Stochastic Gradient Descent

Pontus Giselsson

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Proximal gradient method

Proximal gradient method is applied problems of the form

$$\underset{x}{\operatorname{minimize}} f(x) + g(x)$$

where, for instance:

- $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth (not necessarily convex)
- $g:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed convex
- For large problems, gradient can be expensive to compute
 ⇒ replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient *estimator*:
 - notation: $\widehat{\nabla} f(x)$
 - outputs random vector in \mathbb{R}^n for each $x \in \mathbb{R}^n$
- Stochastic gradient realization:
 - notation: $\widetilde{\nabla} f(x) : \mathbb{R}^n \to \mathbb{R}^n$
 - outputs, $\forall x \in \mathbb{R}^n$, vector in \mathbb{R}^n drawn from distribution of $\widehat{\nabla} f(x)$
- An unbiased stochastic gradient estimator $\widehat{\nabla} f$ satisfies $\forall x \in \mathbb{R}^n$:

$$\mathbb{E}\widehat{\nabla}f(x) = \nabla f(x)$$

• If x is random vector in \mathbb{R}^n , unbiased estimator satisfies

$$\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$$

(both are random vectors in \mathbb{R}^n)

Stochastic gradient descent (SGD)

• The following iteration generates $(x_k)_{k\in\mathbb{N}}$ of random variables:

$$x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k - \gamma_k \widehat{\nabla} f(x_k))$$

since $\widehat{\nabla} f$ outputs random vectors in \mathbb{R}^n

• Stochastic gradient descent finds a *realization* of this sequence:

$$x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k - \gamma_k \widetilde{\nabla} f(x_k))$$

where $(x_k)_{k\in\mathbb{N}}$ here is a realization with values in \mathbb{R}^n

- ullet Sloppy in notation for when x_k is random variable vs realization
- ullet Can be efficient if evaluating $\widetilde{
 abla} f$ much cheaper than abla f

Stochastic gradients – Finite sum problems

Consider finite sum problems of the form

$$\underset{x}{\text{minimize}} \underbrace{\frac{1}{N} \left(\sum_{i=1}^{N} f_i(x) \right)}_{f(x)} + g(x)$$

where $\frac{1}{N}$ is for convenience

- Training problems of this form, where sum over training data
- ullet Stochastic gradient: select f_i at random and take gradient step

Single function stochastic gradient

- ullet Let I be a $\{1,\ldots,N\}$ -valued random variable
- Let, as before, $\widehat{\nabla} f$ denote the stochastic gradient estimator
- ullet Realization: let i be drawn from probability distribution of I

$$\widetilde{\nabla} f(x) = \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_i = p(I = i) = \frac{1}{N}$$

Stochastic gradient is unbiased:

$$\mathbb{E}[\widehat{\nabla}f(x)] = \sum_{i=1}^{N} p_i \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
 - Example: 2-sample mini-batches and N=4:

$$\mathcal{B} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let \mathbb{B} be \mathcal{B} -valued random variable
- Let, as before, $\widehat{\nabla} f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of \mathbb{B}

$$\widetilde{\nabla} f(x) = \frac{1}{K} \sum_{i \in B} \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_B = p(\mathbb{B} = B) = \frac{1}{\binom{N}{K}}$$

Stochastic gradient is unbiased:

$$\mathbb{E}\widehat{\nabla}f(x) = \frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_i(x) = \frac{\binom{N-1}{K-1}}{\binom{N}{K}K} \sum_{i=1}^{N} \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

Stochastic gradient descent for finite sum problems

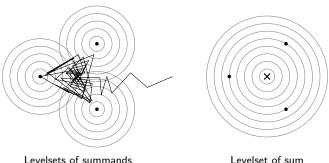
- The algorithm, choose $x_0 \in \mathbb{R}^n$ and iterate:
 - 1. Sample a mini-batch $B_k \in \mathcal{B}$ of K indices uniformly
 - 2. Update

$$x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k - \frac{\gamma_k}{K} \sum_{j \in B_k} \nabla f_j(x_k))$$

- Can have $\mathcal{B} = \{\{1\}, \dots, \{N\}\}$ and sample only one function
- Gives realization of underlying stochastic process
- How about convergence?

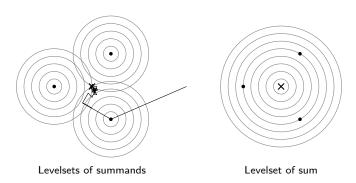
SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2) = \frac{3}{2}\|x\|_2^2 + c$
- ullet Stochastic gradient method with $\gamma_k=1/3$



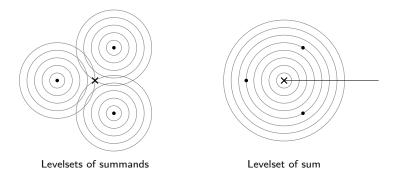
SGD - Example

- Let $c_1 + c_2 + c_3 = 0$
- \bullet Solve $\mathrm{minimize}_x(\frac{1}{2}(\|x-c_1\|_2^2+\|x-c_2\|_2^2+\|x-c_3\|_2^2)=\frac{3}{2}\|x\|_2^2+c$
- \bullet Stochastic gradient method with $\gamma_k=1/k$



SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(\|x-c_1\|_2^2 + \|x-c_2\|_2^2 + \|x-c_3\|_2^2) = \frac{3}{2}\|x\|_2^2 + c$
- \bullet Gradient method with $\gamma_k = 1/3$



SGD will not converge for constant steps (unlike gradient method)

Fixed step-size SGD does not converge to solution

• We can at most hope for finding point \bar{x} such that

$$0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$$

i.e., the proximal gradient fixed-point characterization

- Consider setting g=0 and assume x_k such that $0=\nabla f(x_k)$
 - That $0 = \nabla f(x_k)$ does *not* imply $0 = \nabla f_i(x_k)$ for all f_i , hence

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) \neq x_k$$

i.e., will move away from prox-grad fixed-point for fixed $\gamma_k > 0$

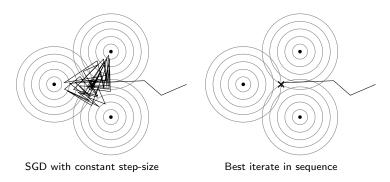
Need diminishing step-size rule to hope for convergence

Last iterate vs best and average

- Last iterate moves away from fixed-point
- Behavior can better for:
 - Best iterate (smallest function value)
 - Average iterate (Polyak-Ruppert averaging)

Best iterate sequence

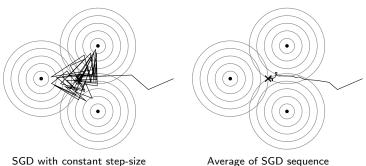
- Output best (in function value) iterate instead of last iterate
- Example: SGD with constant steps and best iterate



• Not usful in practice: Function value comparison too expensive

Polyak-Ruppert averaging

- Polyak-Ruppert averaging:
 - Output average of iterations instead of last iteration
- Example: SGD with constant steps and its average sequence



Rate outlook

- Sublinear convergence in:
 - Nonconvex and convex settings
 - Strongly convex setting (unlike proximal gradient method)
- Convergence rate dependent on step-size choice

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Stochastic gradient descent

• We consider problems of the form

minimize
$$f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is not necessarily convex

• We will analyze stochastic gradient descent

$$x_{k+1} = x_k - \gamma_k \widehat{\nabla} f(x_k)$$

where $\widehat{
abla} f(x_k)$ is an unbiased estimate of $abla f(x_k)$ for all x_k

• Will show sublinear convergence rates that depend on step-sizes

Nonconvex setting – Assumptions

(i) $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth, for all $x, y \in \mathbb{R}^n$:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||_2^2$$

- (ii) Stochastic gradient of f is unbiased: $\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$
- (iii) Variance is bounded: $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq \|\nabla f(x)\|_2^2 + M^2$
- $\left(iv\right)$ No nonsmooth term, i.e., g=0
- (v) A minimizer x^\star exists and $p^\star = f(x^\star)$ is optimal value
- (vi) Step-sizes $\gamma_k>0$ satisfy $\sum_{k=0}^\infty \gamma_k=\infty$ and $\sum_{k=0}^\infty \gamma_k^2<\infty$
 - (iii): variance is bounded by M^2 since

$$\mathbb{E}[\|\widehat{\nabla}f(x)\|_{2}^{2}|x] \ge \text{Var}[\|\widehat{\nabla}f(x)\|_{2}|x] + \|\nabla f(x)\|_{2}^{2}$$

• (iii): analysis is slightly simpler if assuming $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq G$

Nonconvex setting – Analysis

Upper bound on f in Assumption (i) gives

$$\begin{split} \mathbb{E}[f(x_{k+1})|x_{k}] \\ &\leq \mathbb{E}[f(x_{k}) + \nabla f(x_{k})^{T}(x_{k+1} - x_{k}) + \frac{\beta}{2} \|x_{k+1} - x_{k}\|_{2}^{2} |x_{k}] \\ &= f(x_{k}) - \gamma_{k} \nabla f(x_{k})^{T} \mathbb{E}[\widehat{\nabla} f(x_{k})|x_{k}] + \frac{\beta \gamma_{k}^{2}}{2} \mathbb{E}[\|\widehat{\nabla} f(x_{k})\|_{2}^{2} |x_{k}] \\ &\leq f(x_{k}) - \gamma_{k} \nabla f(x_{k})^{T} \nabla f(x_{k}) + \frac{\beta \gamma_{k}^{2}}{2} (\|\nabla f(x_{k})\|_{2}^{2} + M^{2}) \\ &= f(x_{k}) - \gamma_{k} (1 - \frac{\beta \gamma_{k}}{2}) \|\nabla f(x_{k})\|_{2}^{2} + \frac{\beta \gamma_{k}^{2}}{2} M^{2} \end{split}$$

• Let $\gamma_k \leq \frac{1}{\beta}$ (true for large enough k since $(\gamma_k^2)_{k \in \mathbb{N}}$ summable):

$$\mathbb{E}[f(x_{k+1})|x_k] \le f(x_k) - \frac{\gamma_k}{2} \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} M^2$$

• Subtracting p^* from both sides gives

$$\mathbb{E}[f(x_{k+1})|x_k] - p^* \le f(x_k) - p^* - \frac{\gamma_k}{2} \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} M^2$$

Lyapunov inequality

• Take expected value and use law of total expectation to get:

$$\underbrace{\mathbb{E}[f(x_{k+1})] - p^\star}_{V_{k+1}} \leq \underbrace{\mathbb{E}[f(x_k)] - p^\star}_{V_k} - \frac{\gamma_k}{2} \underbrace{\mathbb{E}[\|\nabla f(x_k)\|_2^2]}_{R_k} + \underbrace{\frac{\beta \gamma_k^2}{2} M^2}_{W_k}$$

- Consequences:
 - $V_k = \mathbb{E}[f(x_k)] p^*$ converges (not necessarily to 0)
 - $\sum_{l=0}^k \frac{\gamma_l}{2} R_l \leq V_0 + \sum_{l=0}^k W_k$, which, when multiplied by 2 gives

$$\sum_{l=0}^{k} \gamma_{l} \mathbb{E}[\|\nabla f(x_{l})\|_{2}^{2}] \leq 2(f(x_{0}) - p^{*}) + \sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}$$

Minimum expected gradient norm bound

Lyapunov inequality consequence restated:

$$\sum_{l=0}^{k} \gamma_{l} \mathbb{E}[\|\nabla f(x_{l})\|_{2}^{2}] \leq 2(f(x_{0}) - p^{*}) + \sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}$$

• Using that

$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \sum_{l=0}^k \gamma_l \le \sum_{l=0}^k \gamma_l \mathbb{E}[\|\nabla f(x_l)\|_2^2]$$

$$\mathbb{E}[\min_{l=0,\dots,k} \|\nabla f(x_l)\|_2^2] \le \min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2]$$

where second is Jensen's inequality on concave \min_l , we get

$$\mathbb{E}[\min_{l=0,\dots,k} \|\nabla f(x_l)\|_2^2] \le \frac{2(f(x_0) - p^*) + \sum_{l=0}^k \gamma_l^2 \beta M^2}{\sum_{l=0}^k \gamma_l}$$

where terms in the numerator:

- $2(f(x_0) p^*)$ is due to initial suboptimality
- $\sum_{l=0}^k \gamma_l^2 \beta M^2$ is due to noise in gradient estimates (if M=0, use $\gamma_k=\frac{1}{\beta}$ to recover (proximal) gradient bound)

Minimum expected gradient norm convergence

What conclusions can we draw from

$$\mathbb{E}[\min_{l=0,\dots,k} \|\nabla f(x_l)\|_2^2] \le \frac{2(f(x_0) - p^*) + \sum_{l=0}^k \gamma_l^2 \beta M^2}{\sum_{l=0}^k \gamma_l}$$

• Let $C=\sum_{l=0}^{\infty}\gamma_l^2<\infty$ (finite since $(\gamma_k^2)_{k\in\mathbb{N}}$ summable) then

$$\mathbb{E}\left[\min_{l=0,\dots,k} \|\nabla f(x_l)\|_2^2\right] \le \frac{2(f(x_0) - p^*) + C\beta M^2}{\sum_{l=0}^k \gamma_l} \to 0$$

as $k \to \infty$ since $(\gamma_k)_{k \in \mathbb{N}}$ is not summable

- Consequences:
 - Expected value of smallest gradient norm converges to 0
 - Minimum gradient converges to 0 in probability
 - We don't know what happens with latest expected value

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Stochastic gradient descent

We consider problems of the form

minimize
$$f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex

• We will analyze stochastic gradient descent

$$x_{k+1} = x_k - \gamma_k \widehat{\nabla} f(x_k)$$

where $\widehat{
abla} f(x_k)$ is an unbiased estimate of $abla f(x_k)$ for all x_k

• Will show sublinear convergence rates that depend on step-sizes

Convex setting – Assumptions

- (i) $f:\mathbb{R}^n \to \mathbb{R}$ is convex but not necessarily differentiable
- $(ii) \ \ {\rm Stochastic\ subgradient\ of}\ f\ \ {\rm is\ unbiased:}\ \ \mathbb{E}[\widehat{\nabla}f(x)|x]\in\partial f(x)$
- $\|(iii)\|$ Second moment is bounded: $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq G^2$
- (iv) A minimizer x^\star exists and $p^\star = f(x^\star)$ is optimal value
 - (v) Step-sizes $\gamma_k>0$ satisfy $\sum_{k=0}^\infty \gamma_k=\infty$ and $\sum_{k=0}^\infty \gamma_k^2<\infty$
 - ullet Do not assume smoothness or differentiability of f
 - (iii): assumption is stronger than variance bound:

$$\mathbb{E}[\|\widehat{\nabla}f(x)\|_{2}^{2}|x] \le \|\nabla f(x)\|_{2}^{2} + M^{2}$$

but can be relaxed under smoothness assumptions

Convex setting – Analysis

• Let, by (ii), $\mathbb{E}[\widehat{\nabla}f(x_k)|x_k] = g_k \in \partial f(x_k)$, then $\mathbb{E}[\|x_{k+1} - x^\star\|_2^2|x_k]$ $= \mathbb{E}[\|x_k - \gamma_k \widehat{\nabla}f(x_k) - x^\star\|_2^2|x_k]$ $= \|x_k - x^\star\|_2^2 - 2\gamma_k \mathbb{E}_k[\widehat{\nabla}f(x_k)|x_k]^T(x_k - x^\star) + \gamma_k^2 \mathbb{E}[\|\widehat{\nabla}f(x_k)\|_2^2|x_k]$ $\leq \|x_k - x^\star\|_2^2 - 2\gamma_k g_k^T(x_k - x^\star) + \gamma_k^2 G^2$

• Use subgradient definition
$$f(x^\star) \geq f(x_k) + g_k^T(x^\star - x_k)$$
 to get

$$\mathbb{E}[\|x_{k+1} - x^*\|_2^2 | x_k] \le \|x_k - x^*\|_2^2 - 2\gamma_k (f(x_k) - f(x^*)) + \gamma_k^2 G^2$$

Lyapunov inequality

• Take expected value and use law of total expectation to get:

$$\underbrace{\mathbb{E}[\|x_{k+1} - x^\star\|_2^2]}_{V_{k+1}} \leq \underbrace{\mathbb{E}[\|x_k - x^\star\|_2^2]}_{V_k} - 2\gamma_k \underbrace{\mathbb{E}[(f(x_k) - f(x^\star))]}_{R_k} + \underbrace{\gamma_k^2 G^2}_{W_k}$$

- Consequences:
 - $V_k = \mathbb{E}[\|x_k x^\star\|_2^2]$ converges (not necessarily to 0)
 - $\sum_{l=0}^k 2\gamma_l R_l \leq V_0 + \sum_{l=0}^k W_k$, which gives

$$\sum_{l=0}^{k} 2\gamma_{l} \mathbb{E}[(f(x_{l}) - f(x^{*}))] \le ||x_{0} - x^{*}||_{2}^{2} + \sum_{l=0}^{k} \gamma_{l}^{2} G^{2}$$

Minimum expected function value bound

• What are the consequences of:

$$\sum_{l=0}^{k} 2\gamma_{l} \mathbb{E}[(f(x_{l}) - f(x^{\star}))] \le ||x_{0} - x^{\star}||_{2}^{2} + \sum_{l=0}^{k} \gamma_{l}^{2} G^{2}$$

• By using

$$\min_{l=0,\dots,k} \mathbb{E}[f(x_l) - f(x^*)] \sum_{l=0}^k \gamma_l \le \sum_{l=0}^k \gamma_l \mathbb{E}[f(x_l) - f(x^*)]$$

$$\mathbb{E}[\min_{l=0,\dots,k} f(x_l) - f(x^*)] \le \min_{l=0,\dots,k} \mathbb{E}[f(x_l) - f(x^*)]$$

where second is Jensen's inequality on concave \min_l , we get

$$\mathbb{E}\left[\min_{l=0,\dots,k} f(x_k) - f(x^*)\right] \le \frac{\|x_0 - x^*\|_2^2 + \sum_{l=0}^k \gamma_l^2 G^2}{2\sum_{l=0}^k \gamma_l}$$

The last iterate not bounded

Weighted average expected function value bound

- \bullet Let us define the weighted average $\bar{x}_k = \sum_{l=0}^k \frac{\gamma_l}{\sum_{j=0}^k \gamma_j} x_l$
- ullet By Jensen's inequality for convex f, we have

$$f(\bar{x}_k) = f\left(\sum_{l=0}^k \frac{\gamma_l}{\sum_{j=0}^k \gamma_j} x_l\right) \le \sum_{l=0}^k \frac{\gamma_l}{\sum_{j=0}^k \gamma_j} f(x_l)$$

• Subtract $f(x^*)$, multiply by $\left(\sum_{j=0}^k \gamma_j\right)$, and take expectation:

$$\left(\sum_{j=0}^{k} \gamma_j\right) \mathbb{E}[f(\bar{x}_k) - f(x^*)] \le \sum_{l=0}^{k} \gamma_l \mathbb{E}[f(x_l) - f(x^*)]$$

This gives the following bound for the average:

$$\mathbb{E}[f(\bar{x}_k) - f(x^*)] \le \frac{\|x_0 - x^*\|_2^2 + \sum_{l=0}^k \gamma_l^2 G^2}{2\sum_{l=0}^k \gamma_l}$$

Expected function value convergence

 \bullet Let $C=\sum_{l=0}^{\infty}\gamma_l^2<\infty$ (finite since $(\gamma_k^2)_{k\in\mathbb{N}}$ summable) then

$$Q_k \le \frac{\|x_0 - x^*\|_2^2 + CG^2}{2\sum_{l=0}^k \gamma_l} \to 0$$

as $k \to \infty$ since $(\gamma_k)_{k \in \mathbb{N}}$ is not summable, where

$$Q_k = \mathbb{E}[\min_{l=0,\dots,k} f(x_k) - f(x^*)]$$
 or $Q_k = \mathbb{E}[f(\bar{x}_k) - f(x^*)]$

- Expected smallest and average function value converge to $f(x^*)$
- ullet Function values converge in probability to optimal function $f(x^\star)$
- We have no last iterate convergence bound

Smoothness

- We did not assume smoothness (or differentability) for result
- What happens if we add smoothness?
 - Rate is not improved, but can improve constant
 - We can replace $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq G$ assumption by weaker

$$\mathbb{E}[\|\widehat{\nabla}f(x)\|_{2}^{2}|x] \le \|\nabla f(x)\|_{2}^{2} + M^{2}$$

that bounds variance (as in nonconvex analysis)

• If $\gamma_k \leq \frac{1}{\beta}$, it can shown that

$$\mathbb{E}\left[\min_{l=0,\dots,k} f(x_k) - f(x^*)\right] \le \frac{\|x_0 - x^*\|_2^2 + \sum_{l=0}^k \gamma_l^2 M^2}{2\sum_{l=0}^k \gamma_l}$$

where, similar to in the smooth nonconvex setting, the term:

- ullet $\|x_0-x^\star\|_2^2$ is due to initial suboptimality
- $\sum_{l=0}^k \gamma_l^2 M^2$ is due to variance in gradient estimates

Strong convexity

- Assumption: *f* smooth and strongly convex
- Proximal gradient method achieves linear convergence
- Stochastic gradient descent does not achieve linear convergence

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Unifying convergence results

• Convergence in nonconvex and convex settings are:

$$Q_k \le \frac{V_0 + DC}{b \sum_{l=0}^k \gamma_l}$$

where $C = \sum_{l=0}^{\infty} \gamma_l^2 < \infty$ by summability of $(\gamma_k)_{k \in \mathbb{N}}$

• Convex setting: $D=G^2$, b=2, $V_0=\|x_0-x^\star\|_2^2$

$$Q_k = \mathbb{E}[\min_{i \in \{0,\dots,k\}} f(x_i) - f(x^*)] \qquad \text{or} \qquad Q_k = \mathbb{E}[f(\bar{x}_k) - f(x^*)]$$

• Nonconvex setting: $D = \beta M^2$, b = 1, $V_0 = 2(f(x_0) - p^*)$, and

$$Q_k = \mathbb{E}[\min_{i \in \{0, \dots, k\}} \|\nabla f(x_i)\|_2^2]$$

Step-size requirements

• Step-size requirement $\sum_{l=0}^{\infty} \gamma_l = \infty$ makes upper bound

$$Q_k \le \frac{V_0 + DC}{b\sum_{l=0}^k \gamma_l} \to 0$$

as $k \to \infty$, with Q_k from previous slide, since $C = \sum_{l=0}^{\infty} \gamma_l^2 < \infty$

- Step-sizes that satisfy $\sum_{l=0}^{\infty} \gamma_l = \infty$ and $\sum_{l=0}^{\infty} \gamma_l^2 < \infty$
 - $\gamma_k = c/k$, with c > 0
 - $\gamma_k = c/k^{\alpha}$ for $\alpha \in (0.5, 1)$, with c > 0

Estimating rates via integrals

- For convergence need to verify $\sum_{l=0}^{\infty}\gamma_l=\infty$ and $\sum_{l=0}^{\infty}\gamma_l^2<\infty$
- ullet To estimate rate we need to lower bound $\sum_{l=0}^k \gamma_l$
- Assume $\gamma_l = \phi(l)$ with decreasing and nonnegative $\phi: \mathbb{R}_+ \to \mathbb{R}_+$
- We can estimate sums using integral formula:

$$\int_{t=0}^{k} \phi(t)dt + \phi(k) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(0)$$

(we can remove $\phi(k) \ge 0$ from lower bound to simplify)

 \bullet Will use upper bound on $\sum_{l=0}^k \gamma_l^2$ and lower bound on $\sum_{l=0}^k \gamma_l$

Estimating rates – Example $\gamma_k = \frac{c}{k+1}$

• Let $\gamma_k = \phi(k)$ with $\phi(k) = \frac{c}{k+1}$ and estimate the sum

$$\sum_{l=0}^k \gamma_l \geq \int_{t=0}^k \frac{c}{t+1} dt = c \log(k+1) \to \infty$$

as $k \to \infty$ and

$$\sum_{l=0}^{k} \gamma_l^2 \le \int_{t=0}^{k} \frac{c^2}{(t+1)^2} dt + \phi(0)^2 = c^2 (1 - \frac{1}{k+1}) + c^2 \le 2c^2 < \infty$$

• We arrive at the following (slow) $O(1/\log(k+1))$ rate:

$$Q_k \le \frac{V_0 + DC}{b \sum_{l=0}^k \gamma_l} \le \frac{V_0 + 2Dc^2}{bc \log(k+1)} = \frac{V_0/c + 2Dc}{b \log(k+1)}$$

ullet The constant c trades off the two constant terms V_0 and 2D

Estimating rates – Example $\gamma_k = \frac{c}{(k+1)^{\alpha}}$

• Let $\gamma_k = \phi(k)$ with $\phi(k) = \frac{c}{(k+1)^{\alpha}}$ and $\alpha \in (0.5,1)$ and estimate

$$\sum_{l=0}^{k} \gamma_{l} \ge \int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} dt = \frac{c}{1-\alpha} ((k+1)^{1-\alpha} - 1) \to \infty$$

as $k \to \infty$ and, since $\phi(0)^2 = c^2$:

$$\sum_{l=0}^{k} \gamma_l^2 - c^2 \le \int_{t=0}^{k} \frac{c^2}{(t+1)^{2\alpha}} dt = c^2 \left[\frac{(t+1)^{1-2\alpha}}{1-2\alpha} \right]_{t=0}^{k} \le \frac{c^2}{2\alpha-1} < \infty$$

• We arrive at the following $O(1/(k+1)^{1-\alpha})$ rate:

$$Q_k \le \frac{V_0 + DC}{b \sum_{l=0}^k \gamma_l} \le \frac{(1-\alpha)(V_0 + Dc^2 \frac{2\alpha}{2\alpha - 1})}{bc((k+1)^{1-\alpha} - 1)}$$

- Comments:
 - Rate improves with smaller $\alpha\colon \frac{1}{(k+1)^{1-\alpha}}\to \sqrt{k+1}$ as $\alpha\to 0.5$
 - Constant worse with smaller α : $(1-\alpha)$ /, $\frac{2\alpha}{2\alpha-1}$ / as $\alpha \searrow 0.5$

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Refining the step-size analysis

 \bullet Have not assumed $\sum_{l=0}^{\infty} \gamma_l^2$ finite for general convergence bound

$$Q_k \le \frac{V_0 + D\sum_{l=0}^k \gamma_l^2}{b\sum_{l=0}^k \gamma_l}$$

We can divide the sum into two parts

$$Q_k \le \frac{V_0}{b \sum_{l=0}^k \gamma_l} + \frac{D}{b \frac{\sum_{l=0}^k \gamma_l}{\sum_{l=0}^k \gamma_l^2}}$$

• So $Q_k \to 0$ if $\sum_{l=0}^k \gamma_l \to \infty$ and $\frac{\sum_{l=0}^k \gamma_l}{\sum_{l=0}^k \gamma_l^2} \to \infty$ (don't need $\sum_{l=0}^k \gamma_l^2 < \infty$ for $Q_k \to 0$)

Refined step-size analysis interpretation

• Let $\psi_1(k) \leq \sum_{l=0}^k \gamma_l$ and $\psi_2(k) \leq \frac{\sum_{l=0}^k \gamma_l}{\sum_{l=0}^k \gamma_l^2}$ and restate bound:

$$Q_k \le \frac{V_0}{b\psi_1(k)} + \frac{D}{b\psi_2(k)}$$

- ψ_1 decides how fast V_0 $(f(x_0) p^*)$ or $||x_0 x^*||_2^2$ is supressed
- ullet ψ_2 decides how fast D, that comes from noise, is supressed
- There is a tradeoff between supressing these quantities
- ullet Actual convergence very much dependent on constants V_0 and D

Estimating rates – Example $\gamma_k = \frac{c}{(k+1)^{\alpha}}$

• Let now $\alpha \in (0, 0.5)$ and estimate

$$\sum_{l=0}^{k} \gamma_l \ge \frac{c}{1-\alpha} ((k+1)^{1-\alpha} - 1)$$

squared sum does not converge, but can be shown to satisfy

$$\sum_{l=0}^{k} \gamma_l^2 \le \frac{c^2}{1-2\alpha} ((k+1)^{1-2\alpha} - 2\alpha)$$

• We use these to arrive at the following rate when $\gamma_k = \frac{c}{(k+1)^{\alpha}}$:

$$Q_k \le \frac{(1-\alpha)V_0}{2bc((k+1)^{1-\alpha}-1)} + \frac{(1-\alpha)Dc}{b(1-2\alpha)\frac{k^{1-\alpha}-1}{(k+1)^{1-2\alpha}-2\alpha}}$$

where rate is worst of these: $O(\frac{(k+1)^{1-2\alpha}}{(k+1)^{1-\alpha}}) = O(\frac{1}{(k+1)^{\alpha}})$

- Comments:
 - Rate improves with larger $\alpha \colon \frac{1}{(k+1)^{\alpha}} \to \sqrt{k+1}$ as $\alpha \to 0.5$
 - Constant worse with larger $\alpha\colon \frac{1}{1-2\alpha}\nearrow$ as $\alpha\nearrow 0.5$

Estimating rates – Example $\gamma_k = \frac{c}{\sqrt{k+1}}$

We know from before that

$$\sum_{l=0}^{k} \gamma_l = \sum_{l=0}^{k} \frac{c}{\sqrt{l+1}} \ge 2c(\sqrt{k+1} - 1)$$

and that the sum of step-sizes does not converge, but satisfies

$$\sum_{l=0}^{k} \gamma_l^2 = \sum_{l=0}^{k} \frac{c^2}{l+1} \le c^2 \log(k+1)$$

• Since $\sum_{l=0}^k \gamma_l \to \infty$ and $\sum_{l=0}^k \gamma_l / \sum_{l=0}^k \gamma_l^2 \to \infty$ also

$$Q_k \le \frac{V_0}{2bc\sqrt{k+1}} + \frac{Dc}{2b\frac{\sqrt{k+1}-1}{\log(k+1)}} \to 0$$

with rate $O(\frac{\log{(k+1)}}{\sqrt{(k+1)}})$ (since slower than $O(\frac{1}{\sqrt{k+1}})$)

Comparing rates for
$$\gamma_k = \frac{c}{k+1}$$
 and $\gamma_k = \frac{c}{\sqrt{k+1}}$

• Rates for $\gamma_k = \frac{c}{k+1}$ and $\gamma_k = \frac{c}{\sqrt{k+1}}$ respectively:

$$Q_k \leq \frac{V_0/c + 2Dc}{b\log\left(k+1\right)} \quad \text{and} \quad Q_k \leq \frac{V_0}{2bc\sqrt{k+1}} + \frac{Dc}{2b\frac{\sqrt{k+1}-1}{\log\left(k+1\right)}}$$

- Constants in the two terms similar or same
- Rate better for $\gamma_k = \frac{c}{\sqrt{k+1}} \left(O(\frac{\log(k+1)}{\sqrt{k+1}}) \text{ vs } O(\frac{1}{\log(k+1)}) \right)$
- This is worst-case analysis, might not reflect actual performance

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Rate comparison

Setting	Quantity	Gradient	Stochastic $\gamma_k = \frac{1}{k^{lpha}}$	
			$\alpha = 1$	$\alpha = 0.5$
Nonconvex	$\min_{l \in \{0, \dots, k\}} \ \nabla f(x_l)\ _2^2$	$O(\frac{1}{k})$	$O(\frac{1}{\log k})$	$O(\frac{\log k}{\sqrt{k}})$
Convex	$\min_{l \in \{0,\dots,k\}} (f(x_l) - f(x^*))$	$O(\frac{1}{k})$	$O(\frac{1}{\log k})$	$O(\frac{\log k}{\sqrt{k}})$
Strongly convex	-	linear	sublinear	sublinear

- For stochastic, we have expectation around convergence quantity
- For convex gradient method, smallest suboptimality is the latest
- Constants similar except extra term from gradient estimate noise
- Stochastic gradient descent rate slower in all settings
- However, every iteration in stochastic gradient descent cheaper

Finite sum comparison

We consider

$$minimize \sum_{i=1}^{N} f_i(x)$$

where N is large and use one f_i for each stochastic gradient

- ullet N iterations of stochastic gradient is at cost of 1 full gradient
- Progress after k epochs (stochastic) vs k iterations (full):

Setting	Quantity	Gradient	Stochastic $\gamma_k = rac{1}{k^{lpha}}$	
			$\alpha = 1$	$\alpha = 0.5$
Nonconvex	$\min_{l \in \{0, \dots, k\}} \ \nabla f(x_l)\ _2^2$	$O(\frac{1}{k})$	$O(\frac{1}{\log Nk})$	$O(\frac{\log Nk}{\sqrt{Nk}})$
Convex	$\min_{l \in \{0, \dots, k\}} (f(x_l) - f(x^*))$	$O(\frac{1}{k})$	$O(\frac{1}{\log Nk})$	$O(\frac{\log Nk}{\sqrt{Nk}})$

Finite sum comparison - Quantification

- ullet Assume that finite sum of N equals 10 million summands
- Assume constant for SGD 10x larger than for GD
- Computational budget is that we run k = 10 iterations/epochs
- Replacing upper bounds with numbers:

Setting	Quantity	Gradient	Stochastic $\gamma_k = \frac{1}{k^{\alpha}}$	
			$\alpha = 1$	$\alpha = 0.5$
Nonconvex	$\min_{l \in \{0, \dots, k\}} \ \nabla f(x_l)\ _2^2$	0.1	0.54	0.018
Convex	$\min_{l \in \{0,\dots,k\}} (f(x_l) - f(x^*))$	0.1	0.54	0.018

- Stochastic gives better worst case guarantees
- Significant difference between stochastic methods
- Actual performance depends a lot on relation between constants

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Adaptive diagonal scaling

- Diagonal scaling gives one step-size (learning rate) per variable
- Gives SGD with diagonal scaling $H_k = \mathbf{diag}(h_{1,k}, \dots, h_{N,k})$

$$x_{k+1} = x_k - \gamma H_k^{-1} \widehat{\nabla} f(x_k)$$

where the inverse is $H_k^{-1} = \mathbf{diag}(\frac{1}{h_{1,k}}, \dots, \frac{1}{h_{N,k}})$

- A few methods exists that adaptively select individual step sizes
 - Adagrad
 - RMSProp
 - Adam
 - Adamax
 - Adadelta
- Among these, Adagrad was first but Adam most popular
- Sometimes improve convergence compared to SGD
- Will briefly motivate Adagrad and show how Adam differs

Motivation for Adagrad

• Consider SGD with diagonal scaling H_k :

$$x_{k+1} = x_k - \gamma H_k^{-1} \widehat{\nabla} f(x_k)$$

- Update our analysis in the convex setting by
 - ullet expanding the square in the H_k norm and
 - assuming deterministic $H_k \succeq H_{k-1}$ for all k
 - not replacing $\mathbb{E}[\|\widehat{\nabla}f(x_k)\|_{H^{-1}}^2|x_k]$ by upper bound G^2
 - using fixed step-size $\gamma_k = \gamma$

we get bound (that converges if H_k increases fast enough)

$$\mathbb{E}[f(x_k) - f(x^*)] \le \frac{\gamma^{-1} \|x_0 - x^*\|_{H_0}^2 + \gamma \sum_{l=0}^k \mathbb{E}[\|\widehat{\nabla}f(x_l)\|_{H_l^{-1}}^2]}{2(k+1)}$$

Adagrad idea: select H_k to optimize constant

Adagrad idea for selecting H_k

ullet Assume $H_k=H$ has been constant and optimize bound constant

$$\gamma^{-1} \|x_0 - x^*\|_H^2 + \gamma \sum_{l=0}^k \mathbb{E}[\|\widehat{\nabla} f(x_l)\|_{H^{-1}}^2]$$

- ullet Don't know $\|x_0-x^\star\|_H^2$, approximate with $\mathrm{tr}(H)\|x_0-x^\star\|_2^2$
- Estimate sum from realization $\mathbb{E}[\|\widehat{\nabla}f(x_l)\|_{H^{-1}}^2] = \|\widetilde{\nabla}f(x_l)\|_{H^{-1}}^2$
- Let $R = \|x_0 x^*\|_2^2$ to get optimization problem

$$\gamma^{-1}R\operatorname{tr}(H) + \gamma \sum_{l=0}^{k} \|\widetilde{\nabla}f(x_l)\|_{H^{-1}}^2$$

Problem is separable in diagonal elements with solution

$$h_{ii} = \frac{\gamma}{\sqrt{R}} \| (\widetilde{\nabla} f(x_l))_i^{0:k} \|_2$$

where
$$(\widetilde{\nabla} f(x_l))_i^{0:k} = (\widetilde{\nabla} f(x_0)_i, \dots, \widetilde{\nabla} f(x_k)_i)$$

• Since we do not know R, we can set $R=\gamma^2$

Adagrad summary

- ullet Adagrad adds ϵ to above estimate for numerical reasons
- The algorithm is
 - 1. $\nabla f(x_k)$ is subgradient or stochastic (sub)gradient of f at x_k
 - 2. Select metric H_k
 - set $s_k = \sum_{l=0}^k (\widetilde{\nabla} f(x_k))^2$
 - set $h_k = \overline{\epsilon 1} + \sqrt{s_k}$
 - set $H_k = \gamma^{-1} \operatorname{diag}(h_k)$
 - 3. $x_{k+1} = x_k H_k^{-1} g_k = x_k \gamma g_k / (\epsilon \mathbf{1} + \sqrt{s_k})$
- ullet Sometimes H_k sums up too fast so too short steps are taken
- Possible reason, in smooth settings, we would get rate constant

$$\gamma^{-1} \|x_0 - x^*\|_H^2 + \gamma \sum_{l=0}^k \mathbb{E}[\|\widehat{\nabla}f(x_l) - \nabla f(x_l)\|_{H^{-1}}^2]$$

where second term in this rate constant

- depends on noise, not full gradient as in Adagrad development
- would give smaller H_k and longer steps
- is more difficult to estimate online

Variations – RMSprop and Adam

- In Adagrad, H_k may grow too fast which gives too short steps
- Instead: Don't *sum* gradient square, estimate variance:

$$\hat{v}_k = b_v \hat{v}_{k-1} + (1 - b_v) (\widetilde{\nabla} f(x_k))^2$$

where $\hat{v}_0 = 0$, $b_v \in (0, 1)$

- H_k is chosen (approximately) as standard deviation:
 - RMSprop: biased estimate $H_k = \mathbf{diag}(\sqrt{\hat{v}_k} + \epsilon)$
 - Adam: unbiased estimate $H_k = \mathbf{diag}(\sqrt{\frac{\hat{v}_k}{1 b_v^k}} + \epsilon)$

which is much smaller than in Adagrad ⇒ longer steps

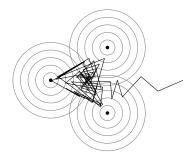
- Intuition:
 - Reduce step size for high variance coordinates
 - Increase step size for low variance coordinates
- Adam also filters stochastic gradients for smoother updates

Filtered stochastic gradients

• Let $m_0 = 0$ and $b_m \in (0,1)$, and update

$$\hat{m}_k = b_m \hat{m}_{k-1} + (1 - b_m) g_k$$

- Adam uses unbiased estimate: $\frac{\hat{m}_k}{1-b^k}$
- Does not improve convergence properties, but slower changes
- Problem from before, fixed step-size, without filtered gradient



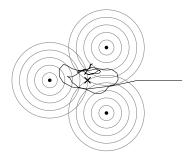
Levelsets of summands

Filtered stochastic gradients

• Let $m_0 = 0$ and $b_m \in (0,1)$, and update

$$\hat{m}_k = b_m \hat{m}_{k-1} + (1 - b_m) g_k$$

- Adam uses unbiased estimate: $\frac{\hat{m}_k}{1-b_k^k}$
- Does not improve convergence properties, but slower changes
- Problem from before, fixed step-size, with filtered gradient



Levelsets of summands

Adam - Summary

- Initialize $\hat{m}_0 = \hat{v}_0 = 0$, $b_m, b_v \in (0, 1)$, and select $\gamma > 0$
 - 1. $g_k = \widetilde{\nabla} f(x_k)$ (stochastic gradient)
 - 2. $\hat{m}_k = b_m \hat{m}_{k-1} + (1 b_m)g_k$
 - 3. $\hat{v}_k = b_v \hat{v}_{k-1} + (1 b_v) g_k^2$
 - 4. $m_k = \hat{m}_k/(1 b_m^k)$
 - 5. $v_k = \hat{v}_k/(1 b_v^k)$
 - 6. $x_{k+1} = x_k \gamma m_k . / (\sqrt{v_k} + \epsilon \mathbf{1})$
- Suggested choices $b_m=0.9$ and $b_v=0.999$
- Similar to Adagrad, but $\sqrt{v_k} \ll \sqrt{s_k} \Rightarrow$ longer steps
- May not work in deterministic setting (unlike Adagrad):
 - If method converges $\nabla f(x_k) \to 0$
 - Then $v_k o 0$ and steps become very large
 - Needs noise and stochastic gradients to work well