
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

Test exam

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 20. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points on the exam
4: 17 points on exam plus extra-credit handin
5: 22 points on exam plus extra-credit handin

Accepted aid
Authorized Cheat Sheet.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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FRTN50 – Test exam

1. Are the following sets C convex? You may, where applicable and without prov-
ing it, use that ‖x‖∞ := maxi(|xi|) is a convex function and that {x ∈ Rn :
x ≥ 0} is a convex set.

a. Let C = {x ∈ R : f(x) ≤ 0} where f is given below: (1 p)

f(x)

x

b. C = {x ∈ R : f(x) ≤ 0} where f is given below: (1 p)

f(x)

x

c. C = {x ∈ Rn : x ≥ 0 and ‖x‖∞ ≤ 1}. (1 p)

d. C = {x ∈ Rn : x ≥ 0 or ‖x‖∞ ≤ 1}. (1 p)

e. C = {(x, t) ∈ Rn × R : ‖x‖∞ ≤ t}. (1 p)

Solution

a. Nonconvex.

f(x)

x

b. Convex.
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f(x)

x

c. Convex. x ≥ 0 convex and ‖x‖∞ − 1 ≤ 0 convex since sublevelset of convex
function. Intersection of convex functions is convex.

d. Nonconvex. Consider R2 and the points x1 = (−1, 1) and x2 = (0, 2). Then
‖x1‖∞ ≤ 1 and x2 ≥ 0, but the convex combination x3 = 1

2(x1 + x2) =
(−1/2, 3/2) is in none of the sets.

e. Convex. The set can be written as {(x, t) : ‖x‖∞− t ≤ 0}, which is the sublevel
set of convex function, hence convex.

2. Are the following functions f convex? Where applicable, you may use convexity
preserving operations or graphical arguments.

a. f(x) = 1
2

[
x1

x2

]T [ 1 0
0 −1

] [
x1

x2

]
(1 p)

b. f(x) = e‖x‖1 where x ∈ Rn (1 p)

c. f(x) =
∣∣∣e‖x‖1

∣∣∣ where x ∈ Rn (1 p)

d. f(x) = max(f(x), g(x)) where f : Rn → R, g : Rn → R are both convex. (1 p)

e. f(x) = min(x2, x) where x ∈ R (1 p)

f. f(x) = max(x2, x,−x2) where x ∈ R (1 p)

g. f(x) = max(x2, x, 1− x2) where x ∈ R (1 p)

Solution

a. Hessian is constant and symmetric, but not positive semidefinite (eigenvalues
-1 and 1). Hence nonconvex.

b. It is a composition between nondecreasing eu and convex ‖x‖1, hence convex.

c. Convex since |e‖x‖1 | = e‖x‖1 which is convex due to b..

d. Supremum (maximum) of convex functions is convexity preserving operation,
hence convex. The epigraph is convex since

epi(max(f, g)) = {(x, t) : max(f(x), g(x)) ≤ t} = {(x, t) : f(x) ≤ t and g(x) ≤ t}
= {(x, t) : f(x) ≤ t} ∩ {(x, t) : g(x) ≤ t} = epif ∩ epig

i.e., intersection of individual convex epigraphs, hence convex.
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e. Not convex.

f. Convex.

g. Not convex.

3. Consider the following problem

minimize
u

max(hT1 u, hT2 u) + 1
2‖u‖

2
2.

Show that u solves this if and only if (u, t) solves

minimize
u,t

t+ 1
2‖u‖

2
2

subject to hT1 u ≤ t
hT2 u ≤ t

(1 p)

Solution
Since t ≥ hT1 u and t ≥ hT2 u it must satisfy t ≥ max(hT1 u, hT2 u) for all feasible
(t, u). Now, assume that an optimal pair (t?, u?) satisfies t? = max(hT1 u?, hT2 u?)+
ε, where ε > 0 (i.e., t? > max(hT1 u?, hT2 u?)). Then t̃ = t? − ε achieves a lower
cost (since t is in the objective and we minimize over t) and satisfies both con-
straints: hT1 u? ≤ t̃ and hT2 u

? ≤ t̃. We conclude that the optimal pair (t?, u?)
satisfies t? = max(hT1 u?, hT2 u?). Hence the problems are equivalent.
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4. Consider the following problem (that satisfies constraint qualification):

minimize
x

‖Ax− b‖1︸ ︷︷ ︸
f(Ax)

+
n∑
i=1

gi(xi)︸ ︷︷ ︸
g(x)

where A ∈ Rm×n, b ∈ Rm, all gi : R→ R ∪ {∞} are the same and satisfy

gi(xi) =
{1

2x
2
i if xi ∈ [−1, 1]

∞ else

and f(y) = ‖y − b‖1 with dual problem

minimize
µ

f∗(µ) + g∗(−ATµ).

a. Compute the conjugate f∗. (1 p)

b. Compute the conjugate g∗. (1 p)

c. Can the primal problem be solved using the proximal gradient method? (1 p)

d. Can the dual problem be solved using the proximal gradient method? (You
don’t need to have solved a. or b. to answer this.) (1 p)

e. Assume a dual solution µ? is known. Provide one simple condition that recovers
a primal solution. (You don’t need to have solved a. or b. to answer this, you
can phrase the recovery in terms of functions f or g, or conjugates f∗ and
g∗.) (1 p)

Solution

a. We first note that

f∗(s) = sup
y

(sT y − ‖y − b‖1) = sup
v

(sT (v + b)− ‖v‖1) = sup
v

(sT v − ‖v‖1) + sT b.

Therefore, we can compute the conjugate of ‖ · ‖1 and then add sT b.
We let f̂(y) =

∑m
i=1 |yi|, which implies f̂∗(s) =

∑m
i=1 f̂

∗
i (s) by separability of

f̂ , where f̂i(yi) = |yi|. We have

f̂∗i (si) = sup
yi

(si − |yi|).

There are many ways to compute the conjugate of 1D functions. We provide a
proof that directly optimizes the definition for different s.

• For si < −1, let yi = t− ≤ 0 with t− → −∞, which gives

f̂∗i (si) = sup
yi

(yisi − |yi|) ≥ sit− − |t−| = (si + 1)t− →∞

since si < −1.
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• For si > 1, let yi = t+ ≤ 0 with t+ →∞, which gives

f̂∗i (si) = sup
yi

(yis− |yi|) ≥ sit+ − |t+| = (si − 1)t+ →∞

since si > 1.
• For si ∈ [−1, 1], we have by Cauchy-Schwarz that siyi ≤ |yi||si| ≤ |yi| for

all yi. Therefore f̂∗i (si) = supyi
sTi yi − |yi| ≤ supyi

|yi| − |yi| = 0. Further,
f̂∗i (si) = supyi

siyi − |yi| ≥ supyi
si0 − 0 = 0. Hence f̂∗i (si) = 0 for all

si ∈ [−1, 1].

The conjugate becomes

f̂∗i (si) =
{0 if si ∈ [−1, 1]

∞ else

i.e. f̂∗i (si) = ι[−1,1](si). This implies

f∗(s) = f̂∗(s) + sT b =
(

m∑
i=1

ι[−1,1](si)
)

+ sT b = ι[−1,1](s) + sT b.

b. We have g(x) =
∑m
i=1 gi(xi), which implies g∗(s) =

∑m
i=1 g

∗
i (si) by separability

of g. We will compute the conjugate from the relation

g∗i (si) = sixi − gi(xi) if and only if si ∈ ∂gi(xi).

The subgradient of gi is given by

∂gi(xi) =



(−∞,−1] if xi = −1

xi if xi ∈ (−1, 1)

[1,∞) if xi = 1

∅ else

or in graphics

xi

si

Therefore

• For xi = −1: gi(xi) = 1
2 , si ∈ (−∞,−1], and

g∗i (si) = sixi − gi(xi) = −si − 1
2

for si ∈ (−∞,−1].
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• For xi ∈ (−1, 1): gi(xi) = 1
2x

2
i , si = xi, and

g∗i (si) = sixi − gi(xi) = s2
i − 1

2x
2
i = s2

i − 1
2s

2
i = 1

2s
2
i

for si ∈ (−1, 1).
• For xi = 1: gi(xi) = 1

2 , si ∈ [1,∞), and

g∗i (si) = sixi − gi(xi) = si − 1
2

for si ∈ [1,∞).

To conclude:

g∗(s) =
n∑
i=1

gi(si) =
n∑
i=1


−si − 1

2 if si ≤ −1
1
2s

2
i if si ∈ [−1, 1]

si − 1
2 if si ≥ 1

which is sum of Huber functions.

c. No. None of the functions are smooth.

d. Yes. Each gi is strongly convex and so is g. Therefore g∗ is smooth and so is
g∗ ◦−AT . Therefore the proximal gradient method can be applied to the dual.
In addition, f is separable and easy to prox on.

e. By primal-dual optimality condition

x ∈ ∂g∗(−ATµ?).

Since g is strongly convex, g∗ is smooth, hence differentiable. Therefore ∂g∗(−ATµ?)
is a singleton and must be the primal solution.

5. Consider the following constrained optimization problem

minimize
x

f(x) + ιC(x),

where constraint qualification holds so that x? solves the problem if and only
if 0 ∈ ∂f(x?) + ∂ιC(x?). Assume you have solved the dual problem

minimize
µ

(f∗(µ) + g∗(−µ))

and found the optimal dual variable µ? = 0. Show that all primal optimal x?
are also solutions to the unconstrained minimization problem

minimize f(x)

using primal-dual optimality conditions and Fermat’s rule. (1 p)

Solution
By primal-dual optimality conditions, we have that x? is a solution if and only
if

µ? ∈ ∂f(x?) and − µ? ∈ ∂ιC(x?)

Now, since µ? = 0, this implies 0 ∈ ∂f(x?) which is Fermat’s rule for minimizing
f(x).
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6. Suppose that f : Rn → R is β-smooth for some β > 0. Show that one step of
the gradient method xk+1 = xk − γ∇f(xk) gives the following function value
decrease guarantee

f(xk+1)− f(xk) ≤ −γ(1− βγ
2 )‖∇f(xk)‖22.

Find the γ that gives the largest guaranteed function value decrease at any
given iteration. (1 p)

Solution
Using descent lemma for points xk+1 and xk and the gradient method iteration,
we get

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + β
2 ‖xk+1 − xk‖22

= f(xk)− γ∇f(xk)T∇f(xk) + βγ2

2 ‖∇f(xk)‖22
= f(xk)− γ(1− βγ

2 )‖∇f(xk)‖22

The function value decrease is upper bounded by

−γ(1− βγ
2 )‖∇f(xk)‖22.

Since ‖∇f(xk)‖22 is fixed, this amounts to minimizing h(γ) := −γ(1 − βγ
2 ) =

−γ+β
2γ

2. Since h is differentiable and convex in γ (linear plus convex quadratic),
the minimum is found at zero gradient: ∇h(γ) = −1+βγ = 0, i.e., the optimal
γ = 1

β .
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