
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2019-10-28

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 20. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points on the exam
4: 17 points on exam plus extra-credit handin
5: 22 points on exam plus extra-credit handin

Accepted aid
Authorized Cheat Sheet.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Which of the following sets S are convex?

a. S = {(x, y) ∈ R2 : x2 = y} (1 p)

b. S = {x ∈ Rn : maxi(xi) ≤ r}, where r > 0. (1 p)

c. S = {(x, t) ∈ R2 : |x|2 ≤ t2}. (1 p)

d. S = epi(f) where f(x) = ex and x ∈ R. (1 p)

e. S = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. (1 p)

Solution

a. Not convex. Take (x1, y1) = (−1, 1) and (x2, y2) = (1, 1), but (0, 1) is not in
the set.

b. Trivial from definition. Or since S is sub-levelset of convex function (max of
convex functions is convex).

c. Not convex. Take (x1, y1) = (1, 1) and (x2, y2) = (1, −1), but (1, 0) is not in
the set.

d. f is convex, therefore its epigraph is convex.

e. S is an intersection of half-spaces and therefore convex.

2. Which of the following functions f are convex? Prove or disprove.

a. f(x) =
{

x if x > 0
−1 if x ≤ 0

where x ∈ R. (1 p)

b. f(x) = g∗(x) where g(x) = a4x4 + a3x3 + a2x2 + a1x1 + a0 where x ∈ R. (1 p)

c. f(x) =
{

− min(log(x), −e−x) if x > 0
∞ if x ≤ 0

where x ∈ R. (1 p)

d. f(x) = |x|3 where x ∈ R. (1 p)

e. f(x) =
{

‖x‖2
2 if Ax = b

∞ otherwise
where A ∈ Rm×n and b ∈ Rm. (1 p)

Solution

a. Nonconvex. Take x = 0, y = 1, θ = 0.5: θf(x) + (1 − θ)f(y) = −0.5 + 0.5 · 0.5 =
−0.25 < f(θx + (1 − θ)y) = f(0.5) = 0.5

b. The conjugate of any function is a sup over affine functions, hence convex.

c. Convex. The domain is convex and − min(log(x), −e−x) = max(− log(x), e−x)
is convex. (log(x) is concave, so − log(x) is convex and so is e−x. Thus it is
max of convex functions.)

d. Convex. It is twice differentiable with non-negative second derivative, f ′′(x) =
6|x|.
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e. Convex. Convex domain and convex on the domain. Alternative, sum of convex
functions f(x) = x2 + ιAx=b(x).

3. Compute the proximal operator proxγf (x) for the Huber loss

f(x) =


1
2x2 if |x| ≤ 1/2
1
2(|x| − 1

4) if |x| > 1/2

where f : R → R. (1 p)

Solution
We have that x = proxγf (z) iff 0 = ∂f(x) + 1

2γ (x − z).
Assume x < −1/2, then 0 = −1/2 + 1

γ (x − z) ⇔ x = z + γ/2, where z <

−(1 + γ)/2.
Assume −1/2 < x < 1/2, then 0 = x + 1

γ (x − z) ⇔ x = 1
1+γ z, where 0 < z <

(1 + γ)/2.
Assume 1/2 < x, then 0 = 1/2 + 1

γ (x − z) ⇔ x = z − γ/2, where z > (1 + γ)/2.
From symmetry around 0 we get

proxγf (z) =


z + γ/2 if z < −(1 + γ)/2

1
1 + γ

z if − (1 + γ)/2 < z < (1 + γ)/2

z − γ/2 if (1 + γ)/2 < z

4. Compute the subdifferential to the berHu (reversed Huber) loss

f(x) =


‖x‖2 if ‖x‖2 ≤ 1
1
2(‖x‖2

2 + 1) if ‖x‖2 > 1

(1 p)

Solution
f is convex and differentiable everywhere except in 0, so subdifferentials are
given by the gradients:

∇f(x) = x/‖x‖2, ∀x : 0 6= ‖x‖2 ≤ 1,

and
∇f(x) = x, ∀x : ‖x‖2 ≥ 1.

At zero, the definition of subgradient s gives that for all y:

f(y) ≥ f(0) + sT y ⇔ ‖y‖2 ≥ f(0) + sT y = sT y

Which holds if and only if ‖s‖2 ≤ 1, i.e ∂f(0) = {s : ‖s‖2 ≤ 1}.

5. A convex function f has the following properties: f(−2) = 3, ∂f(−1) =
{−1}, ∂f(0) = [−1, 0]. What can you conclude about the following proper-
ties?
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a. Smoothness (1 p)

b. Strong convexity (1 p)

Solution

a. Not smooth since it is not differentiable at 0.

b. Not strongly convex since −1 ∈ ∂f at −1 and 0. I.e the second derivative of f
in this interval is 0.
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6. Sketch the conjugate of the piecewise linear function showed below. Outside
the plotted domain, assume the graph continues in the same direction as on
the boundary. (1 p)

f(x)

x

Solution

f(x)

x

7. Consider the functions g(x) = γf(x) and h(x) = f(x − b) where γ > 0.

a. Find g∗ expressed in f∗ and γ. (1 p)

b. Find h∗ expressed in f∗ and b. (1 p)

Solution

a.

g∗(y) = sup
x

yT x − g(x)

= sup
x

yT x − γf(x)

= γ sup
x

1
γ yT x − f(x)

= γ sup
x

( 1
γ y)T x − f(x)

= γf∗( 1
γ y)
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b.

h∗(y) = sup
x

yT x − h(x)

= sup
x

yT x − f(x − b)

= [z = x − b]
= sup

z
yT (z + b) − f(z)

= sup
z

yT z + yT b − f(z)

= yT b + sup
z

yT z − f(z)

= bT y + f∗(y)

8. Consider the coordinate proximal-gradient method (CPG)

Choose i

xk+1
i = proxγigi

(xk
i − γi(∇f(xk))i)

xk+1
j = xk

j ∀j 6= i.

Let x? be a fixed point of CPG, i.e. xk = x? =⇒ xk+1 = x?, regardless of
which coordinate i was chosen. Show that x? solves the problem

min f(x) +
n∑

i=1
gi(xi)

given that f and gi are closed convex and constraint qualification hold. (1 p)

Solution
For all i the following hold

x?
i = proxγigi

(x?
i − γi(∇f(x?))i)

= argmaxzi
gi(zi) + 1

2γi
‖zi − (x?

i − γi(∇f(x?))i)‖2.

Using Fermat’s rule gives

0 ∈ ∂gi(x?
i ) + 1

γi
[x?

i − (x?
i − γi(∇f(x?))i)]

= ∂gi(x?
i ) + (∇f(x?))i.

Gathering all i gives

0 ∈


∂g1(x?

1) + (∇f(x?))1
...

∂gn(x?
n) + (∇f(x?))n

 = ∂g(x?) + ∇f(x?)

which is Fermat’s rule for the given problem, i.e. x? solves the problem.
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9. Consider primal problem

min
x∈Rn

‖x‖1 + |1T x|

and dual problem

min
y∈R

ι[−1,1](−1y) + ι[−1,1](y)

where 1 ∈ Rn is a vector of all ones. Then function ι[a,b] is the indicator of the
set {x ∈ Rm : a ≤ x ≤ b} where the inequality is applied element wise.
Let y? be a solution to the dual problem and assume the primal solution x? is
unknown. Recover x? from y? using the primal-dual optimality conditions.

(2 p)

Solution
Using the primal-dual optimality conditions gives{

1T x ∈ ∂g∗(y)
x ∈ ∂f∗(−1y)

where g∗(y) = ι[−1,1](y) and f∗(z) = ι−1,1(z). The sub-differential of f∗(z) is
given by

(∂f∗(z))i =


0 if − 1 < zi < 1

[0, ∞) if zi = 1

(−∞, 0] if zi = −1

.

We see that if −1 < y < 1 then x = 0.
If y = 1 then ∀i, xi ∈ (−∞, 0] and ∂g∗ needs to be used. Note that y = 1 =⇒
1T x ≤ 0 and equality only hold when x = 0. Furthermore,∂g∗(1) = [0, ∞) =⇒
1T x ≥ 0 which gives that 1T x = 0 and y = 1 =⇒ x = 0. An analogue
argument can be made for the case when y = −1.
Finally we note that an optimal y can’t take any other values, i.e. the dual
solution y? gives the (unsurprising) primal solution x? = 0.
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