
Project #1 in FMNN10 and NUMN12
c© T Stillfjord, G Söderlind 2019

Goals. The goal is to get started with Matlab or Python as a tool for
approximating solutions to di�erential equations, and in particular, to get
acquainted with time-stepping methods for initial value ODEs, and standard
techniques for analyzing and assessing such methods.

1. The Euler methods. Examine numerical stability and computational
accuracy, and learn how to verify that your solver works as expected.
Learn how to arrange computational experiments and how to plot and
evaluate information that reveals method performance.

2. Explicit Runge�Kutta methods and automatic step size se-

lection. You construct your own ODE solver, based on an explicit
Runge�Kutta method with embedded error estimator. The error esti-
mator is used to adjust the time step h along the integration, so that
the error estimate is kept close to a prescribed accuracy tolerance tol.

3. Sti� vs. nonsti� problems. We focus on understanding the distinc-
tion between sti� and nonsti� problems, and why sti� problems require
implicit methods with unbounded stability regions. We will study two
nonlinear oscillatory systems, the nonsti� Lotka-Volterra population
dynamics problem and the van der Pol equation, which may be sti� or
nonsti� depending on problem parameters. You will work both with
your own solver, and a professionally implemented sti� ODE solver.

Prepare well before you go to the classroom. Read the entire instruction
and work out a plan for how to solve the problems. Get started as soon
as possible. The teaching assistants can only advise you when you have a
program to work with. You work individually or (preferably) with a fellow
student on the programs and the project report.

General rules, and suggestions on how to write a good report

• Write your report in English (preferable) or Swedish. The report

should not exceed 10 pages.

• Hand in your report in Canvas via the link on the course webpage.

• The submission deadline is non-negotiable. Plan your work accordingly.

• The report will be evaluated and commented on within a week.

1

• If there are one or two important things missing from the report, you
will get the chance to complete these and resubmit your report before
the exam. But if you have not included any information on your at-
tempts to solve a task you will have to wait until the re-exam period.
These projects are an intrinsic part of the course and you will learn
much that is of use also on the exam, so please do not try to �get away
with� the minimal necessary amount of work.

• There is no prescribed format for the report, except that it must de-
scribe your work in a scienti�c manner, providing the necessary theory,
as well as describe how you proceed from observation to conclusion,
including motivations wherever necessary. Make sure to discuss your
observations and state your conclusions, even on minor questions raised
in the assignment text. These are all educational objectives.

• Plots and graphs must be accurate, legible, illustrative, and have labels
on both axes. If you use a loglog-plot showing convergence orders, turn
the grid on, or plot a reference line with the nominal slope.

• A plot alone is not su�cient as a �result� � it has to be interpreted. A
good rule is to accompany plots with three comments: what the plot
depicts; what you can speci�cally see in the plot; and what conclusions

you draw.

• Describe each problem you work on in your own words, write down
de�nitions of methods and equations, as well as values of any constants
used, etc. The report should be �self-contained.�

• You are encouraged to discuss problems and technicalities with your
fellow students, but you must develop your own programs, and write
your own report (where �own� means your group of ≤ 2 students).

• On formatting: LaTeX is preferred, but as long as it's readable, .doc/.odt
and such formats are also acceptable.

• It's better to include too much rather than too little of your codes.
However, if you have the same type of plotting code repeated �ve times
in a script, it can be omitted. You may include codes as an appendix,
surpassing the ten page limit.

• At the end of the report, you must explain your division of work

(who did what?), and acknowledge instructors and fellow stu-

dents who have contributed to your understanding and re-

2

sults. You also need to include literature references, or refer-

ences to the lecture notes and book manuscript published on

the course home page.

1. Getting started � the explicit Euler method

Consider the linear initial value problem

ẏ = Ay; y(t0) = y0, (1)

where A is a square matrix, over the interval t ∈ [t0, tf]. Write down the
analytic solution of the problem using the matrix exponential etA.

Task 1.1 Construct a function,

function unew = eulerstep(A, uold, h)

that takes a single explicit Euler step of size h, from the point uold to produce
the next approximation, unew. This function will be extremely simple � the
point is that when we program some advanced methods and solvers, we prefer
to start from a function taking a single step. Note also that we mainly use
this Matlab-style notation in these instructions. Equivalent Python code
will have di�erent but similar notation. It might be more natural to use an
object-oriented approach in Python; feel free to deviate from the suggested
structure as long as you ful�l the objectives of the exercises. However, you
must then even more clearly describe in the report what you have done and
why.

Task 1.2 Using eulerstep, construct a function

function [approx,err] = eulerint(A, y0, t0, tf, N)

that integrates (1) using N equal steps on the interval [t0, tf]. Make sure that
you hit the endpoint, i.e., be careful not to take one step too few, or one too
many. Store the endpoint numerical solution in the output variable approx

and the endpoint error in the variable err.

You will need the matrix exponential etA to compute the exact solution
and the error. A matrix exponential eA can be computed in Matlab by
using the command expm(A). Use the help command if you need to �nd
out more, and don't confuse the function expm with exp. In Python, you
�nd the expm function in the scipy.linalg module. Use ? to get more
information.

3

Verify that your function works properly by testing it for a simple prob-
lem, e.g. the linear scalar test equation ẏ = λy, with t0=0 and tf=1 and
initial value y0=1. Choose a suitable value for λ. (Would a negative value
be preferable or not?) Plot the solution as a function of t.

Task 1.3 We are now going to study how the global error at the endpoint
depends on the step size h, or equivalently, on the total number of steps N
taken to reach the end point. Write a function

function errVSh(A, y0, t0, tf)

that calls eulerint for various choices of N and plots the error as a function
of h = (tf − t0)/N in a log�log diagram. Use the loglog plot command.
(Why should a log�log diagram be used, i.e., how do we expect the error to
depend on the step size? Check with the lecture notes. Also, why should one
use an integer number of steps, N , and not vary h freely?)

To measure the error, we need a norm. (Why can't you use the abs

function in Matlab? Check what abs does when applied to a vector.) Use
the function norm(err) inMatlab; this computes the Euclidean norm ‖r‖2
of a vector r. In Python, the norm function exists in (e.g.) the scipy.linalg
module.

Start with the scalar case A = λ and make several graphs for di�erent
choices of λ. Choose N = 2k for some suitable powers k. (Why is that smart,
when you use a log�log plot?) Also, by using theMatlab command hold on

you can present several graphs in the same diagram. You can also use color
graphs for easy identi�cation. The help command inMatlab is always very
helpful and the key to getting further information. For example, you could
try typing help plot. In Python, the module matplotlib.pyplot contains
equivalent functions plot and loglog, and �hold on� is the default. For the
report plots, remember to use the functions xlabel, ylabel, title, legend
and grid (same names in Matlab/Python).

After running your program, take a close look at your �ndings. How
does the error behave as a function of N? What is the slope of the graph in
the diagram? How can the slope be interpreted? Can you deduce that the
method is convergent? How does the error graph behave when you change
λ? Can you see if numerical instability occurs?

Task 1.4 Now we will investigate the error as a function of the time t. For
this, modify your eulerint function such that it returns the whole vector
of approximations y0, y1, . . . , yN and the corresponding errors e0, e1, . . . , eN .
(You can then modify your errVSh function to just use the last element of

4

this vector.) Plot the error vector vs. the time vector t0, t1, . . . , tN in a lin-
log diagram, with time on a linear scale. (Why should a lin-log diagram be
used, i.e. how do we expect the error to behave as a function of time? Check
with the lecture notes.) Run your �rst test for the scalar case and use both
positive and negative values of λ. Does the error always grow with time?
What happens if you consider instead the relative error en/‖y(tN)‖?
Task 1.5 Repeat Task 1.3 and 1.4 using some matrix A of your on choice.
You can choose any dimension you like for A, but make sure that A doesn't
have too large eigenvalues (if necessary, check with eig(A) in Matlab or
scipy.linalg.eig in Python).

A simple test case could be

A =

(
−1 10
0 −3

)
with y0 = (1 1)T, and t0 = 0 and tf = 10. Do you see any qualitative dif-
ferences compared with what you saw in the scalar case? Try a few di�erent
matrices, of di�erent sizes, and with di�erent elements.

Task 1.6 With the functions you have built, it should be very simple to also
construct ieulerstep, ieulerint and ierrVSh for analyzing the implicit

Euler method. See lecture notes for method formulas. Copy the �les, modify
them, and repeat tasks 1.3�5. Then try the matrix

A =

(
−1 100
0 −30

)
with y0 = (1 1)T, and t0 = 0 and tf = 10. Apply both the explicit and
implicit Euler methods. For the plot of the error as a function of time t,
use N = 100 and N = 1000. Do both methods have the same stability
characteristics? What are the major di�erences in your observations, and
can you give a full explanation?

Task 1.7 If time permits, construct TRstep, TRint, TRerrVSh for analyzing
the Trapezoidal Rule. See the lecture notes for the method formula.

Note that you should be able to use the same code structure that you
already have, and that this task may take no more than �ve to ten minutes
if you just make copy of your previous �les and replace the function call to
the solver by a call to TRstep etc. If you have an object-oriented Python
code, you might get away with even fewer changes.

In particular, repeat Task 1.3 and compare to the Euler methods. Verify
that the Trapezoidal Rule is a second-order convergent method. Make an

5

error plot, solving the same linear di�erential equation using both the implicit
Euler method and the Trapezoidal Rule, and compare the accuracy. How
much more accuracy do you obtain using TRstep?

2. Project tasks. Explicit adaptive Runge�Kutta methods

Theory. An explicit Runge�Kutta method for the initial value problem
y′ = f(t, y) is a method of the form exempli�ed by the classical 4th-order
Runge�Kutta method (also known as RK4)

Y ′1 = f(tn, yn)

Y ′2 = f(tn + h/2, yn + hY ′1/2)

Y ′3 = f(tn + h/2, yn + hY ′2/2)

Y ′4 = f(tn + h, yn + hY ′3)

yn+1 = yn +
h

6
(Y ′1 + 2Y ′2 + 2Y ′3 + Y ′4).

A single step of the method can then be described as follows. The method
�samples� the right-hand side f(t, y) at four di�erent points to compute the
four stage derivatives Y ′1 , Y

′
2 , Y

′
3 and Y

′
4 . Then it forms a linear combination

of these derivatives to obtain the �average derivative� to advance the solution
from yn to yn+1.

A general Runge�Kutta method is de�ned by its coe�cients aij for eval-
uating the Y ′i , and the coe�cients bj for forming the linear combination of
these derivatives to update the solution. The method can be written

hY ′i = hf(tn + cih, yn +
s∑

j=1

aijhY
′
j); i = 1, . . . , s

yn+1 = yn +
s∑

j=1

bjhY
′
j .

We see that the method is represented by two coe�cient vectors, c and b,
and the coe�cient matrix A, usually arranged in the Butcher tableau

c A
y bT

For the classical RK4 method, the Butcher tableau is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
y 1/6 1/3 1/3 1/6

6

All methods used in practice have ci =
∑

j aij, so it is su�cient to know the
matrix A and the vector b. Check that this condition holds for RK4.

Task 2.1 Write a Matlab function

unew = RK4step(f, uold, told, h)

that takes a single step with the classical RK4 method. Here f is the function
de�ning di�erential equation. Then test it by solving a simple problem of
your choice. For example, you could use the linear test equation y′ = λy,
and verify that the global error is O(h4) by plotting the error in a

log�log diagram, like you did for the Euler methods. This check ensures
that your implementation is correct. Note that you now need to de�ne the
di�erential equation in a separate Matlab m-�le.

Theory. In a similar manner, a 3rd order RK method called RK3 is
de�ned by the Butcher tableau

0 0 0 0
1/2 1/2 0 0
1 −1 2 0
z 1/6 2/3 1/6

Here we see that some of the evaluations of the right-hand side f are the
same as for the classical RK4 method. In fact, we can write both methods
simultaneously as

Y ′1 = f(tn, yn)

Y ′2 = f(tn + h/2, yn + hY ′1/2)

Y ′3 = f(tn + h/2, yn + hY ′2/2)

Z ′3 = f(tn + h, yn − hY ′1 + 2hY ′2)

Y ′4 = f(tn + h, yn + hY ′3)

yn+1 = yn +
h

6
(Y ′1 + 2Y ′2 + 2Y ′3 + Y ′4)

zn+1 = yn +
h

6
(Y ′1 + 4Y ′2 + Z ′3).

With �ve evaluations of the right-hand side f instead of four (the extra
evaluation being Z ′3), we can obtain both a 3rd order approximation zn+1

and a 4th order approximation yn+1 from the same starting point yn. This
can be used to estimate a local error by the di�erence `n+1 := zn+1 − yn+1.

When two methods use the same function evaluations, we say that we
have an embedded pair of RK methods. The embedded pair above is

7

called RK34. In practice, one doesn't compute zn+1. Instead, one computes
the error estimate directly from

`n+1 :=
h

6
(2Y ′2 + Z ′3 − 2Y ′3 − Y ′4).

This is not only to save one unnecessary computation, but because subtract-
ing two very similar values is sensitive to round-o� errors and can lead to an
inaccurate estimate of the error.

Task 2.2 Starting from your RK4step, write a Matlab function

[unew, err] = RK34step(f, uold, told, h)

that takes a single step with the classical RK4 method and puts the result
in unew, and uses the embedded RK3 to compute a local error estimate in
err as described above. The error estimate is stored in err.

Theory. Let us use the Euclidean norm throughout and assume that the
local error rn+1 := ‖`n+1‖2 is of the form

rn+1 = ϕnh
k
n

if the step size hn was used. The coe�cient ϕn is called the principal error
function and depends on the method as well as on the problem.

Our goal is now to keep rn = tol for a prescribed accuracy tolerance
tol. The idea is to vary the step size so that the magnitude of the local

error remains constant along the solution. In order to do this, let us
assume that ϕn varies slowly (treat it as if it were �constant�).

Now suppose that rn was a bit o�, i.e., there is a deviation between rn
and the desired value tol. How would we change the step size in order to
eliminate this deviation? If ϕ is constant we seek a step size hn such that

rn = ϕhkn−1
tol = ϕhkn,

where the second equation says that the step size has been changed to hn
so that the error becomes equal to tol in magnitude. As we know the old
step size hn−1, as well as the estimated error rn and the tolerance tol, we
can solve for the next step size hn. Thus, eliminating ϕ from the equations
above by dividing the equations, we �nd

hn =

(
tol

rn

)1/k

· hn−1.

8

This is the simplest recursion for controlling the step size and is the desired
algorithm for making the RK34 method adaptive. The power k is the order
of the error estimator. Because RK4 has local error O(h5) and RK3 has local
error O(h4), the di�erence between the two methods is O(h4). This means
that you should use the value k = 4 for your adaptive RK34 method.

This simple step size controller is, however, not particularly good. Turn-
ing to control theory for better alternatives, you will use a proportional�
integral controller (PI controller) with your RK34 code,

hn =

(
tol

rn

)2/(3k)(
tol

rn−1

)−1/(3k)
· hn−1, (2)

which is more robust. Here we use the current error estimate, as well as
the previous error estimate. On the very �rst step, however, no �previous�
error estimate is available. For n = 1 we then put r0 = tol, after which the
recursion will start operating as intended.

Task 2.3 Write a function

hnew = newstep(tol, err, errold, hold, k)

which, given the tolerance tol, a local error estimate err and a previous
error estimate errold, the old step size hold, and the order k of the error
estimator, computes the new step size hnew using (2).

Task 2.4 Combining RK34 and newstep, write an adaptive ODE solver

[t,y] = adaptiveRK34(f, y0, t0, tf, tol)

which solves y′ = f(t, y); y(t0) = y0 on the interval [t0, tf], while keeping
the error estimate equal to tol using the step size control algorithm you
implemented above. In the vector t you store the time points the method
uses, and in y you store the corresponding numerical approximation, as a row
vector for each value of t. See below how you need to arrange the function
f. Make sure that in its last step, the method exactly hits the end point tf.
Thus, in the last step your solver adaptiveRK34 has to �override� the value
hnew supplied by newstep.

In order to start the integration, you also need to pick an initial step size.
We suggest using the formula

h0 =
|tf − t0| · tol1/4

100 · (1 + ‖f(y0)‖)
.

9

3. Project tasks. A nonsti� problem

Theory. A classical model in biological population dynamics is the Lotka�
Volterra equation,

ẋ = ax− bxy
ẏ = cxy − dy,

where a, b, c, d are positive parameters. The equation models the interaction
between a predator species, y (foxes), and a prey, x (rabbits). If no foxes are
present (y = 0) the rabbits multiply and grow exponentially. On the other
hand, if there are no rabbits (x = 0), the foxes have no food supply and die
at a rate determined by d. The product term, xy, represents the probability
that a fox encounters a rabbit within their shared ecosystem. This encounter
bene�ts the fox, which eats the rabbit, so the product term is positive in the
second (fox) equation, and negative in the �rst (rabbit) equation.

The Lotka�Volterra equation is separable. By dividing the two equations,
we get

dx

dy
=
ax− bxy
cxy − dy

=
x(a− by)
y(cx− d)

.

Written in terms of di�erentials, we have(
c− d

x

)
dx =

(
a

y
− b
)
dy,

and by integration we obtain cx − d log x = a log y − by + K. Hence the
function

H(x, y) = cx+ by − d log x− a log y

remains constant at all times, i.e., H(x, y) is invariant along solutions. This
means that the Lotka�Volterra equation has periodic solutions.

Task 3.1 Choose the parameters a, b, c, d as (3, 9, 15, 15) and pick
some suitable positive initial values, preferably not too far from the equilib-
rium point (d/c, a/b), e.g. (1, 1). Use your own adaptive RK34 to solve the
problem. Run with a tolerance of (say) 10−6 or 10−8. (You can use tighter
tolerances still, if your code is good enough.) Simulate the system for at least
10 full periods.

Are the solutions periodic as claimed, and how long, approximately, is
the period? Plot x and y as functions of time, and plot y as a function of x,
i.e., the phase portrait. It is often easier to check periodicity there, because
the latter plot is a closed orbit if the solution is periodic. You may have to

10

experiment a little with initial conditions and how long time you integrate
in order to get a nice plot.

Investigate what happens if you change the initial conditions. Do you get
the same periodic solution and does the period remain the same?

Integrate over a very long time (100 � 1,000 full periods, depending on
choice of tolerance) to check whether the numerically computed H(x, y) stays
near its initial value H(x(0), y(0)) or drifts away. This can be done by plot-
ting

|H(x, y)/H(x(0), y(0))− 1|

as a function of time, where you insert the computed values of x and y into
the expression. Choose a suitable type of plot. Should it be loglog or linlog?

Hints. In order to solve the Lotka�Volterra equation, you need to write
a function that computes the right-hand side of the ODE in the following
format,

function dudt = lotka(t,u)

a = ... ;

b = ... ;

c = ... ;

d = ... ;

dudt = [a*u(1)-b*u(1)*u(2); c*u(1)*u(2)-d*u(2)];

Note that the argument t is necessary, although it will not be used by your
solver in this case. The reason is that this format is used by Matlab's
and Python's built-in solvers, whether or not the right-hand side depends
explicitly on t. By following this format you can easily switch to using those
built-in solvers, in case your own solver is not e�cient enough.

4. Project tasks. Nonsti� and sti� problems

Theory. In the beginning of this instruction set, you used both the explicit
Euler method,

yn+1 = yn + hf(tn, yn)

and the implicit Euler method,

yn+1 = yn + hf(tn+1, yn+1).

In an implicit method, every step is (far) more expensive due to the neces-
sary (nonlinear) equation solving. This extra expense can pay o�, however,
if one can take much longer steps with the implicit method.

11

This happens in sti� problems. Because all explicit methods have
bounded stability regions, the maximum stable step size is limited (see lecture
notes). A well designed implicit method, however, can have an unbounded

stability region, permitting much larger steps without losing accuracy. This
makes up for the extra work incurred by equation solving. The explicit and
implicit Euler methods are the prototypical examples of this.

The van der Pol equation,

y′1 = y2

y′2 = µ · (1− y21) · y2 − y1,

models an electric oscillator circuit. The solution is periodic, with a period
of approximately 2µ. The system may be sti� or nonsti� depending on the
parameter µ. Use the initial condition y(0) = (2 0)T.

Task 4.1 Solve the van der Pol equation for µ = 100 on the interval [0, 2µ].
Plot the solution component y2 as function of time. Further, plot y2 as
a function of y1 (the phase portrait). In the latter plot, try modifying the
initial values, and check that the solution always tends to the same oscillation.
Unlike the Lotka�Volterra equation, where you get di�erent orbits, the van
der Pol equation only has a single orbit, known as a limit cycle.

Task 4.2 Using your own explicit, adaptive RK34 code, you are going to
explore sti�ness, and how it depends on µ. In all computations, use the
intial condition y(0) = (2 0)T, and for every given µ, solve the problem on
the time interval [0, 0.7µ].

Solve the problem for the �E6 series� of values of µ, i.e., solve the problem
for µ = 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000. You may have
to cut this series short if your code takes exceedingly long time to solve for
say µ = 1000.

Collect data by recording how many steps your solver needs to complete
the integration in each case. Plot the total number of steps N as a function
of µ in a loglog diagram. Use a suitable tolerance for all computations, at
least tol = 10−6. Can you conclude that N ∼ C ·µq? What is the power q?
The increase in the number of steps needed is proportional to the sti�ness.
How does sti�ness depend on µ?

Task 4.3 Read the documentation inMatlab (using help and other sources)
on how to use the sti� solver ode15s to solve di�erential equations. In
Python, look at the scipy.integrate module and in particular the bdf

12

function which is roughly equivalent to ode15s. Repeat the experiments
from Tasks 4.2 using one of these solvers, using the same data as before.
What happens? Which code performs better, and why? When you plot the
number of steps as a function of µ, how does the graph di�er from the one
you got with your own nonsti� RK34 code? Can you run the built-in solver
for µ = 10, 000 and higher? (Don't even think of doing that with your own
code.) Does it take longer wall-clock time to solve a problem with µ large?

Final remarks. The project report needs to address the tasks raised in
Sections 2 � 4 of this handout. You don't need to report on tasks in Section
1, as they are only intended to get started, building elementary solvers and
learning the techniques needed for the project tasks.

In your report, you should also comment on what you have learned in this
computer project. Do not forget to acknowledge help and inspiration that
you received, and include literature references as well as references to the
lecture notes published on the web wherever needed. (See the instructions.)

Please feel free to give positive as well as negative feedback for future use
in the course.

13

