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Proximal gradient method

• Proximal gradient method is applied problems of the form

minimize
x

f(x) + g(x)

where, for instance:
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex

• For large problems, gradient can be expensive to compute
⇒ replace by unbiased stochastic approximation of gradient
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Unbiased stochastic gradient approximation

• Stochastic gradient estimator:
• notation: ∇̂f(x)
• outputs random vector in Rn for each x ∈ Rn

• Stochastic gradient realization:
• notation: ∇̃f(x) : Rn → Rn
• outputs, ∀x ∈ Rn, vector in Rn drawn from distribution of ∇̂f(x)

• An unbiased stochastic gradient estimator ∇̂f satisfies ∀x ∈ Rn:

E∇̂f(x) = ∇f(x)

• If x is random vector in Rn, unbiased estimator satisfies

E[∇̂f(x)|x] = ∇f(x)

(both are random vectors in Rn)
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Stochastic gradient descent (SGD)

• The following iteration generates (xk)k∈N of random variables:

xk+1 = proxγkg(xk − γk∇̂f(xk))

since ∇̂f outputs random vectors in Rn

• Stochastic gradient descent finds a realization of this sequence:

xk+1 = proxγkg(xk − γk∇̃f(xk))

where (xk)k∈N here is a realization with values in Rn

• Sloppy in notation for when xk is random variable vs realization

• Can be efficient if evaluating ∇̃f much cheaper than ∇f

5



Stochastic gradients – Finite sum problems

• Consider finite sum problems of the form

minimize
x

1
N

(
N∑
i=1

fi(x)

)
︸ ︷︷ ︸

f(x)

+g(x)

where 1
N is for convenience

• Training problems of this form, where sum over training data

• Stochastic gradient: select fi at random and take gradient step
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Single function stochastic gradient

• Let I be a {1, . . . , N}-valued random variable

• Let, as before, ∇̂f denote the stochastic gradient estimator

• Realization: let i be drawn from probability distribution of I

∇̃f(x) = ∇fi(x)

where we will use uniform probability distribution

pi = p(I = i) = 1
N

• Stochastic gradient is unbiased:

E[∇̂f(x)] =

N∑
i=1

pi∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Mini-batch stochastic gradient

• Let B be set of K-sample mini-batches to choose from:
• Example: 2-sample mini-batches and N = 4:

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

• Number of mini batches
(
N
K

)
, each item in

(
N−1
K−1

)
batches

• Let B be B-valued random variable
• Let, as before, ∇̂f denote stochastic gradient estimator
• Realization: let B be drawn from probability distribution of B

∇̃f(x) = 1
K

∑
i∈B
∇fi(x)

where we will use uniform probability distribution

pB = p(B = B) = 1

(NK)

• Stochastic gradient is unbiased:

E∇̂f(x) = 1

(NK)

∑
B∈B

1
K

∑
i∈B

∇fi(x) =
(N−1
K−1)
(NK)K

N∑
i=1

∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Stochastic gradient descent for finite sum problems

• The algorithm, choose x0 ∈ Rn and iterate:

1. Sample a mini-batch Bk ∈ B of K indices uniformly
2. Update

xk+1 = proxγkg(xk −
γk
K

∑
j∈Bk

∇fj(xk))

• Can have B = {{1}, . . . , {N}} and sample only one function

• Gives realization of underlying stochastic process

• How about convergence?
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Stochastic gradient method with γk = 1/3

Levelsets of summands Levelset of sum
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Stochastic gradient method with γk = 1/k

Levelsets of summands Levelset of sum
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Gradient method with γk = 1/3

Levelsets of summands Levelset of sum

SGD will not converge for constant steps (unlike gradient method)

10



Fixed step-size SGD does not converge to solution

• We can at most hope for finding point x̄ such that

0 ∈ ∂g(x̄) +∇f(x̄)

i.e., the proximal gradient fixed-point characterization

• Consider setting g = 0 and assume xk such that 0 = ∇f(xk)
• That 0 = ∇f(xk) does not imply 0 = ∇fi(xk) for all fi, hence

xk+1 = xk − γk∇fi(xk) 6= xk

i.e., will move away from prox-grad fixed-point for fixed γk > 0
• Need diminishing step-size rule to hope for convergence
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Last iterate vs best and average

• Last iterate moves away from fixed-point

• Behavior can better for:
• Best iterate (smallest function value)
• Average iterate (Polyak-Ruppert averaging)
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Best iterate sequence

• Output best (in function value) iterate instead of last iterate

• Example: SGD with constant steps and best iterate

SGD with constant step-size Best iterate in sequence

• Not usful in practice: Function value comparison too expensive
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Polyak-Ruppert averaging

• Polyak-Ruppert averaging:
• Output average of iterations instead of last iteration

• Example: SGD with constant steps and its average sequence

SGD with constant step-size Average of SGD sequence
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Rate outlook

• Sublinear convergence in:
• Nonconvex and convex settings
• Strongly convex setting (unlike proximal gradient method)

• Convergence rate dependent on step-size choice
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Stochastic gradient descent

• We consider problems of the form

minimize f(x)

where f : Rn → R is not necessarily convex

• We will analyze stochastic gradient descent

xk+1 = xk − γk∇̂f(xk)

where ∇̂f(xk) is an unbiased estimate of ∇f(xk) for all xk
• Will show sublinear convergence rates that depend on step-sizes
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Nonconvex setting – Assumptions

(i) f : Rn → R is β-smooth, for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

(ii) Stochastic gradient of f is unbiased: E[∇̂f(x)|x] = ∇f(x)

(iii) Variance is bounded: E[‖∇̂f(x)‖22|x] ≤ ‖∇f(x)‖22 +M2

(iv) No nonsmooth term, i.e., g = 0

(v) A minimizer x? exists and p? = f(x?) is optimal value

(vi) Step-sizes γk > 0 satisfy
∑∞
k=0 γk =∞ and

∑∞
k=0 γ

2
k <∞

• (iii): variance is bounded by M2 since

E[‖∇̂f(x)‖22|x] ≥ Var[‖∇̂f(x)‖2|x] + ‖∇f(x)‖22

• (iii): analysis is slightly simpler if assuming E[‖∇̂f(x)‖22|x] ≤ G
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Nonconvex setting – Analysis

• Upper bound on f in Assumption (i) gives

E[f(xk+1)|xk]

≤ E[f(xk) +∇f(xk)T (xk+1 − xk) + β
2
‖xk+1 − xk‖22|xk]

= f(xk)− γk∇f(xk)TE[∇̂f(xk)|xk] + βγ2k
2

E[‖∇̂f(xk)‖22|xk]

≤ f(xk)− γk∇f(xk)T∇f(xk) + βγ2k
2

(‖∇f(xk)‖22 +M2)

= f(xk)− γk(1− βγk
2

)‖∇f(xk)‖22 +
βγ2k
2
M2

• Let γk ≤ 1
β (true for large enough k since (γ2k)k∈N summable):

E[f(xk+1)|xk] ≤ f(xk)− γk
2 ‖∇f(xk)‖22 +

βγ2
k

2 M2

• Subtracting p? from both sides gives

E[f(xk+1)|xk]− p? ≤ f(xk)− p? − γk
2 ‖∇f(xk)‖22 +

βγ2
k

2 M2
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Lyapunov inequality

• Take expected value and use law of total expectation to get:

E[f(xk+1)]− p?︸ ︷︷ ︸
Vk+1

≤ E[f(xk)]− p?︸ ︷︷ ︸
Vk

−γk2 E[‖∇f(xk)‖22]︸ ︷︷ ︸
Rk

+
βγ2
k

2 M2︸ ︷︷ ︸
Wk

• Consequences:
• Vk = E[f(xk)]− p? converges (not necessarily to 0)
• ∑k

l=0
γl
2
Rl ≤ V0 +

∑k
l=0Wk, which, when multiplied by 2 gives

k∑
l=0

γlE[‖∇f(xl)‖22] ≤ 2(f(x0)− p?) +
k∑
l=0

γ2
l βM

2
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Minimum expected gradient norm bound

• Lyapunov inequality consequence restated:

k∑
l=0

γlE[‖∇f(xl)‖22] ≤ 2(f(x0)− p?) +

k∑
l=0

γ2l βM
2

• Using that

min
l=0,...,k

E[‖∇f(xl)‖22]

k∑
l=0

γl ≤
k∑
l=0

γlE[‖∇f(xl)‖22]

E[ min
l=0,...,k

‖∇f(xl)‖22] ≤ min
l=0,...,k

E[‖∇f(xl)‖22]

where second is Jensen’s inequality on concave minl, we get

E[ min
l=0,...,k

‖∇f(xl)‖22] ≤
2(f(x0)− p?) +

∑k
l=0 γ

2
l βM

2∑k
l=0 γl

where terms in the numerator:
• 2(f(x0)− p?) is due to initial suboptimality
• ∑k

l=0 γ
2
l βM

2 is due to noise in gradient estimates
(if M = 0, use γk = 1

β
to recover (proximal) gradient bound)
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Minimum expected gradient norm convergence

• What conclusions can we draw from

E[ min
l=0,...,k

‖∇f(xl)‖22] ≤
2(f(x0)− p?) +

∑k
l=0 γ

2
l βM

2∑k
l=0 γl

• Let C =
∑∞
l=0 γ

2
l <∞ (finite since (γ2k)k∈N summable) then

E[ min
l=0,...,k

‖∇f(xl)‖22] ≤ 2(f(x0)− p?) + CβM2∑k
l=0 γl

→ 0

as k →∞ since (γk)k∈N is not summable

• Consequences:
• Expected value of smallest gradient norm converges to 0
• Minimum gradient converges to 0 in probability
• We don’t know what happens with latest expected value
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Stochastic gradient descent

• We consider problems of the form

minimize f(x)

where f : Rn → R is convex

• We will analyze stochastic gradient descent

xk+1 = xk − γk∇̂f(xk)

where ∇̂f(xk) is an unbiased estimate of ∇f(xk) for all xk
• Will show sublinear convergence rates that depend on step-sizes
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Convex setting – Assumptions

(i) f : Rn → R is convex but not necessarily differentiable

(ii) Stochastic subgradient of f is unbiased: E[∇̂f(x)|x] ∈ ∂f(x)

(iii) Second moment is bounded: E[‖∇̂f(x)‖22|x] ≤ G2

(iv) A minimizer x? exists and p? = f(x?) is optimal value

(v) Step-sizes γk > 0 satisfy
∑∞
k=0 γk =∞ and

∑∞
k=0 γ

2
k <∞

• Do not assume smoothness or differentiability of f

• (iii): assumption is stronger than variance bound:

E[‖∇̂f(x)‖22|x] ≤ ‖∇f(x)‖22 +M2

but can be relaxed under smoothness assumptions
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Convex setting – Analysis

• Let, by (ii), E[∇̂f(xk)|xk] = gk ∈ ∂f(xk), then

E[‖xk+1 − x?‖22|xk]

= E[‖xk − γk∇̂f(xk)− x?‖22|xk]

= ‖xk − x?‖22 − 2γkEk[∇̂f(xk)|xk]T (xk − x?) + γ2
kE[‖∇̂f(xk)‖22|xk]

≤ ‖xk − x?‖22 − 2γkg
T
k (xk − x?) + γ2

kG
2

• Use subgradient definition f(x?) ≥ f(xk) + gTk (x? − xk) to get

E[‖xk+1 − x?‖22|xk] ≤ ‖xk − x?‖22 − 2γk(f(xk)− f(x?)) + γ2
kG

2
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Lyapunov inequality

• Take expected value and use law of total expectation to get:

E[‖xk+1 − x?‖22]︸ ︷︷ ︸
Vk+1

≤ E[‖xk − x?‖22]︸ ︷︷ ︸
Vk

−2γk E[(f(xk)− f(x?))]︸ ︷︷ ︸
Rk

+ γ2kG
2︸ ︷︷ ︸

Wk

• Consequences:
• Vk = E[‖xk − x?‖22] converges (not necessarily to 0)
• ∑k

l=0 2γlRl ≤ V0 +
∑k
l=0Wk, which gives

k∑
l=0

2γlE[(f(xl)− f(x?))] ≤ ‖x0 − x?‖22 +
k∑
l=0

γ2
l G

2
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Minimum expected function value bound

• What are the consequences of:

k∑
l=0

2γlE[(f(xl)− f(x?))] ≤ ‖x0 − x?‖22 +

k∑
l=0

γ2l G
2

• By using

min
l=0,...,k

E[f(xl)− f(x?)]

k∑
l=0

γl ≤
k∑
l=0

γlE[f(xl)− f(x?)]

E[ min
l=0,...,k

f(xl)− f(x?)] ≤ min
l=0,...,k

E[f(xl)− f(x?)]

where second is Jensen’s inequality on concave minl, we get

E[ min
l=0,...,k

f(xk)− f(x?)] ≤
‖x0 − x?‖22 +

∑k
l=0 γ

2
l G

2

2
∑k
l=0 γl

• The last iterate not bounded
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Weighted average expected function value bound

• Let us define the weighted average x̄k =

k∑
l=0

γl∑k
j=0 γj

xl

• By Jensen’s inequality for convex f , we have

f(x̄k) = f

( k∑
l=0

γl∑k
j=0 γj

xl

)
≤

k∑
l=0

γl∑k
j=0 γj

f(xl)

• Subtract f(x?), multiply by
(∑k

j=0 γj

)
, and take expectation:(

k∑
j=0

γj

)
E[f(x̄k)− f(x?)] ≤

k∑
l=0

γlE[f(xl)− f(x?)]

• This gives the following bound for the average:

E[f(x̄k)− f(x?)] ≤
‖x0 − x?‖22 +

∑k
l=0 γ

2
l G

2

2
∑k
l=0 γl
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Expected function value convergence

• Let C =
∑∞
l=0 γ

2
l <∞ (finite since (γ2k)k∈N summable) then

Qk ≤
‖x0 − x?‖22 + CG2

2
∑k
l=0 γl

→ 0

as k →∞ since (γk)k∈N is not summable, where

Qk = E[ min
l=0,...,k

f(xk)− f(x?)] or Qk = E[f(x̄k)− f(x?)]

• Expected smallest and average function value converge to f(x?)

• Function values converge in probability to optimal function f(x?)

• We have no last iterate convergence bound
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Smoothness

• We did not assume smoothness (or differentability) for result

• What happens if we add smoothness?
• Rate is not improved, but can improve constant
• We can replace E[‖∇̂f(x)‖22|x] ≤ G assumption by weaker

E[‖∇̂f(x)‖22|x] ≤ ‖∇f(x)‖22 +M2

that bounds variance (as in nonconvex analysis)
• If γk ≤ 1

β
, it can shown that

E[ min
l=0,...,k

f(xk)− f(x?)] ≤
‖x0 − x?‖22 +

∑k
l=0 γ

2
lM

2

2
∑k
l=0 γl

where, similar to in the smooth nonconvex setting, the term:
• ‖x0 − x?‖22 is due to initial suboptimality
• ∑k

l=0 γ
2
lM

2 is due to variance in gradient estimates
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Strong convexity

• Assumption: f smooth and strongly convex

• Proximal gradient method achieves linear convergence

• Stochastic gradient descent does not achieve linear convergence
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Unifying convergence results

• Convergence in nonconvex and convex settings are:

Qk ≤
V0 +DC

b
∑k
l=0 γl

where C =
∑∞
l=0 γ

2
l <∞ by summability of (γk)k∈N

• Convex setting: D = G2, b = 2, V0 = ‖x0 − x?‖22

Qk = E[ min
i∈{0,...,k}

f(xi)− f(x?)] or Qk = E[f(x̄k)− f(x?)]

• Nonconvex setting: D = βM2, b = 1, V0 = 2(f(x0)− p?), and

Qk = E[ min
i∈{0,...,k}

‖∇f(xi)‖22]
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Step-size requirements

• Step-size requirement
∑∞
l=0 γl =∞ makes upper bound

Qk ≤
V0 +DC

b
∑k
l=0 γl

→ 0

as k →∞, with Qk from previous slide, since C =
∑∞
l=0 γ

2
l <∞

• Step-sizes that satisfy
∑∞
l=0 γl =∞ and

∑∞
l=0 γ

2
l <∞

• γk = c/k, with c > 0
• γk = c/kα for α ∈ (0.5, 1), with c > 0
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Estimating rates via integrals

• For convergence need to verify
∑∞
l=0 γl =∞ and

∑∞
l=0 γ

2
l <∞

• To estimate rate we need to lower bound
∑k
l=0 γl

• Assume γl = φ(l) with decreasing and nonnegative φ : R+ → R+

• We can estimate sums using integral formula:∫ k

t=0

φ(t)dt+ φ(k) ≤
k∑
l=0

φ(l) ≤
∫ k

t=0

φ(t)dt+ φ(0)

(we can remove φ(k) ≥ 0 from lower bound to simplify)

• Will use upper bound on
∑k
l=0 γ

2
l and lower bound on

∑k
l=0 γl
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Estimating rates – Example γk =
c

k+1

• Let γk = φ(k) with φ(k) = c
k+1 and estimate the sum

k∑
l=0

γl ≥
∫ k

t=0

c

t+ 1
dt = c log(k + 1)→∞

as k →∞ and

k∑
l=0

γ2l ≤
∫ k

t=0

c2

(t+ 1)2
dt+ φ(0)2 = c2(1− 1

k+1 ) + c2 ≤ 2c2 <∞

• We arrive at the following (slow) O(1/ log(k + 1)) rate:

Qk ≤
V0 +DC

b
∑k
l=0 γl

≤ V0 + 2Dc2

bc log (k + 1)
=
V0/c+ 2Dc

b log (k + 1)

• The constant c trades off the two constant terms V0 and 2D
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Estimating rates – Example γk =
c

(k+1)α

• Let γk = φ(k) with φ(k) = c
(k+1)α and α ∈ (0.5, 1) and estimate

k∑
l=0

γl ≥
∫ k

t=0

c

(t+ 1)α
dt = c

1−α ((k + 1)1−α − 1)→∞

as k →∞ and, since φ(0)2 = c2:

k∑
l=0

γ2l − c2 ≤
∫ k

t=0

c2

(t+ 1)2α
dt = c2[ (t+1)1−2α

1−2α ]kt=0 ≤ c2

2α−1 <∞

• We arrive at the following O(1/(k + 1)1−α) rate:

Qk ≤
V0 +DC

b
∑k
l=0 γl

≤
(1− α)(V0 +Dc2 2α

2α−1 )

bc((k + 1)1−α − 1)

• Comments:
• Rate improves with smaller α: 1

(k+1)1−α →
√
k + 1 as α→ 0.5

• Constant worse with smaller α: (1− α)↗, 2α
2α−1

↗ as α↘ 0.5
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Refining the step-size analysis

• Have not assumed
∑∞
l=0 γ

2
l finite for general convergence bound

Qk ≤
V0 +D

∑k
l=0 γ

2
l

b
∑k
l=0 γl

• We can divide the sum into two parts

Qk ≤
V0

b
∑k
l=0 γl

+
D

b
∑k
l=0 γl∑k
l=0 γ

2
l

• So Qk → 0 if
∑k
l=0 γl →∞ and

∑k
l=0 γl∑k
l=0 γ

2
l

→∞

(don’t need
∑k
l=0 γ

2
l <∞ for Qk → 0)
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Refined step-size analysis interpretation

• Let ψ1(k) ≤
∑k
l=0 γl and ψ2(k) ≤

∑k
l=0 γl∑k
l=0 γ

2
l

and restate bound:

Qk ≤
V0

bψ1(k)
+

D

bψ2(k)

• ψ1 decides how fast V0 (f(x0)− p? or ‖x0 − x?‖22) is supressed

• ψ2 decides how fast D, that comes from noise, is supressed

• There is a tradeoff between supressing these quantities

• Actual convergence very much dependent on constants V0 and D
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Estimating rates – Example γk =
c

(k+1)α

• Let now α ∈ (0, 0.5) and estimate

k∑
l=0

γl ≥ c
1−α ((k + 1)1−α − 1)

squared sum does not converge, but can be shown to satisfy

k∑
l=0

γ2l ≤ c2

1−2α ((k + 1)1−2α − 2α)

• We use these to arrive at the following rate when γk = c
(k+1)α :

Qk ≤
(1− α)V0

2bc((k + 1)1−α − 1)
+

(1− α)Dc

b(1− 2α) k1−α−1
(k+1)1−2α−2α

where rate is worst of these: O( (k+1)1−2α

(k+1)1−α ) = O( 1
(k+1)α )

• Comments:
• Rate improves with larger α: 1

(k+1)α
→
√
k + 1 as α→ 0.5

• Constant worse with larger α: 1
1−2α

↗ as α↗ 0.5
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Estimating rates – Example γk =
c√
k+1

• We know from before that

k∑
l=0

γl =

k∑
l=0

c√
l+1
≥ 2c(

√
k + 1− 1)

and that the sum of step-sizes does not converge, but satisfies

k∑
l=0

γ2l =

k∑
l=0

c2

l+1 ≤ c
2 log(k + 1)

• Since
∑k
l=0 γl →∞ and

∑k
l=0 γl/

∑k
l=0 γ

2
l →∞ also

Qk ≤
V0

2bc
√
k + 1

+
Dc

2b
√
k+1−1

log (k+1)

→ 0

with rate O( log (k+1)√
(k+1)

) (since slower than O( 1√
k+1

))
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Comparing rates for γk =
c

k+1
and γk =

c√
k+1

• Rates for γk = c
k+1 and γk = c√

k+1
respectively:

Qk ≤
V0/c+ 2Dc

b log (k + 1)
and Qk ≤

V0

2bc
√
k + 1

+
Dc

2b
√
k+1−1

log (k+1)

• Constants in the two terms similar or same

• Rate better for γk = c√
k+1

(O( log(k+1)√
k+1

) vs O( 1
log(k+1) ))

• This is worst-case analysis, might not reflect actual performance
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Rate comparison

Setting Quantity Gradient Stochastic γk = 1
kα

α = 1 α = 0.5

Nonconvex min
l∈{0,...,k}

‖∇f(xl)‖22 O( 1
k
) O( 1

log k
) O( log k√

k
)

Convex min
l∈{0,...,k}

(f(xl)− f(x?)) O( 1
k
) O( 1

log k
) O( log k√

k
)

Strongly convex - linear sublinear sublinear

• For stochastic, we have expectation around convergence quantity

• For convex gradient method, smallest suboptimality is the latest

• Constants similar except extra term from gradient estimate noise

• Stochastic gradient descent rate slower in all settings

• However, every iteration in stochastic gradient descent cheaper
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Finite sum comparison

• We consider

minimize

N∑
i=1

fi(x)

where N is large and use one fi for each stochastic gradient

• N iterations of stochastic gradient is at cost of 1 full gradient

• Progress after k epochs (stochastic) vs k iterations (full):

Setting Quantity Gradient Stochastic γk = 1
kα

α = 1 α = 0.5

Nonconvex min
l∈{0,...,k}

‖∇f(xl)‖22 O( 1
k
) O( 1

logNk
) O( logNk√

Nk
)

Convex min
l∈{0,...,k}

(f(xl)− f(x?)) O( 1
k
) O( 1

logNk
) O( logNk√

Nk
)
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Finite sum comparison – Quantification

• Assume that finite sum of N equals 10 million summands

• Assume constant for SGD 10x larger than for GD

• Computational budget is that we run k = 10 iterations/epochs

• Replacing upper bounds with numbers:

Setting Quantity Gradient Stochastic γk = 1
kα

α = 1 α = 0.5

Nonconvex min
l∈{0,...,k}

‖∇f(xl)‖22 0.1 0.54 0.018

Convex min
l∈{0,...,k}

(f(xl)− f(x?)) 0.1 0.54 0.018

• Stochastic gives better worst case guarantees

• Significant difference between stochastic methods

• Actual performance depends a lot on relation between constants
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Adaptive diagonal scaling

• Diagonal scaling gives one step-size (learning rate) per variable

• Gives SGD with diagonal scaling Hk = diag(h1,k, . . . , hN,k)

xk+1 = xk − γH−1k ∇̂f(xk)

where the inverse is H−1k = diag( 1
h1,k

, . . . , 1
hN,k

)

• A few methods exists that adaptively select individual step sizes
• Adagrad
• RMSProp
• Adam
• Adamax
• Adadelta

• Among these, Adagrad was first but Adam most popular

• Sometimes improve convergence compared to SGD

• Will briefly motivate Adagrad and show how Adam differs
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Motivation for Adagrad

• Consider SGD with diagonal scaling Hk:

xk+1 = xk − γH−1k ∇̂f(xk)

• Update our analysis in the convex setting by
• expanding the square in the Hk norm and
• assuming deterministic Hk � Hk−1 for all k
• not replacing E[‖∇̂f(xk)‖2H−1

k

|xk] by upper bound G2

• using fixed step-size γk = γ

we get bound (that converges if Hk increases fast enough)

E[f(xk)− f(x?)] ≤
γ−1‖x0 − x?‖2H0

+ γ
∑k
l=0 E[‖∇̂f(xl)‖2H−1

l

]

2(k + 1)

• Adagrad idea: select Hk to optimize constant
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Adagrad idea for selecting Hk

• Assume Hk = H has been constant and optimize bound constant

γ−1‖x0 − x?‖2H + γ

k∑
l=0

E[‖∇̂f(xl)‖2H−1 ]

• Don’t know ‖x0 − x?‖2H , approximate with tr(H)‖x0 − x?‖22
• Estimate sum from realization E[‖∇̂f(xl)‖2H−1 ] = ‖∇̃f(xl)‖2H−1

• Let R = ‖x0 − x?‖22 to get optimization problem

γ−1Rtr(H) + γ

k∑
l=0

‖∇̃f(xl)‖2H−1

• Problem is separable in diagonal elements with solution

hii = γ√
R
‖(∇̃f(xl))

0:k
i ‖2

where (∇̃f(xl))
0:k
i = (∇̃f(x0)i, . . . , ∇̃f(xk)i)

• Since we do not know R, we can set R = γ2
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Adagrad summary

• Adagrad adds ε to above estimate for numerical reasons
• The algorithm is

1. ∇̃f(xk) is subgradient or stochastic (sub)gradient of f at xk
2. Select metric Hk

• set sk =
∑k
l=0(∇̃f(xk))2

• set hk = ε1+
√
sk

• set Hk = γ−1 diag(hk)

3. xk+1 = xk −H−1
k gk = xk − γgk./(ε1+

√
sk)

• Sometimes Hk sums up too fast so too short steps are taken
• Possible reason, in smooth settings, we would get rate constant

γ−1‖x0 − x?‖2H + γ

k∑
l=0

E[‖∇̂f(xl)−∇f(xl)‖2H−1 ]

where second term in this rate constant
• depends on noise, not full gradient as in Adagrad development
• would give smaller Hk and longer steps
• is more difficult to estimate online
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Variations – RMSprop and Adam

• In Adagrad, Hk may grow too fast which gives too short steps

• Instead: Don’t sum gradient square, estimate variance:

v̂k = bv v̂k−1 + (1− bv)(∇̃f(xk))2

where v̂0 = 0, bv ∈ (0, 1)

• Hk is chosen (approximately) as standard deviation:
• RMSprop: biased estimate Hk = diag(

√
v̂k + ε)

• Adam: unbiased estimate Hk = diag(
√

v̂k
1−bkv

+ ε)

which is much smaller than in Adagrad ⇒ longer steps

• Intuition:
• Reduce step size for high variance coordinates
• Increase step size for low variance coordinates

• Adam also filters stochastic gradients for smoother updates
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Filtered stochastic gradients

• Let m0 = 0 and bm ∈ (0, 1), and update

m̂k = bmm̂k−1 + (1− bm)gk

• Adam uses unbiased estimate: m̂k
1−bkm

• Does not improve convergence properties, but slower changes
• Problem from before, fixed step-size, without filtered gradient

Levelsets of summands
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Adam – Summary

• Initialize m̂0 = v̂0 = 0, bm, bv ∈ (0, 1), and select γ > 0

1. gk = ∇̃f(xk) (stochastic gradient)
2. m̂k = bmm̂k−1 + (1− bm)gk
3. v̂k = bv v̂k−1 + (1− bv)g2k
4. mk = m̂k/(1− bkm)
5. vk = v̂k/(1− bkv)
6. xk+1 = xk − γmk./(

√
vk + ε1)

• Suggested choices bm = 0.9 and bv = 0.999

• Similar to Adagrad, but
√
vk �

√
sk ⇒ longer steps

• May not work in deterministic setting (unlike Adagrad):
• If method converges ∇f(xk)→ 0
• Then vk → 0 and steps become very large
• Needs noise and stochastic gradients to work well
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