Stochastic Gradient Descent

Pontus Giselsson

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Proximal gradient method

- Proximal gradient method is applied problems of the form

$$
\underset{x}{\operatorname{minimize}} f(x)+g(x)
$$

where, for instance:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is β-smooth (not necessarily convex)
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is closed convex
- For large problems, gradient can be expensive to compute \Rightarrow replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient estimator:
- notation: $\widehat{\nabla} f(x)$
- outputs random vector in \mathbb{R}^{n} for each $x \in \mathbb{R}^{n}$
- Stochastic gradient realization:
- notation: $\widetilde{\nabla} f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- outputs, $\forall x \in \mathbb{R}^{n}$, vector in \mathbb{R}^{n} drawn from distribution of $\widehat{\nabla} f(x)$
- An unbiased stochastic gradient estimator $\widehat{\nabla} f$ satisfies $\forall x \in \mathbb{R}^{n}$:

$$
\mathbb{E} \widehat{\nabla} f(x)=\nabla f(x)
$$

- If x is random vector in \mathbb{R}^{n}, unbiased estimator satisfies

$$
\mathbb{E}[\widehat{\nabla} f(x) \mid x]=\nabla f(x)
$$

(both are random vectors in \mathbb{R}^{n})

Stochastic gradient descent (SGD)

- The following iteration generates $\left(x_{k}\right)_{k \in \mathbb{N}}$ of random variables:

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} g}\left(x_{k}-\gamma_{k} \hat{\nabla} f\left(x_{k}\right)\right)
$$

since $\hat{\nabla} f$ outputs random vectors in \mathbb{R}^{n}

- Stochastic gradient descent finds a realization of this sequence:

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} g}\left(x_{k}-\gamma_{k} \widetilde{\nabla} f\left(x_{k}\right)\right)
$$

where $\left(x_{k}\right)_{k \in \mathbb{N}}$ here is a realization with values in \mathbb{R}^{n}

- Sloppy in notation for when x_{k} is random variable vs realization
- Can be efficient if evaluating $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients - Finite sum problems

- Consider finite sum problems of the form

$$
\underset{x}{\operatorname{minimize}} \underbrace{\frac{1}{N}\left(\sum_{i=1}^{N} f_{i}(x)\right)}_{f(x)}+g(x)
$$

where $\frac{1}{N}$ is for convenience

- Training problems of this form, where sum over training data
- Stochastic gradient: select f_{i} at random and take gradient step

Single function stochastic gradient

- Let I be a $\{1, \ldots, N\}$-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote the stochastic gradient estimator
- Realization: let i be drawn from probability distribution of I

$$
\widetilde{\nabla} f(x)=\nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{i}=p(I=i)=\frac{1}{N}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E}[\widehat{\nabla} f(x)]=\sum_{i=1}^{N} p_{i} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
- Example: 2-sample mini-batches and $N=4$:

$$
\mathcal{B}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let \mathbb{B} be \mathcal{B}-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of \mathbb{B}

$$
\widetilde{\nabla} f(x)=\frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{B}=p(\mathbb{B}=B)=\frac{1}{\binom{N}{K}}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E} \widehat{\nabla} f(x)=\frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)=\frac{\binom{N-1}{K-1}}{\binom{N}{K} K} \sum_{i=1}^{N} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_{0} \in \mathbb{R}^{n}$ and iterate:

1. Sample a mini-batch $B_{k} \in \mathcal{B}$ of K indices uniformly
2. Update

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} g}\left(x_{k}-\frac{\gamma_{k}}{K} \sum_{j \in B_{k}} \nabla f_{j}\left(x_{k}\right)\right)
$$

- Can have $\mathcal{B}=\{\{1\}, \ldots,\{N\}\}$ and sample only one function
- Gives realization of underlying stochastic process
- How about convergence?

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Stochastic gradient method with $\gamma_{k}=1 / 3$

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Stochastic gradient method with $\gamma_{k}=1 / k$

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Gradient method with $\gamma_{k}=1 / 3$

Levelsets of summands

Levelset of sum

- SGD will not converge for constant steps (unlike gradient method)

Fixed step-size SGD does not converge to solution

- We can at most hope for finding point \bar{x} such that

$$
0 \in \partial g(\bar{x})+\nabla f(\bar{x})
$$

i.e., the proximal gradient fixed-point characterization

- Consider setting $g=0$ and assume x_{k} such that $0=\nabla f\left(x_{k}\right)$
- That $0=\nabla f\left(x_{k}\right)$ does not imply $0=\nabla f_{i}\left(x_{k}\right)$ for all f_{i}, hence

$$
x_{k+1}=x_{k}-\gamma_{k} \nabla f_{i}\left(x_{k}\right) \neq x_{k}
$$

i.e., will move away from prox-grad fixed-point for fixed $\gamma_{k}>0$

- Need diminishing step-size rule to hope for convergence

Last iterate vs best and average

- Last iterate moves away from fixed-point
- Behavior can better for:
- Best iterate (smallest function value)
- Average iterate (Polyak-Ruppert averaging)

Best iterate sequence

- Output best (in function value) iterate instead of last iterate
- Example: SGD with constant steps and best iterate

SGD with constant step-size

Best iterate in sequence

- Not usful in practice: Function value comparison too expensive

Polyak-Ruppert averaging

- Polyak-Ruppert averaging:
- Output average of iterations instead of last iteration
- Example: SGD with constant steps and its average sequence

SGD with constant step-size

Average of SGD sequence

Rate outlook

- Sublinear convergence in:
- Nonconvex and convex settings
- Strongly convex setting (unlike proximal gradient method)
- Convergence rate dependent on step-size choice

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Stochastic gradient descent

- We consider problems of the form

$$
\operatorname{minimize} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is not necessarily convex

- We will analyze stochastic gradient descent

$$
x_{k+1}=x_{k}-\gamma_{k} \widehat{\nabla} f\left(x_{k}\right)
$$

where $\widehat{\nabla} f\left(x_{k}\right)$ is an unbiased estimate of $\nabla f\left(x_{k}\right)$ for all x_{k}

- Will show sublinear convergence rates that depend on step-sizes

Nonconvex setting - Assumptions

(i) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is β-smooth, for all $x, y \in \mathbb{R}^{n}$:

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|y-x\|_{2}^{2}
$$

(ii) Stochastic gradient of f is unbiased: $\mathbb{E}[\hat{\nabla} f(x) \mid x]=\nabla f(x)$
(iii) Variance is bounded: $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq\|\nabla f(x)\|_{2}^{2}+M^{2}$
(iv) No nonsmooth term, i.e., $g=0$
(v) A minimizer x^{\star} exists and $p^{\star}=f\left(x^{\star}\right)$ is optimal value
(vi) Step-sizes $\gamma_{k}>0$ satisfy $\sum_{k=0}^{\infty} \gamma_{k}=\infty$ and $\sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty$

- (iii): variance is bounded by M^{2} since

$$
\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \geq \operatorname{Var}\left[\|\widehat{\nabla} f(x)\|_{2} \mid x\right]+\|\nabla f(x)\|_{2}^{2}
$$

- (iii): analysis is slightly simpler if assuming $\mathbb{E}\left[\left|\widehat{\nabla} f(x) \|_{2}^{2}\right| x\right] \leq G$

Nonconvex setting - Analysis

- Upper bound on f in Assumption (i) gives

$$
\begin{aligned}
& \mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right] \\
& \quad \leq \mathbb{E}\left[\left.f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{k+1}-x_{k}\right)+\frac{\beta}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \right\rvert\, x_{k}\right] \\
& \quad=f\left(x_{k}\right)-\gamma_{k} \nabla f\left(x_{k}\right)^{T} \mathbb{E}\left[\widehat{\nabla} f\left(x_{k}\right) \mid x_{k}\right]+\frac{\beta \gamma_{k}^{2}}{2} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{k}\right)\right\|_{2}^{2} \mid x_{k}\right] \\
& \quad \leq f\left(x_{k}\right)-\gamma_{k} \nabla f\left(x_{k}\right)^{T} \nabla f\left(x_{k}\right)+\frac{\beta \gamma_{k}^{2}}{2}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+M^{2}\right) \\
& \quad=f\left(x_{k}\right)-\gamma_{k}\left(1-\frac{\beta \gamma_{k}}{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
\end{aligned}
$$

- Let $\gamma_{k} \leq \frac{1}{\beta}$ (true for large enough k since $\left(\gamma_{k}^{2}\right)_{k \in \mathbb{N}}$ summable):

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right] \leq f\left(x_{k}\right)-\frac{\gamma_{k}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
$$

- Subtracting p^{\star} from both sides gives

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right]-p^{\star} \leq f\left(x_{k}\right)-p^{\star}-\frac{\gamma_{k}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
$$

Lyapunov inequality

- Take expected value and use law of total expectation to get:

$$
\underbrace{\mathbb{E}\left[f\left(x_{k+1}\right)\right]-p^{\star}}_{V_{k+1}} \leq \underbrace{\mathbb{E}\left[f\left(x_{k}\right)\right]-p^{\star}}_{V_{k}}-\frac{\gamma_{k}}{2} \underbrace{\mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]}_{R_{k}}+\underbrace{\frac{\beta \gamma_{k}^{2}}{2} M^{2}}_{W_{k}}
$$

- Consequences:
- $V_{k}=\mathbb{E}\left[f\left(x_{k}\right)\right]-p^{\star}$ converges (not necessarily to 0)
- $\sum_{l=0}^{k} \frac{\gamma_{l}}{2} R_{l} \leq V_{0}+\sum_{l=0}^{k} W_{k}$, which, when multiplied by 2 gives

$$
\sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq 2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}
$$

Minimum expected gradient norm bound

- Lyapunov inequality consequence restated:

$$
\sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq 2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}
$$

- Using that

$$
\begin{array}{r}
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \sum_{l=0}^{k} \gamma_{l} \leq \sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \\
\mathbb{E}\left[\min _{l=0, \ldots, k}\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right]
\end{array}
$$

where second is Jensen's inequality on concave $\min _{l}$, we get

$$
\mathbb{E}\left[\min _{l=0, \ldots, k}\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}}
$$

where terms in the numerator:

- $2\left(f\left(x_{0}\right)-p^{\star}\right)$ is due to initial suboptimality
- $\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}$ is due to noise in gradient estimates (if $M=0$, use $\gamma_{k}=\frac{1}{\beta}$ to recover (proximal) gradient bound)

Minimum expected gradient norm convergence

- What conclusions can we draw from

$$
\mathbb{E}\left[\min _{l=0, \ldots, k}\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}}
$$

- Let $C=\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$ (finite since $\left(\gamma_{k}^{2}\right)_{k \in \mathbb{N}}$ summable) then

$$
\mathbb{E}\left[\min _{l=0, \ldots, k}\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+C \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}} \rightarrow 0
$$

as $k \rightarrow \infty$ since $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ is not summable

- Consequences:
- Expected value of smallest gradient norm converges to 0
- Minimum gradient converges to 0 in probability
- We don't know what happens with latest expected value

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Stochastic gradient descent

- We consider problems of the form

$$
\operatorname{minimize} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex

- We will analyze stochastic gradient descent

$$
x_{k+1}=x_{k}-\gamma_{k} \widehat{\nabla} f\left(x_{k}\right)
$$

where $\widehat{\nabla} f\left(x_{k}\right)$ is an unbiased estimate of $\nabla f\left(x_{k}\right)$ for all x_{k}

- Will show sublinear convergence rates that depend on step-sizes

Convex setting - Assumptions

(i) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex but not necessarily differentiable
(ii) Stochastic subgradient of f is unbiased: $\mathbb{E}[\widehat{\nabla} f(x) \mid x] \in \partial f(x)$
(iii) Second moment is bounded: $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq G^{2}$
(iv) A minimizer x^{\star} exists and $p^{\star}=f\left(x^{\star}\right)$ is optimal value
(v) Step-sizes $\gamma_{k}>0$ satisfy $\sum_{k=0}^{\infty} \gamma_{k}=\infty$ and $\sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty$

- Do not assume smoothness or differentiability of f
- (iii): assumption is stronger than variance bound:

$$
\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq\|\nabla f(x)\|_{2}^{2}+M^{2}
$$

but can be relaxed under smoothness assumptions

Convex setting - Analysis

- Let, by $(i i), \mathbb{E}\left[\hat{\nabla} f\left(x_{k}\right) \mid x_{k}\right]=g_{k} \in \partial f\left(x_{k}\right)$, then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|x_{k+1}-x^{\star}\right\|_{2}^{2} \mid x_{k}\right] \\
& \quad=\mathbb{E}\left[\left\|x_{k}-\gamma_{k} \widehat{\nabla} f\left(x_{k}\right)-x^{\star}\right\|_{2}^{2} \mid x_{k}\right] \\
& \quad=\left\|x_{k}-x^{\star}\right\|_{2}^{2}-2 \gamma_{k} \mathbb{E}_{k}\left[\hat{\nabla} f\left(x_{k}\right) \mid x_{k}\right]^{T}\left(x_{k}-x^{\star}\right)+\gamma_{k}^{2} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{k}\right)\right\|_{2}^{2} \mid x_{k}\right] \\
& \quad \leq\left\|x_{k}-x^{\star}\right\|_{2}^{2}-2 \gamma_{k} g_{k}^{T}\left(x_{k}-x^{\star}\right)+\gamma_{k}^{2} G^{2}
\end{aligned}
$$

- Use subgradient definition $f\left(x^{\star}\right) \geq f\left(x_{k}\right)+g_{k}^{T}\left(x^{\star}-x_{k}\right)$ to get

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{\star}\right\|_{2}^{2} \mid x_{k}\right] \leq\left\|x_{k}-x^{\star}\right\|_{2}^{2}-2 \gamma_{k}\left(f\left(x_{k}\right)-f\left(x^{\star}\right)\right)+\gamma_{k}^{2} G^{2}
$$

Lyapunov inequality

- Take expected value and use law of total expectation to get:

$$
\underbrace{\mathbb{E}\left[\left\|x_{k+1}-x^{\star}\right\|_{2}^{2}\right]}_{V_{k+1}} \leq \underbrace{\mathbb{E}\left[\left\|x_{k}-x^{\star}\right\|_{2}^{2}\right]}_{V_{k}}-2 \gamma_{k} \underbrace{\mathbb{E}\left[\left(f\left(x_{k}\right)-f\left(x^{\star}\right)\right)\right]}_{R_{k}}+\underbrace{\gamma_{k}^{2} G^{2}}_{W_{k}}
$$

- Consequences:
- $V_{k}=\mathbb{E}\left[\left\|x_{k}-x^{\star}\right\|_{2}^{2}\right]$ converges (not necessarily to 0)
- $\sum_{l=0}^{k} 2 \gamma_{l} R_{l} \leq V_{0}+\sum_{l=0}^{k} W_{k}$, which gives

$$
\sum_{l=0}^{k} 2 \gamma_{l} \mathbb{E}\left[\left(f\left(x_{l}\right)-f\left(x^{\star}\right)\right)\right] \leq\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} G^{2}
$$

Minimum expected function value bound

- What are the consequences of:

$$
\sum_{l=0}^{k} 2 \gamma_{l} \mathbb{E}\left[\left(f\left(x_{l}\right)-f\left(x^{\star}\right)\right)\right] \leq\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} G^{2}
$$

- By using

$$
\begin{array}{r}
\min _{l=0, \ldots, k} \mathbb{E}\left[f\left(x_{l}\right)-f\left(x^{\star}\right)\right] \sum_{l=0}^{k} \gamma_{l} \leq \sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[f\left(x_{l}\right)-f\left(x^{\star}\right)\right] \\
\mathbb{E}\left[\min _{l=0, \ldots, k} f\left(x_{l}\right)-f\left(x^{\star}\right)\right] \leq \min _{l=0, \ldots, k} \mathbb{E}\left[f\left(x_{l}\right)-f\left(x^{\star}\right)\right]
\end{array}
$$

where second is Jensen's inequality on concave $\min _{l}$, we get

$$
\mathbb{E}\left[\min _{l=0, \ldots, k} f\left(x_{k}\right)-f\left(x^{\star}\right)\right] \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} G^{2}}{2 \sum_{l=0}^{k} \gamma_{l}}
$$

- The last iterate not bounded

Weighted average expected function value bound

- Let us define the weighted average $\bar{x}_{k}=\sum_{l=0}^{k} \frac{\gamma_{l}}{\sum_{j=0}^{k} \gamma_{j}} x_{l}$
- By Jensen's inequality for convex f, we have

$$
f\left(\bar{x}_{k}\right)=f\left(\sum_{l=0}^{k} \frac{\gamma_{l}}{\sum_{j=0}^{k} \gamma_{j}} x_{l}\right) \leq \sum_{l=0}^{k} \frac{\gamma_{l}}{\sum_{j=0}^{k} \gamma_{j}} f\left(x_{l}\right)
$$

- Subtract $f\left(x^{\star}\right)$, multiply by $\left(\sum_{j=0}^{k} \gamma_{j}\right)$, and take expectation:

$$
\left(\sum_{j=0}^{k} \gamma_{j}\right) \mathbb{E}\left[f\left(\bar{x}_{k}\right)-f\left(x^{\star}\right)\right] \leq \sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[f\left(x_{l}\right)-f\left(x^{\star}\right)\right]
$$

- This gives the following bound for the average:

$$
\mathbb{E}\left[f\left(\bar{x}_{k}\right)-f\left(x^{\star}\right)\right] \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} G^{2}}{2 \sum_{l=0}^{k} \gamma_{l}}
$$

Expected function value convergence

- Let $C=\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$ (finite since $\left(\gamma_{k}^{2}\right)_{k \in \mathbb{N}}$ summable) then

$$
Q_{k} \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}+C G^{2}}{2 \sum_{l=0}^{k} \gamma_{l}} \rightarrow 0
$$

as $k \rightarrow \infty$ since $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ is not summable, where

$$
Q_{k}=\mathbb{E}\left[\min _{l=0, \ldots, k} f\left(x_{k}\right)-f\left(x^{\star}\right)\right] \quad \text { or } \quad Q_{k}=\mathbb{E}\left[f\left(\bar{x}_{k}\right)-f\left(x^{\star}\right)\right]
$$

- Expected smallest and average function value converge to $f\left(x^{\star}\right)$
- Function values converge in probability to optimal function $f\left(x^{\star}\right)$
- We have no last iterate convergence bound

Smoothness

- We did not assume smoothness (or differentability) for result
- What happens if we add smoothness?
- Rate is not improved, but can improve constant
- We can replace $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq G$ assumption by weaker

$$
\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq\|\nabla f(x)\|_{2}^{2}+M^{2}
$$

that bounds variance (as in nonconvex analysis)

- If $\gamma_{k} \leq \frac{1}{\beta}$, it can shown that

$$
\mathbb{E}\left[\min _{l=0, \ldots, k} f\left(x_{k}\right)-f\left(x^{\star}\right)\right] \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} M^{2}}{2 \sum_{l=0}^{k} \gamma_{l}}
$$

where, similar to in the smooth nonconvex setting, the term:

- $\left\|x_{0}-x^{\star}\right\|_{2}^{2}$ is due to initial suboptimality
- $\sum_{l=0}^{k} \gamma_{l}^{2} M^{2}$ is due to variance in gradient estimates

Strong convexity

- Assumption: f smooth and strongly convex
- Proximal gradient method achieves linear convergence
- Stochastic gradient descent does not achieve linear convergence

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Unifying convergence results

- Convergence in nonconvex and convex settings are:

$$
Q_{k} \leq \frac{V_{0}+D C}{b \sum_{l=0}^{k} \gamma_{l}}
$$

where $C=\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$ by summability of $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$

- Convex setting: $D=G^{2}, b=2, V_{0}=\left\|x_{0}-x^{\star}\right\|_{2}^{2}$

$$
Q_{k}=\mathbb{E}\left[\min _{i \in\{0, \ldots, k\}} f\left(x_{i}\right)-f\left(x^{\star}\right)\right] \quad \text { or } \quad Q_{k}=\mathbb{E}\left[f\left(\bar{x}_{k}\right)-f\left(x^{\star}\right)\right]
$$

- Nonconvex setting: $D=\beta M^{2}, b=1, V_{0}=2\left(f\left(x_{0}\right)-p^{\star}\right)$, and

$$
Q_{k}=\mathbb{E}\left[\min _{i \in\{0, \ldots, k\}}\left\|\nabla f\left(x_{i}\right)\right\|_{2}^{2}\right]
$$

Step-size requirements

- Step-size requirement $\sum_{l=0}^{\infty} \gamma_{l}=\infty$ makes upper bound

$$
Q_{k} \leq \frac{V_{0}+D C}{b \sum_{l=0}^{k} \gamma_{l}} \rightarrow 0
$$

as $k \rightarrow \infty$, with Q_{k} from previous slide, since $C=\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$

- Step-sizes that satisfy $\sum_{l=0}^{\infty} \gamma_{l}=\infty$ and $\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$
- $\gamma_{k}=c / k$, with $c>0$
- $\gamma_{k}=c / k^{\alpha}$ for $\alpha \in(0.5,1)$, with $c>0$

Estimating rates via integrals

- For convergence need to verify $\sum_{l=0}^{\infty} \gamma_{l}=\infty$ and $\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$
- To estimate rate we need to lower bound $\sum_{l=0}^{k} \gamma_{l}$
- Assume $\gamma_{l}=\phi(l)$ with decreasing and nonnegative $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$
- We can estimate sums using integral formula:

$$
\int_{t=0}^{k} \phi(t) d t+\phi(k) \leq \sum_{l=0}^{k} \phi(l) \leq \int_{t=0}^{k} \phi(t) d t+\phi(0)
$$

(we can remove $\phi(k) \geq 0$ from lower bound to simplify)

- Will use upper bound on $\sum_{l=0}^{k} \gamma_{l}^{2}$ and lower bound on $\sum_{l=0}^{k} \gamma_{l}$

Estimating rates - Example $\gamma_{k}=\frac{c}{k+1}$

- Let $\gamma_{k}=\phi(k)$ with $\phi(k)=\frac{c}{k+1}$ and estimate the sum

$$
\sum_{l=0}^{k} \gamma_{l} \geq \int_{t=0}^{k} \frac{c}{t+1} d t=c \log (k+1) \rightarrow \infty
$$

as $k \rightarrow \infty$ and

$$
\sum_{l=0}^{k} \gamma_{l}^{2} \leq \int_{t=0}^{k} \frac{c^{2}}{(t+1)^{2}} d t+\phi(0)^{2}=c^{2}\left(1-\frac{1}{k+1}\right)+c^{2} \leq 2 c^{2}<\infty
$$

- We arrive at the following (slow) $O(1 / \log (k+1))$ rate:

$$
Q_{k} \leq \frac{V_{0}+D C}{b \sum_{l=0}^{k} \gamma_{l}} \leq \frac{V_{0}+2 D c^{2}}{b c \log (k+1)}=\frac{V_{0} / c+2 D c}{b \log (k+1)}
$$

- The constant c trades off the two constant terms V_{0} and $2 D$

Estimating rates - Example $\gamma_{k}=\frac{c}{(k+1)^{\alpha}}$

- Let $\gamma_{k}=\phi(k)$ with $\phi(k)=\frac{c}{(k+1)^{\alpha}}$ and $\alpha \in(0.5,1)$ and estimate

$$
\sum_{l=0}^{k} \gamma_{l} \geq \int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} d t=\frac{c}{1-\alpha}\left((k+1)^{1-\alpha}-1\right) \rightarrow \infty
$$

as $k \rightarrow \infty$ and, since $\phi(0)^{2}=c^{2}$:

$$
\sum_{l=0}^{k} \gamma_{l}^{2}-c^{2} \leq \int_{t=0}^{k} \frac{c^{2}}{(t+1)^{2 \alpha}} d t=c^{2}\left[\frac{(t+1)^{1-2 \alpha}}{1-2 \alpha}\right]_{t=0}^{k} \leq \frac{c^{2}}{2 \alpha-1}<\infty
$$

- We arrive at the following $O\left(1 /(k+1)^{1-\alpha}\right)$ rate:

$$
Q_{k} \leq \frac{V_{0}+D C}{b \sum_{l=0}^{k} \gamma_{l}} \leq \frac{(1-\alpha)\left(V_{0}+D c^{2} \frac{2 \alpha}{2 \alpha-1}\right)}{b c\left((k+1)^{1-\alpha}-1\right)}
$$

- Comments:
- Rate improves with smaller $\alpha: \frac{1}{(k+1)^{1-\alpha}} \rightarrow \sqrt{k+1}$ as $\alpha \rightarrow 0.5$
- Constant worse with smaller $\alpha:(1-\alpha) \nearrow, \frac{2 \alpha}{2 \alpha-1} \nearrow$ as $\alpha \searrow 0.5$

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Refining the step-size analysis

- Have not assumed $\sum_{l=0}^{\infty} \gamma_{l}^{2}$ finite for general convergence bound

$$
Q_{k} \leq \frac{V_{0}+D \sum_{l=0}^{k} \gamma_{l}^{2}}{b \sum_{l=0}^{k} \gamma_{l}}
$$

- We can divide the sum into two parts

$$
Q_{k} \leq \frac{V_{0}}{b \sum_{l=0}^{k} \gamma_{l}}+\frac{D}{b \frac{\sum_{l=0}^{k} \gamma_{l}}{\sum_{l=0}^{k} \gamma_{l}^{2}}}
$$

- So $Q_{k} \rightarrow 0$ if $\sum_{l=0}^{k} \gamma_{l} \rightarrow \infty$ and $\frac{\sum_{l=0}^{k} \gamma_{l}}{\sum_{l=0}^{k} \gamma_{l}^{2}} \rightarrow \infty$ (don't need $\sum_{l=0}^{k} \gamma_{l}^{2}<\infty$ for $Q_{k} \rightarrow 0$)

Refined step-size analysis interpretation

- Let $\psi_{1}(k) \leq \sum_{l=0}^{k} \gamma_{l}$ and $\psi_{2}(k) \leq \frac{\sum_{l=0}^{k} \gamma_{l}}{\sum_{l=0}^{k} \gamma_{l}^{2}}$ and restate bound:

$$
Q_{k} \leq \frac{V_{0}}{b \psi_{1}(k)}+\frac{D}{b \psi_{2}(k)}
$$

- ψ_{1} decides how fast $V_{0}\left(f\left(x_{0}\right)-p^{\star}\right.$ or $\left.\left\|x_{0}-x^{\star}\right\|_{2}^{2}\right)$ is supressed
- ψ_{2} decides how fast D, that comes from noise, is supressed
- There is a tradeoff between supressing these quantities
- Actual convergence very much dependent on constants V_{0} and D

Estimating rates - Example $\gamma_{k}=\frac{c}{(k+1)^{\alpha}}$

- Let now $\alpha \in(0,0.5)$ and estimate

$$
\sum_{l=0}^{k} \gamma_{l} \geq \frac{c}{1-\alpha}\left((k+1)^{1-\alpha}-1\right)
$$

squared sum does not converge, but can be shown to satisfy

$$
\sum_{l=0}^{k} \gamma_{l}^{2} \leq \frac{c^{2}}{1-2 \alpha}\left((k+1)^{1-2 \alpha}-2 \alpha\right)
$$

- We use these to arrive at the following rate when $\gamma_{k}=\frac{c}{(k+1)^{\alpha}}$:

$$
Q_{k} \leq \frac{(1-\alpha) V_{0}}{2 b c\left((k+1)^{1-\alpha}-1\right)}+\frac{(1-\alpha) D c}{b(1-2 \alpha) \frac{k^{1-\alpha}-1}{(k+1)^{1-2 \alpha}-2 \alpha}}
$$

where rate is worst of these: $O\left(\frac{(k+1)^{1-2 \alpha}}{(k+1)^{1-\alpha}}\right)=O\left(\frac{1}{(k+1)^{\alpha}}\right)$

- Comments:
- Rate improves with larger $\alpha: \frac{1}{(k+1)^{\alpha}} \rightarrow \sqrt{k+1}$ as $\alpha \rightarrow 0.5$
- Constant worse with larger $\alpha: \frac{1}{1-2 \alpha} \nearrow$ as $\alpha \nearrow 0.5$

Estimating rates $\boldsymbol{-}$ Example $\gamma_{k}=\frac{c}{\sqrt{k+1}}$

- We know from before that

$$
\sum_{l=0}^{k} \gamma_{l}=\sum_{l=0}^{k} \frac{c}{\sqrt{l+1}} \geq 2 c(\sqrt{k+1}-1)
$$

and that the sum of step-sizes does not converge, but satisfies

$$
\sum_{l=0}^{k} \gamma_{l}^{2}=\sum_{l=0}^{k} \frac{c^{2}}{l+1} \leq c^{2} \log (k+1)
$$

- Since $\sum_{l=0}^{k} \gamma_{l} \rightarrow \infty$ and $\sum_{l=0}^{k} \gamma_{l} / \sum_{l=0}^{k} \gamma_{l}^{2} \rightarrow \infty$ also

$$
Q_{k} \leq \frac{V_{0}}{2 b c \sqrt{k+1}}+\frac{D c}{2 b \frac{\sqrt{k+1-1}}{\log (k+1)}} \rightarrow 0
$$

with rate $O\left(\frac{\log (k+1)}{\sqrt{(k+1)}}\right)$ (since slower than $O\left(\frac{1}{\sqrt{k+1}}\right)$)

Comparing rates for $\gamma_{k}=\frac{c}{k+1}$ and $\gamma_{k}=\frac{c}{\sqrt{k+1}}$

- Rates for $\gamma_{k}=\frac{c}{k+1}$ and $\gamma_{k}=\frac{c}{\sqrt{k+1}}$ respectively:

$$
Q_{k} \leq \frac{V_{0} / c+2 D c}{b \log (k+1)} \quad \text { and } \quad Q_{k} \leq \frac{V_{0}}{2 b c \sqrt{k+1}}+\frac{D c}{2 b \frac{\sqrt{k+1}-1}{\log (k+1)}}
$$

- Constants in the two terms similar or same
- Rate better for $\gamma_{k}=\frac{c}{\sqrt{k+1}}\left(O\left(\frac{\log (k+1)}{\sqrt{k+1}}\right)\right.$ vs $\left.O\left(\frac{1}{\log (k+1)}\right)\right)$
- This is worst-case analysis, might not reflect actual performance

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Rate comparison

Setting	Quantity	Gradient	Stochastic $\gamma_{k}=\frac{1}{k^{\alpha}}$			
			$\alpha=1$	$\alpha=0.5$		
Nonconvex	$\min _{l \in\{0, \ldots, k\}}\left\\|\nabla f\left(x_{l}\right)\right\\|_{2}^{2}$	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log k}\right)$	$O\left(\frac{\log k}{\sqrt{k}}\right)$		
Convex	$\min _{l \in\{0, \ldots, k\}}\left(f\left(x_{l}\right)-f\left(x^{\star}\right)\right)$	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log k}\right)$	$O\left(\frac{\log k}{\sqrt{k}}\right)$		
Strongly convex	-	linear	sublinear	sublinear		

- For stochastic, we have expectation around convergence quantity
- For convex gradient method, smallest suboptimality is the latest
- Constants similar except extra term from gradient estimate noise
- Stochastic gradient descent rate slower in all settings
- However, every iteration in stochastic gradient descent cheaper

Finite sum comparison

- We consider

$$
\operatorname{minimize} \sum_{i=1}^{N} f_{i}(x)
$$

where N is large and use one f_{i} for each stochastic gradient

- N iterations of stochastic gradient is at cost of 1 full gradient
- Progress after k epochs (stochastic) vs k iterations (full):

Setting	Quantity	Gradient	Stochastic $\gamma_{k}=\frac{1}{k^{\alpha}}$			
			$\alpha=1$	$\alpha=0.5$		
Nonconvex	$\min _{l \in\{0, \ldots, k\}}\left\\|\nabla f\left(x_{l}\right)\right\\|_{2}^{2}$	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log N k}\right)$	$O\left(\frac{\log N k}{\sqrt{N k}}\right)$		
Convex	$\min _{l \in\{0, \ldots, k\}}\left(f\left(x_{l}\right)-f\left(x^{\star}\right)\right)$	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log N k}\right)$	$O\left(\frac{\log N k}{\sqrt{N k}}\right)$		

Finite sum comparison - Quantification

- Assume that finite sum of N equals 10 million summands
- Assume constant for SGD $10 \times$ larger than for GD
- Computational budget is that we run $k=10$ iterations/epochs
- Replacing upper bounds with numbers:

Setting	Quantity	Gradient	Stochastic $\gamma_{k}=\frac{1}{k^{\alpha}}$			
			$\alpha=1$	$\alpha=0.5$		
Nonconvex	$\min _{\substack{l \in\{0, \ldots, k\}}}\left\\|\nabla f\left(x_{l}\right)\right\\|_{2}^{2}$	0.1	0.54	0.018		
Convex	$\min _{l \in\{0, \ldots, k\}}\left(f\left(x_{l}\right)-f\left(x^{\star}\right)\right)$	0.1	0.54	0.018		

- Stochastic gives better worst case guarantees
- Significant difference between stochastic methods
- Actual performance depends a lot on relation between constants

Outline

- Stochastic gradient method
- Nonconvex setting
- Convex setting
- Step-sizes and rates
- Refined step-size and rate analysis
- Rate comparison to proximal gradient method
- Stochastic gradient descent variations

Adaptive diagonal scaling

- Diagonal scaling gives one step-size (learning rate) per variable
- Gives SGD with diagonal scaling $H_{k}=\operatorname{diag}\left(h_{1, k}, \ldots, h_{N, k}\right)$

$$
x_{k+1}=x_{k}-\gamma H_{k}^{-1} \widehat{\nabla} f\left(x_{k}\right)
$$

where the inverse is $H_{k}^{-1}=\operatorname{diag}\left(\frac{1}{h_{1, k}}, \ldots, \frac{1}{h_{N, k}}\right)$

- A few methods exists that adaptively select individual step sizes
- Adagrad
- RMSProp
- Adam
- Adamax
- Adadelta
- Among these, Adagrad was first but Adam most popular
- Sometimes improve convergence compared to SGD
- Will briefly motivate Adagrad and show how Adam differs

Motivation for Adagrad

- Consider SGD with diagonal scaling H_{k} :

$$
x_{k+1}=x_{k}-\gamma H_{k}^{-1} \widehat{\nabla} f\left(x_{k}\right)
$$

- Update our analysis in the convex setting by
- expanding the square in the H_{k} norm and
- assuming deterministic $H_{k} \succeq H_{k-1}$ for all k
- not replacing $\mathbb{E}\left[\left|\widehat{\nabla} f\left(x_{k}\right) \|_{H_{k}^{-1}}^{2}\right| x_{k}\right]$ by upper bound G^{2}
- using fixed step-size $\gamma_{k}=\gamma$
we get bound (that converges if H_{k} increases fast enough)

$$
\mathbb{E}\left[f\left(x_{k}\right)-f\left(x^{\star}\right)\right] \leq \frac{\gamma^{-1}\left\|x_{0}-x^{\star}\right\|_{H_{0}}^{2}+\gamma \sum_{l=0}^{k} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{l}\right)\right\|_{H_{l}^{-1}}^{2}\right]}{2(k+1)}
$$

- Adagrad idea: select H_{k} to optimize constant

Adagrad idea for selecting H_{k}

- Assume $H_{k}=H$ has been constant and optimize bound constant

$$
\gamma^{-1}\left\|x_{0}-x^{\star}\right\|_{H}^{2}+\gamma \sum_{l=0}^{k} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{l}\right)\right\|_{H^{-1}}^{2}\right]
$$

- Don't know $\left\|x_{0}-x^{\star}\right\|_{H}^{2}$, approximate with $\operatorname{tr}(H)\left\|x_{0}-x^{\star}\right\|_{2}^{2}$
- Estimate sum from realization $\mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{l}\right)\right\|_{H^{-1}}^{2}\right]=\left\|\widetilde{\nabla} f\left(x_{l}\right)\right\|_{H^{-1}}^{2}$
- Let $R=\left\|x_{0}-x^{\star}\right\|_{2}^{2}$ to get optimization problem

$$
\gamma^{-1} R \operatorname{tr}(H)+\gamma \sum_{l=0}^{k}\left\|\widetilde{\nabla} f\left(x_{l}\right)\right\|_{H^{-1}}^{2}
$$

- Problem is separable in diagonal elements with solution

$$
h_{i i}=\frac{\gamma}{\sqrt{R}}\left\|\left(\widetilde{\nabla} f\left(x_{l}\right)\right)_{i}^{0: k}\right\|_{2}
$$

where $\left(\widetilde{\nabla} f\left(x_{l}\right)\right)_{i}^{0: k}=\left(\widetilde{\nabla} f\left(x_{0}\right)_{i}, \ldots, \widetilde{\nabla} f\left(x_{k}\right)_{i}\right)$

- Since we do not know R, we can set $R=\gamma^{2}$

Adagrad summary

- Adagrad adds ϵ to above estimate for numerical reasons
- The algorithm is

1. $\widetilde{\nabla} f\left(x_{k}\right)$ is subgradient or stochastic (sub)gradient of f at x_{k}
2. Select metric H_{k}

- set $s_{k}=\sum_{l=0}^{k}\left(\widetilde{\nabla} f\left(x_{k}\right)\right)^{2}$
- set $h_{k}=\epsilon \mathbf{1}+\sqrt{s_{k}}$
- set $H_{k}=\gamma^{-1} \operatorname{diag}\left(h_{k}\right)$

3. $x_{k+1}=x_{k}-H_{k}^{-1} g_{k}=x_{k}-\gamma g_{k} \cdot /\left(\epsilon \mathbf{1}+\sqrt{s_{k}}\right)$

- Sometimes H_{k} sums up too fast so too short steps are taken
- Possible reason, in smooth settings, we would get rate constant

$$
\gamma^{-1}\left\|x_{0}-x^{\star}\right\|_{H}^{2}+\gamma \sum_{l=0}^{k} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{l}\right)-\nabla f\left(x_{l}\right)\right\|_{H^{-1}}^{2}\right]
$$

where second term in this rate constant

- depends on noise, not full gradient as in Adagrad development
- would give smaller H_{k} and longer steps
- is more difficult to estimate online

Variations - RMSprop and Adam

- In Adagrad, H_{k} may grow too fast which gives too short steps
- Instead: Don't sum gradient square, estimate variance:

$$
\hat{v}_{k}=b_{v} \hat{v}_{k-1}+\left(1-b_{v}\right)\left(\widetilde{\nabla} f\left(x_{k}\right)\right)^{2}
$$

where $\hat{v}_{0}=0, b_{v} \in(0,1)$

- H_{k} is chosen (approximately) as standard deviation:
- RMSprop: biased estimate $H_{k}=\operatorname{diag}\left(\sqrt{\hat{v}_{k}}+\epsilon\right)$
- Adam: unbiased estimate $H_{k}=\operatorname{diag}\left(\sqrt{\frac{\hat{v}_{k}}{1-b_{v}^{k}}}+\epsilon\right)$
which is much smaller than in Adagrad \Rightarrow longer steps
- Intuition:
- Reduce step size for high variance coordinates
- Increase step size for low variance coordinates
- Adam also filters stochastic gradients for smoother updates

Filtered stochastic gradients

- Let $m_{0}=0$ and $b_{m} \in(0,1)$, and update

$$
\hat{m}_{k}=b_{m} \hat{m}_{k-1}+\left(1-b_{m}\right) g_{k}
$$

- Adam uses unbiased estimate: $\frac{\hat{m}_{k}}{1-b_{m}^{k}}$
- Does not improve convergence properties, but slower changes
- Problem from before, fixed step-size, without filtered gradient

Levelsets of summands

Filtered stochastic gradients

- Let $m_{0}=0$ and $b_{m} \in(0,1)$, and update

$$
\hat{m}_{k}=b_{m} \hat{m}_{k-1}+\left(1-b_{m}\right) g_{k}
$$

- Adam uses unbiased estimate: $\frac{\hat{m}_{k}}{1-b_{m}^{k}}$
- Does not improve convergence properties, but slower changes
- Problem from before, fixed step-size, with filtered gradient

Levelsets of summands

Adam - Summary

- Initialize $\hat{m}_{0}=\hat{v}_{0}=0, b_{m}, b_{v} \in(0,1)$, and select $\gamma>0$

1. $g_{k}=\widetilde{\nabla} f\left(x_{k}\right)$ (stochastic gradient)
2. $\hat{m}_{k}=b_{m} \hat{m}_{k-1}+\left(1-b_{m}\right) g_{k}$
3. $\hat{v}_{k}=b_{v} \hat{v}_{k-1}+\left(1-b_{v}\right) g_{k}^{2}$
4. $m_{k}=\hat{m}_{k} /\left(1-b_{m}^{k}\right)$
5. $v_{k}=\hat{v}_{k} /\left(1-b_{v}^{k}\right)$
6. $x_{k+1}=x_{k}-\gamma m_{k} \cdot /\left(\sqrt{v_{k}}+\epsilon \mathbf{1}\right)$

- Suggested choices $b_{m}=0.9$ and $b_{v}=0.999$
- Similar to Adagrad, but $\sqrt{v_{k}} \ll \sqrt{s_{k}} \Rightarrow$ longer steps
- May not work in deterministic setting (unlike Adagrad):
- If method converges $\nabla f\left(x_{k}\right) \rightarrow 0$
- Then $v_{k} \rightarrow 0$ and steps become very large
- Needs noise and stochastic gradients to work well

