
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2020-10-26

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 25. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
All material form the course.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Which of the following functions f are convex? Prove or disprove. (Use may
use convexity perserving operations.)

a. f(x) = 1
g(x) where g : R→ R is concave and satisfies g(x) > 0 for all x ∈ R

(1 p)

b. f(x) =
√
xTLTLx where x ∈ Rn and L ∈ Rm×n (1 p)

c. f(x) =
{√

x1x2 if x1 > 0, x2 > 0
∞ otherwise

}
, where x = (x1, x2) ∈ R2 (1 p)

d. f(x) =
∑r
i=1 x(i) = x(1) + . . .+ x(r), where r is an integer such that 1 ≤ r ≤ n

and for any vector x ∈ Rn, we let x(i) denote the ith largest component of x,
i.e.

x(1) ≥ . . . ≥ x(n)

(1 p)

Solution

a. Convex. Let

h(u) = 1
u

+ ιR++(u),

where R++ = {u ∈ R : u > 0}. The function f can be written as f(x) =
h(g(x)). Since h is convex and nonincreasing, and g is concave, the composition
rule gives that f is convex.

b. Convex. Note that

f(x) =
√

(Lx)TLx = ‖Lx‖2 .

Thus, the function f can be written as a composition between the convex
function h(u) = ‖u‖2 and the affine mapping g(x) = Lx, i.e. f(x) = h(g(x)).
The composition rule gives that f is convex.

c. Not convex. Let x = (1, 1) and y = (4, 1). Then f(x) = 1 and f(y) = 2.
However, considering the convex combination

1
2x+ 1

2y = (2.5, 1),

gives

f

(1
2x+ 1

2y
)

=
√

2.5 > 1.5 = 1
2f(x) + 1

2f(y),

which violates the definition of convexity.
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d. Convex. Note that the function f can be written as

f(x) = max {xi1 + . . .+ xir : ∀i1, . . . , ir ∈ N, 1 ≤ i1 < . . . < ir ≤ n} .

Also, each function ai1,...,ir : Rn → R, where

ai1,...,ir (x) = xi1 + . . .+ xir ,

is linear and therefore convex. We then see that f is given by a point-wise
supremum of convex functions, and therefore itself convex.

2. Which of the following sets S are convex?

a. S = {x ∈ Rn : x1 + . . .+ xn = 1} (1 p)

b. S = {x ∈ Rn : ‖x− a‖2 ≤ ‖x− b‖2}, where a 6= b and a, b ∈ Rn (1 p)

c. S =
{
x ∈ R3 : 2x1 ≥

√
x2

2 + x2
3

}
(1 p)

d. S =
{
x ∈ R2 : 2 ≤ ex2

1+x2
2 ≤ 4

}
(1 p)

e. S =
{
x ∈ Rn : xT y ≤ 1,∀y ∈ C

}
where C ⊆ Rn (1 p)

Solution

a. Convex. The set

S =
{
x ∈ Rn : 1Tx = 1

}
,

defines a hyperplane in Rn, which we know is convex.

b. Convex. Since norms are nonnegative, we have that

‖x− a‖2 ≤ ‖x− b‖2
⇔

‖x− a‖22 ≤ ‖x− b‖22
⇔

(x− a)T (x− a) ≤ (x− b)T (x− b)
⇔

2(b− a)Tx ≤ ‖b‖22 − ‖a‖22

which defines a halfspace in x ∈ Rn. Thus, the set S is convex.

c. Convex. The set S can be written as the zero:th sublevel set

S =
{
x ∈ R3 : g(x) ≤ 0

}
,

of the function

g(x) = ‖Lx‖2 − 2x1,
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where

L =
[

0 1 0
0 0 1

]
.

The first term ‖Lx‖2 of g is convex by 1.b.. The second term −2x1 is affine
and therefore convex. Thus, the function g is convex. However, the set S is
then a sublevel set of a convex function and therefore a convex set.

d. Not convex. The set S can be written as

S =
{
x ∈ R2 : log 2 ≤ x2

1 + x2
2 ≤ log 4

}
.

The set S is nonempty, e.g. (0,
√

log 4) ∈ S. Consider any x ∈ S. Then −x ∈ S.
However, the convex combination

1
2x+ 1

2(−x) = 0,

is not in S. Thus, the set S is not convex.

e. Convex. Note that the set S can be written as

S =
⋂
y∈C

{
x ∈ Rn : xT y ≤ 1

}
,

i.e. an intersection of halfspaces, which we know is convex.

3. Consider the closed convex function f : Rn → R such that

f(x) =
(
aTx− b

)2
, ∀x ∈ Rn,

where a ∈ Rn \ {0}, b ∈ R and n ≥ 2.

a. Prove or disprove that f is a strongly convex function (1 p)

b. Derive the conjugate function f∗ of f (2 p)

c. Derive the proximal operator proxγf of f , where γ > 0 (1 p)

Solution

a. The gradient of f is

∇f(x) = 2aaTx− 2ab, ∀x ∈ Rn,

and the Hessian of f is

∇2f(x) = 2aaT , ∀x ∈ Rn.

Since a ∈ Rn and n ≥ 2, we know that there exists a vector z ∈ Rn \ {0} such
that aT z = 0. Note that

zT∇2f(x)z = 2
(
aT z

)2
= 0,

i.e. the Hessian of f is not positive definite. However, this shows that f is not
strongly convex by the second order condition for strong convexity.
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b. For each s ∈ Rn, decompose s such that

s = s‖ + s⊥,

where s‖ is parallel to a, i.e. s‖ = αsa for some αs ∈ R, and s⊥ is orthogonal
to a, i.e. aT s⊥ = 0. Similarly, for each x ∈ Rn, decompose x such that

x = x‖ + x⊥,

where x‖ = αxa for some αx ∈ R, and aTx⊥ = 0. Note that(
s‖
)T

x⊥ =
(
s⊥
)T

x‖ = 0.

The conjugate function of f can then be written as

f∗(s) = sup
x

(
sTx− f(x)

)
= sup

x

(
sTx−

(
aTx− b

)2
)

= sup
x‖,x⊥

((
s‖ + s⊥

)T (
x‖ + x⊥

)
−
(
aT
(
x‖ + x⊥

)
− b
)2
)

= sup
x‖,x⊥

((
s‖
)T

x‖ +
(
s⊥
)T

x⊥ −
(
aTx‖ − b

)2
)

= sup
αx,x⊥

(
αxαs‖a‖22 +

(
s⊥
)T

x⊥ −
(
αx‖a‖22 − b

)2
)
.

First, suppose that s⊥ 6= 0. Select αx = 0 and x⊥ = ts⊥, and let t → ∞ to
conclude that f∗(s) =∞.
Second, soppose that s⊥ = 0. We have that

f∗(s) = sup
αx

(
αxαs‖a‖22 −

(
αx‖a‖22 − b

)2
)

= − inf
αx

−αxαs‖a‖22 +
(
αx‖a‖22 − b

)2

︸ ︷︷ ︸
=h(αx)

 .
Note that h : R→ R is convex and differentiable in αx and therefore ∂h(αx) =
{∇h(αx)} for each αx ∈ R. Fermat’s rule gives that α?x is a minimizer of h if
and only if

0 = −αs‖a‖22 + 2‖a‖22(α?x‖a‖22 − b) ⇔ α?x = 2b+ αs
2‖a‖22

.

Therefore,

f∗(s) = −h(α?x) = (2b+ αs)αs
2 − α2

s

4 = bαs + α2
s

4 .

To summarize, we have that

f∗(s) =

bαs + α2
s

4 if s = αsa for some αs ∈ R,

∞ else.

5



FRTN50

c. The proximal operator is given by

proxγf (z) = argmin
x∈Rn

((
aTx− b

)2
+ 1

2γ ‖x− z‖
2
)
, ∀z ∈ Rn.

Since the objective in the minimization problem above is a sum of differen-
tiable convex functions with full domain, we can use Fermat’s rule to find the
minimizer x by

0 = 2a(aTx− b) + 1
γ

(x− z)

⇔

0 = 2γaaTx− 2γab+ x− z =
(
I + 2γaaT

)
x− 2γab− z.

Since
(
I + 2γaaT

)
is invertible (it is symmetric with largest eigenvalue greater

than or equal to 1), we get

proxγf (z) =
(
I + 2γaaT

)−1
(z + 2γab) , ∀z ∈ Rn.

4. Let C ⊆ Rn be a nonempty closed convex set. Its support function σC : Rn →
R ∪ {∞} is defined as

σC(y) = sup
x∈C

yTx, ∀y ∈ Rn.

a. Show that the support function σC is convex, independent of the convexity of
the set C (1 p)

b. Show that σ∗C = ιC (1 p)

c. Find an expression for proxγσC
, where γ > 0, that involves ΠC , i.e. the projec-

tion onto the set C (1 p)

Solution

a. We have that

σC(y) = sup
x∈Rn

(
yTx− ιC(x)

)
= ι∗C(y), ∀y ∈ Rn,

i.e. σC is equal to the conjugate function to the indicator function of C. Thus,
σC is a convex function since conjugate functions are always convex.
Alternatively, note that σC is a points-wise supremum of convex functions
(affine to be precise) and therefore itself a convex function.

b. We have that σ∗C = ι∗∗C = ιC since ιC is a closed convex function.
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c. Moreau decomposition gives that

proxγσC
(z) = z − γ proxγ−1σ∗C

(
z

γ

)
= z − γ proxγ−1ιC

(
z

γ

)
= z − γΠC

(
z

γ

)
, ∀z ∈ Rn.

5. Consider the problem

minimize
x∈Rn

f(x) = 1
2‖Ax− b‖

2
2,

where A ∈ Rn×n satisfies

A = diag(a1, . . . , an), ai 6= 0, ∀i ∈ {1, . . . , n},

and b = (b1, . . . , bn) ∈ Rn.

a. Give a closed-form expression for the solution (0.5 p)

b. Show that β = maxi∈{1,...,n} a2
i is a smoothness constant for f (1 p)

c. Show that βi = a2
i is a coordinate-wise smoothness constants for f for each

coordinate i ∈ {1, . . . , n} (1 p)

d. Consider the gradient method with step-size 1/β, where β is the smoothness
constant in b.. Suppose you are given the iterate xk ∈ Rn, where k ∈ N is
the iteration number. For each coordinate i ∈ {1, . . . , n}, provide the update
formula for xki . Utilize that A = diag(a1, . . . , an) (1 p)

e. Let bi = 0 for each i ∈ {1, . . . , n} and provide an exact linear convergence rate
for each of the coordinates for the gradient method in d.. This means, find the
ρi ∈ [0, 1) such that ∥∥∥xk+1

i

∥∥∥
2

= ρi
∥∥∥xki ∥∥∥2

,

for each coordinate i ∈ {1, . . . , n} (Each coordinate will converge linearly to
x?i = 0 in this case) (1 p)

f. Consider the coordinate gradient method (i.e. no proximal operator) with
step-sizes 1/βi, where βi are the coordinate smoothness constants in c.. Pro-
vide an update formula for each coordinate i ∈ {1, . . . , n}. Utilize that A =
diag(a1, . . . , an). Show that xk+1

i = x?i with x?i from a., independent on xk ∈
Rn (1 p)

Solution
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a. The objective function f in the problem is convex and differentiable. Fermat’s
rule gives that x? ∈ Rn is a minimizer of the problem if and only if

0 = ∇f (x?) = AT (Ax? − b)
⇔

x? = (ATA)−1(AT b)
⇔

x?i = bi
ai
, ∀i ∈ {1, . . . , n},

since ATA = diag
(
a2

1, . . . , a
2
n

)
is invertible as ai 6= 0 for each i ∈ {1, . . . , n}.

b. Note that

‖∇f(x)−∇f(y)‖22 =
∥∥∥AT (Ax− b)−AT (Ay − b)

∥∥∥2

2

=
∥∥∥ATA(x− y)

∥∥∥2

2

=
∥∥∥diag

(
a2

1, . . . , a
2
n

)
(x− y)

∥∥∥2

2

=
n∑
i=1

(
a2
i (xi − yi)

)2

=
n∑
i=1

a4
i (xi − yi)2

≤ max
i∈{1,...,n}

a4
i

n∑
j=1

(xj − yj)2

= max
i∈{1,...,n}

a4
i ‖x− y‖

2
2 .

Taking square root gives the result since√
max

i∈{1,...,n}
a4
i = max

i∈{1,...,n}
a2
i .

Alternative proof: Since f is convex and twice continuously differentiable, β ≥ 0
is a smoothness constant if ∇2f(x) � βI for each x ∈ Rn. This is equivalent
to that

yT (βI −∇2f(x))y ≥ 0, ∀x, y ∈ Rn.

Note that

∇2f(x) = ATA = diag
(
a2

1, . . . , a
2
n

)
, ∀x ∈ Rn.

The condition on β reduces to

0 ≤ yTdiag
(
β − a2

1, . . . , β − a2
n

)
y =

n∑
i=1

y2
i (β − a2

i ), ∀y ∈ Rn.

which holds if β = maxi∈{1,...,n} a2
i .

8



FRTN50

c. Consider any coordinate i ∈ {1, . . . , n}. The coordinate-wise smoothness with
parameter βi can be written as

|∇f(x)i −∇f(y)i| ≤ βi|xi − yi|.

In our setting, we have ∇f(x)i = ai(aixi − bi) and

|ai(aixi − bi)− ai(aiyi − bi)| = |aiai(xi − yi)| ≤ a2
i |xi − yi|.

So a2
i is a coordinate smoothness constant for coordinate i.

d. The gradient method with step-size γ = 1/β reads

xk+1 = xk − 1
β
∇f(xk) = xk − 1

maxj∈{1,...,n} a2
j

AT (Axk − b).

Since A = diag(a1, . . . , an), this reads as

xk+1
i = xki −

1
maxj∈{1,...,n} a2

j

ai(aixki − bi),

for each coordinate i ∈ {1, . . . , n}.

e. For each coordinate i ∈ {1, . . . , n}, we have

∥∥∥xk+1
i

∥∥∥
2

=
∥∥∥∥∥xki − 1

maxj∈{1,...,n} a2
j

a2
ix
k
i

∥∥∥∥∥
2

=
(

1− a2
i

maxj∈{1,...,n} a2
j

)
︸ ︷︷ ︸

=ρi

∥∥∥xki ∥∥∥2
,

where ρi ∈ [0, 1).

f. The coordinate gradient method when updating coordinate i is

xk+1
i = xki −

1
a2
i

ai
(
aix

k
i − bi

)
= bi
ai

= x?i .

6. Consider minimizing a function f : Rn → R, with minimizer x? ∈ Rn, using
a stochastic optimization algorithm, starting at some predetermined (deter-
ministic) point x0 ∈ Rn. Analysis of the algorithm resulted in the following
inequality

E
[
‖xk+1 − x?‖22 | xk

]
≤ ‖xk − x?‖22 − 2γ(f(xk)− f(x?)) + γ2G, ∀k ∈ N,

where G is a deterministic positive constant and γ is a deterministic fixed
positive step-size of the algorithm. In particular, (xk)k∈N is a stochastic process.

a. Apply an expectation to the above inequality to derive a Lyapunov inequality
for the algorithm (1 p)
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b. Use the obtained Lyapunov inequality to show that

k∑
i=0

E[f(xi)− f(x?)] ≤ ‖x0 − x?‖22 +G(k + 1)γ2

2γ , ∀k ∈ N (1)

(1.5 p)

c. The upper bound (1) diverges as k →∞ unless G = 0. Consider the step-size
γ = θ/

√
K + 1, where K ∈ N is the total number of iterations we wish to run

in the algorithm and θ > 0. Show that we get a O(1/
√
K + 1) convergence

bound

min
i∈{0,...,K}

E[f(xi)− f(x?)] ≤ ‖x0 − x?‖22 +Gθ2

2θ
√
K + 1

that is valid until iteration K (1 p)

Solution

a. We start from the inequality

E
[
‖xk+1 − x?‖22 | xk

]
≤ ‖xk − x?‖22 − 2γ(f(xk)− f(x?)) + γ2G, ∀k ∈ N.

By monotonicity and linearity of expectation, we get that

E
[
E
[
‖xk+1 − x?‖22 | xk

]]
≤ E

[
‖xk − x?‖22 − 2γ(f(xk)− f(x?)) + γ2G

]
= E

[
‖xk − x?‖22

]
− 2γE [f(xk)− f(x?)] + γ2G,

holds for each k ∈ N. The law of total expectation yields

E
[
‖xk+1 − x?‖22

]
≤ E

[
‖xk − x?‖22

]
− 2γE [f(xk)− f(x?)] + γ2G, ∀k ∈ N.

This is the Lyapunov inequality we pick.

b. Recursively applying the Lyapunov inequality above gives

E
[
‖xk+1 − x?‖22

]
≤ E

[
‖x0 − x?‖22

]
− 2γ

k∑
i=0

E [f(xi)− f(x?)] +Gγ2(k + 1)

= ‖x0 − x?‖22 − 2γ
k∑
i=0

E [f(xi)− f(x?)] +Gγ2(k + 1), ∀k ∈ N,

since ‖x0 − x?‖22 is deterministic. Again, by monotonicity of expectation, we
know that

0 ≤ E
[
‖xk+1 − x?‖22

]
, ∀k ∈ N,

since

0 ≤ ‖xk+1 − x?‖22, ∀k ∈ N.
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We conclude that

0 ≤ ‖x0 − x?‖22 − 2γ
k∑
i=0

E [f(xi)− f(x?)] +Gγ2(k + 1), ∀k ∈ N,

or by rearranging

k∑
i=0

E[f(xi)− f(x?)] ≤ ‖x0 − x?‖22 +Gγ2(k + 1)
2γ , ∀k ∈ N, (2)

as desired.

c. We first note that

(K + 1) min
i∈{0,...,K}

E[f(xi)− f(x?)] ≤
K∑
i=0

E[f(xi)− f(x?)].

Using this in the bound in b. with γ = θ/
√
K + 1 gives

min
i∈{0,...,K}

E[f(xi)− f(x?)] ≤ ‖x0 − x?‖22 +G(K + 1)γ2

2γ(K + 1)

= ‖x0 − x?‖22 +Gθ2

2θ
√
K + 1

,

as desired.
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