to identify

Numerical 2nd order differentiation

Error in numerically calculated derivative of e^x at x = 1

Loglog plot of error vs. step size Δx

Error in numerically calculated derivative of e^x at x = 1

Loglog plot of error vs. step size Δx

1st and 2nd order comparison

Error in numerically calculated derivative of e^x at x = 1

2nd order approximation has much higher accuracy!

Discretization of a differential equation

Problem Solve $\dot{y} = qy$ numerically on [0, T], with $y(0) = y_0$

The analytical solution is a function $y(t) = y_0 e^{qt}$

The numerical solution is a vector $y = \{y_k\}_{k=0}^N$ with $y_k \approx y(t_k)$, where $t_k = kT/N$

Method Approximate derivative by difference quotient, using step size

$$\Delta t = t_{k+1} - t_k = T/N$$

Discretization of a differential equation . . .

Discretization method Approximate derivative by finite difference quotient

$$\frac{y_{k+1}-y_k}{t_{k+1}-t_k}\approx \dot{y}(t_k)$$

to get the linear algebraic equation system (k = 0, 1, ..., N)

$$\frac{y_{k+1}-y_k}{t_{k+1}-t_k}=qy_k$$

or

$$y_{k+1} = \left(1 + \frac{qT}{N}\right) y_k \quad \Rightarrow \quad y_N = \left(1 + \frac{qT}{N}\right)^N y_0$$

Discretization of a differential equation . . .

Note The numerical approximation at time T is

$$y_N = \left(1 + \frac{qT}{N}\right)^N y_0$$

But

$$\lim_{N \to \infty} \left(1 + \frac{qT}{N} \right)^N = e^{qT}$$

The numerical approximation *converges* to the exact solution as $N \to \infty$

Main course objective

The course centers on *discretization methods* for differential equations of all types

We will also encounter the other three principles of numerical analysis as we go

- linear algebra methods and polynomial techniques
- linearization
- · and iterative methods