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1. Course structure and objectives Learning by doing

Main objectives

• Learn basic scientific computing for solving differential
equations

• Understand mathematics–numerics interaction, and how to
match numerical method to mathematical properties

• Understand correspondence between principles in physics and
mathematical equations

• Construct and use elementary Matlab/Python programs for
differential equations
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A motto

The computer is to mathematics what the telescope
is to astronomy, and the microscope is to biology

– Peter D Lax
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The operators we will deal with

Initial value problems

d

dt
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The operators we will deal with

Boundary value problems

d2

dx2
d

dx
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The operators we will deal with

Partial differential operators

Parabolic Hyperbolic

∂

∂t
− ∂2

∂x2
∂

∂t
− ∂

∂x
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Course topics

• IVP Initial value problems first-order equations;
higher-order equations; systems of differential equations

• BVP Boundary value problems two-point boundary value
problems; Sturm–Liouville eigenvalue problems

• PDE Partial differential equations diffusion equation;
advection equation; convection–diffusion; wave equation

• Applications in all three areas
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Initial value problems Examples

A first-order equation without elementary analytical solution

dy

dt
= y − e−t

2
, y(0) = y0

A second-order equation Motion of a pendulum

θ̈ +
g

L
sin θ = 0, θ(0) = θ0, θ̇(0) = θ̇0

A system of equations Predator–prey model

ẏ1 = k1 y1 − k2 y1 y2

ẏ2 = k3 y1 y2 − k4 y2

where y1 is the prey population and y2 is the predator species
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Boundary value problems Examples

Second-order two-point BVP Electrostatic potential u between
concentric metal spheres

d2u

dr2
+

2

r

du

dr
= 0, u(R1) = V1, u(R2) = 0

at distance r from the center

A Sturm–Liouville eigenvalue problem Euler buckling of a slender
column

y ′′ = λy , y ′(0) = 0, y(1) = 0

Find eigenvalues λ and eigenfunctions y
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Some application areas in ODEs

Initial value problems

• mechanics Mq̈ = F (q)
• electrical circuits Cv̇ = −I (v)
• chemical reactions ċ = f (c)

Boundary value problems

• materials u′′ = M/EI

• microphysics − ~
2mψ

′′ = Eψ
• eigenmodes −u′′ = λu
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Partial differential equations Elliptic

The Poisson Equation

uxx + uyy = f (x , y)

subject to
u(x , y) = g(x , y)

on the boundary x = 0 ∨ x = 1, and y = 0 ∨ y = 1 is an
elliptic PDE modelling e.g. the displacement u of an elastic
membrane under load f
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Partial differential equations Parabolic

The Diffusion Equation

ut = uxx + f (x)

subject to

u(x , 0) = g(x), x ∈ [0, L]

u(0, t) = c1, u(L, t) = c2, t ∈ [0,T ]

is a parabolic PDE modelling e.g. temperature u as a funtion of
time, in a rod with temperature c1 and c2 at its ends, with initial
temperature distribution g(x) and source term f (x)
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Partial differential equations Hyperbolic

The Wave Equation
utt = uxx

subject to

u(x , 0) = g(x), x ∈ [0, L]

u(0, t) = 0, u(L, t) = 0, t ∈ [0,T ]

is a hyperbolic PDE modelling e.g. the displacement u of a
vibrating elastic string fixed at x = 0 and x = a
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2. What is Numerical Analysis?

Categories of mathematical problems

Category Algebra Analysis

linear computable not computable

nonlinear not computable not computable

Algebra Only finite constructs

Analysis Limits, derivatives, integrals etc. (transfinite)

Computable Exact solution obtained with finite computation
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What is Numerical Analysis?

Categories of mathematical problems

Category Algebra Analysis

linear computable not computable

nonlinear not computable not computable

Problems from all four categories can be solved numerically:

Numerical analysis aims to construct and analyze quantitative
methods for the automatic computation of approximate solutions
to mathematical problems

Goal Construction of mathematical software
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3. The four principles of numerical analysis

There are four basic principles in numerical analysis. Every
computational method is constructed from these principles

• Discretization
To replace a continuous problem by a discrete one

• Linear algebra tools, including polynomials
All techniques that are computable

• Linearization
To approximate a nonlinear problem by a linear one

• Iteration
To apply a computation repeatedly (until convergence)
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Discretization From function to vector
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A continuous function is sampled at discrete points
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Discretization . . .

Reduces the amount of information to a finite set

Select a subset ΩN = {x0, x1, . . . , xN} of distinct points from the
interval Ω = [0, 1]

Continuous function f (x) is replaced by vector F = {f (xk)}N0

The subset ΩN is called the grid

The vector F is called a grid function or discrete function

Discretization yields a computable problem. Approximations are
computed only at a finite set of grid points
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Discretization Approximation of derivatives

Definition of derivative

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)

∆x

Take ∆x = xk+1 − xk finite and approximate

f ′(xk) ≈ f (xk + ∆x)− f (xk)

∆x
=

Fk+1 − Fk
xk+1 − xk

How accurate is this approximation?
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Error and accuracy

Expand in Taylor series

f (xk + ∆x)− f (xk)

∆x
≈ f (xk) + ∆x f ′(xk) +O(∆x2)− f (xk)

∆x

= f ′(xk) +O(∆x)

The error is proportional to ∆x

Try this formula for f (x) = ex at xk = 1 for various ∆x

21 / 31



Numerical differentiation

Error in numerically calculated derivative of ex at x = 1
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Numerical differentiation Good news, bad news

Error in numerically calculated derivative of ex at x = 1
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Better alternative Symmetric approximation

f (xk + ∆x)− f (xk −∆x)

2∆x
=

Fk+1 − Fk−1

xk+1 − xk−1
= f ′(xk) +O(∆x2)

The approximation is 2nd order accurate because error is ∆x2

Whenever you have a power law, plot in log-log diagram

err ≈ C ·∆xp ⇒ log err ≈ logC + p log ∆x

This is a straight line of slope p, easy to identify
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Numerical 2nd order differentiation

Error in numerically calculated derivative of ex at x = 1
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Second order approximation Good news, bad news

Error in numerically calculated derivative of ex at x = 1
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1st and 2nd order comparison

Error in numerically calculated derivative of ex at x = 1
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2nd order approximation has much higher accuracy!
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Discretization of a differential equation

Problem Solve ẏ = qy numerically on [0,T ], with y(0) = y0

The analytical solution is a function y(t) = y0e
qt

The numerical solution is a vector y = {yk}Nk=0 with yk ≈ y(tk),
where tk = kT/N

Method Approximate derivative by difference quotient, using step
size

∆t = tk+1 − tk = T/N
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Discretization of a differential equation . . .

Discretization method Approximate derivative by finite
difference quotient

yk+1 − yk
tk+1 − tk

≈ ẏ(tk)

to get the linear algebraic equation system (k = 0, 1, . . . ,N)

yk+1 − yk
tk+1 − tk

= qyk

or

yk+1 =

(
1 +

qT

N

)
yk ⇒ yN =

(
1 +

qT

N

)N

y0

29 / 31



Discretization of a differential equation . . .

Note The numerical approximation at time T is

yN =

(
1 +

qT

N

)N

y0

But

lim
N→∞

(
1 +

qT

N

)N

= eqT

The numerical approximation converges to the exact solution as
N →∞
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Main course objective

The course centers on discretization methods for differential
equations of all types

We will also encounter the other three principles of numerical
analysis as we go

• linear algebra methods and polynomial techniques

• linearization

• and iterative methods
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