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Proximal gradient method

® Proximal gradient method is applied problems of the form
minimize f(x) + g(x)
xr

where, for instance:
® f:R"™ — Ris S-smooth (not necessarily convex)
® g:R" - RU{oo} is closed convex
® For large problems, gradient can be expensive to compute
= replace by unbiased stochastic approximation of gradient



Unbiased stochastic gradient approximation

Stochastic gradient estimator:
® notation: @f(x)
® outputs random vector in R™ for each x € R"
Stochastic gradient realization:
® notation: Vf(z): R" — R"
® outputs, Va € R", vector in R” drawn from distribution of ¥ f(z)

An unbiased stochastic gradient estimator @f satisfies Vo € R™:
EVf(x) = V/(x)
If x is random vector in R™, unbiased estimator satisfies
E[Vf(x)|z] = V()

(both are random vectors in R™)



Stochastic gradient descent (SGD)

The following iteration generates (xj)ken of random variables:
Tiy1 = prox,, o(zr — 7V f(wk))

since @f outputs random vectors in R"
Stochastic gradient descent finds a realization of this sequence:

Lh+1 = PFOX%g(fk - ’Ykﬁf(xk))

where (x)gen here is a realization with values in R™
Sloppy in notation for when x, is random variable vs realization

Can be efficient if evaluating %f much cheaper than V f



Stochastic gradients — Finite sum problems

® Consider finite sum problems of the form

N
minixmize ~ (Z fz(ac)> +g(x)

i=1

f(z)

where < is for convenience

® Training problems of this form, where sum over training data

® Stochastic gradient: select f; at random and take gradient step



Single function stochastic gradient

Let I be a {1,..., N}-valued random variable
Let, as before, @f denote the stochastic gradient estimator

Realization: let 2 be drawn from probability distribution of I
Vf(z) =V fi(z)
where we will use uniform probability distribution
pi=p(I=1i)=+

Stochastic gradient is unbiased:

N N
E[Vf(z)] = ZprAz) =1 Z Vfi(z) = Vf(z)



Mini-batch stochastic gradient

® Let B be set of K-sample mini-batches to choose from:
® Example: 2-sample mini-batches and N = 4:

B ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

® Number of mini batches (%) each item in (K 1) batches
Let B be B—valuAed random variable
Let, as before, V f denote stochastic gradient estimator
Realization: let B be drawn from probability distribution of B

=% Z V fi(x)

i€B

where we will use uniform probability distribution
pp=p(B=B)= @
K
® Stochastic gradient is unbiased:

N-1y N
EV f(x Z > Viilx :(&SQZV
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Stochastic gradient descent for finite sum problems

The algorithm, choose zy € R™ and iterate:

1. Sample a mini-batch By € B of K indices uniformly
2. Update

w1 =prox, (zi — % Y Vfj(a))

JEBy

Can have B = {{1},...,{N}} and sample only one function
® Gives realization of underlying stochastic process

How about convergence?



SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, =1/3

Levelsets of summands Levelset of sum
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SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, = 1/k

Levelsets of summands Levelset of sum
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SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢
e Gradient method with v, = 1/3

©

Levelsets of summands Levelset of sum

e SGD will not converge for constant steps (unlike gradient method)
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Fixed step-size SGD does not converge to solution

® We can at most hope for finding point Z such that
0€dg(z)+ Vf(z)

i.e., the proximal gradient fixed-point characterization
e Consider setting g = 0 and assume 1z, such that 0 = V f(xy)
® That 0 = Vf(z) does not imply 0 = V f;(z) for all f;, hence
Tpy1 = ok — YV fi(Tr) # Tk

i.e., will move away from prox-grad fixed-point for fixed ~; > 0
® Need diminishing step-size rule to hope for convergence
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Last iterate vs best and average

® | ast iterate moves away from fixed-point
® Behavior can better for:

® Best iterate (smallest function value)
® Average iterate (Polyak-Ruppert averaging)
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Best iterate sequence

® Output best (in function value) iterate instead of last iterate

® Example: SGD with constant steps and best iterate

SGD with constant step-size Best iterate in sequence

® Not usful in practice: Function value comparison too expensive
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Polyak-Ruppert averaging

® Polyak-Ruppert averaging:
® Qutput average of iterations instead of last iteration

® Example: SGD with constant steps and its average sequence

SGD with constant step-size Average of SGD sequence
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Rate outlook

® Sublinear convergence in:

® Nonconvex and convex settings
® Strongly convex setting (unlike proximal gradient method)

® Convergence rate dependent on step-size choice
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Stochastic gradient descent

® \We consider problems of the form
minimize f(x)

where f : R™ — R is not necessarily convex

® \We will analyze stochastic gradient descent
Tr1 =k — WV [ (k)

where @f(xk) is an unbiased estimate of V f(xy) for all

® Will show sublinear convergence rates that depend on step-sizes
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Nonconvex setting — Assumptions

(1) f:R™ — R is S-smooth, for all z,y € R™:
Fy) < F@) + V@) (y — @) + §lly — 3

(#4) Stochastic gradient of f is unbiased: E[@f(xﬂx] =Vf(x)
(iii) Variance is bounded: E[||V f(z)|2|2] < ||V f(x)|2 + M2
(v) No nonsmooth term, i.e., g =0

(v) A minimizer z* exists and p* = f(z*) is optimal value
)

(vi) Step-sizes 7;, > 0 satisfy > po vk = 00 and Y ;o 77 < ©

® (4ii): variance is bounded by M? since

E(|[Vf(@)l3le] = Var[[|V £ (z)||2|2] + |V f ()3

® (i4i): analysis is slightly simpler if assuming E[||§f(x)|\§|x} <G
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Nonconvex setting — Analysis

® Upper bound on f in Assumption (i) gives
E[f (zh41)]ax]
< E[f(zr) + V(1) (@1 — or) + §llznsr — zill3lza]
= f(zx) = wVf(zr)'E [ﬁf(ka)l + R[S £ (o) |3lex]
< flak) =V f o)V f ) + ZE(V f ()5 + M?)
= Flar) = w1 - i)ﬂwmk)uw%w

K]+

® lety < % (true for large enough k since (vZ)ren summable):

E[f (zer) s < Flax) — BV @)l + 2202

® Subtracting p* from both sides gives

Elf (zhs1) 2] — p* < f(m) — p* — BV ()l + 22 M2
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Lyapunov inequality

® Take expected value and use law of total expectation to get:

E[f(xrs1)] — p* < E[f(2x)] — p* =% B[V £ (1) ]3] + 225 M2
N——

Vit Vi Ry Wy

® Consequences:

® Vi = E[f(zx)] — p* converges (not necessarily to 0)
* S LR < Vo + X, Wk, which, when multiplied by 2 gives

k k
D wENVF(@)3] < 2(f(w0) —p*) + > A M

1=0 1=0
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Minimum expected gradient norm bound

® | yapunov inequality consequence restated:

k k
Y MENVF@)l3] < 2(f(x0) —p*) + )P BM?

1=0 =0
® Using that
k k
Jmin BV F )] Y < D wE[IV S )]
’ =0 =0

E[ min [[Vf(@)l3] < min B[V ()]

where second is Jensen's inequality on concave min;, we get

(f(zo) = p*) + S5 g2 BM?
Ef:o "

2
: 2
E[ min [[Vf(z)]l5] <
1=0,....k
where terms in the numerator:
® 2(f(xzo) — p*) is due to initial suboptimality
i Zf:o ~2BM? is due to noise in gradient estimates

(if M =0, use yx = % to recover (proximal) gradient bound)



Minimum expected gradient norm convergence

® \What conclusions can we draw from

2(f(x0) — p*) + Y1 12 BM?
Ef:o Vi

® Let C'=)2,77 < oo (finite since (77)kxen summable) then

B[, min |[Vf(z)l] <

2f(0) — ") + CBM?
Z?:o "

as k — oo since (k) ken is not summable

E[, min |V ()|} <

® Consequences:
® Expected value of smallest gradient norm converges to 0
® Minimum gradient converges to 0 in probability
® We don't know what happens with latest expected value
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Stochastic gradient descent

® \We consider problems of the form
minimize f(x)

where f : R™ — R is convex

® \We will analyze stochastic gradient descent
Tr1 =k — WV [ (k)

where @f(xk) is an unbiased estimate of V f(xy) for all

® Will show sublinear convergence rates that depend on step-sizes

24



Convex setting — Assumptions

(1) f:R™ — R is convex but not necessarily differentiable
(74) Stochastic subgradient of f is unbiased: E[@f(x)\x] € 0f(x)
(iii) Second moment is bounded: E[[|V f(z)||3|z] < G2
(iv) A minimizer x* exists and p* = f(z*) is optimal value
)

(v) Step-sizes v;, > 0 satisfy > po o7& = 00 and Y ;o 77 < o0

® Do not assume smoothness or differentiability of f

® (4i7): assumption is stronger than variance bound:
E[IVf(@)l3la] < [IVf(2)]3 + M?

but can be relaxed under smoothness assumptions
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Convex setting — Analysis

® |et, by (1), E[@f(xkﬂxk] = g € Of(xk), then
El|lze+1 — 2|5 |2x]
= Ell|lze — 1V f(zx) — 2|13 ]2]
= [lox — 23 — 29 Ex[V f(zn)|zr) " (xr — 2*) + WZE[IV £ (2x) |13 ]24]
< llzx — 2|13 — 2k (xx — ) + %G

® Use subgradient definition f(z*) > f(zx) + gi (z* — x1) to get

Ellzis1 — 2" [|3ax] < llex — 2" (13 — 29 (f (zx) — f(&")) + %G
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Lyapunov inequality

® Take expected value and use law of total expectation to get:

Ell|xi1 — 2*||3] < Elllay, — 2*[|3] =2 E[(f (2x) = f(z*))] + 72 G?
——

Vit Vi Ry Wy

e Consequences:

® Vi, = E[||zx — 2*||3] converges (not necessarily to 0)
® S0 2mR < Vo + 305 Wi, which gives

D 2nE(f (@) = f@))] < llwo — 2|3+ Y A7 G
=0

=0
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Minimum expected function value bound

® What are the consequences of:

k k
> 20E[(f(ar) = fl@)] < oo — 2”5+ D16
=0

=0

® By using

where second is Jensen's inequality on concave min;, we get

k
[0 — 2|13 + 301 G®
k
221:0 Vi

E[ min f(zy) - f(z")] <

1=0,...,

® The last iterate not bounded
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Weighted average expected function value bound

k
® | et us define the weighted average T = Z Z,;” ol
=0 ="

® By Jensen's inequality for convex f, we have

k k
fa=1( Y ) <> )

k
1=0 Zj:o Vi 1=0

® Subtract f(z*), multiply by (Zfzo ’Yj), and take expectation:
k k
(Zw)mfm) — @) <D uElf () — f(a")]
j=0
® This gives the following bound for the average:

e = o = a3+ R G
Elf(zx) — f(z*)] < S

29



Expected function value convergence

e Let C'=)2,77 < oo (finite since (77)xen summable) then

%2 2
Q1 < lxo — ;UQ + CG R
23 oM

as k — oo since (yk)ken is not summable, where

Qr =E[ min f(zx) = f(z")]  or  Qr=E[f(zx) - f(a)]

RPN

® Expected smallest and average function value converge to f(z*)
® Function values converge in probability to optimal function f(x*)
® We have no last iterate convergence bound
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Smoothness

® We did not assume smoothness (or differentability) for result
® What happens if we add smoothness?

® Rate is not improved, but can improve constant
® We can replace E[||V f(x)||3]z] < G assumption by weaker

E(|Vf(@)l3]2] < IV f(@)]3 + M

that bounds variance (as in nonconvex analysis)
® If v, < %, it can shown that

lzo — 2|3 + i 77 M7
22;6:0 )

where, similar to in the smooth nonconvex setting, the term:
® ||zo — z*||3 is due to initial suboptimality

B min f(or) - f(a)] <

° Zf:o 'yl2M2 is due to variance in gradient estimates
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Strong convexity

® Assumption: f smooth and strongly convex
® Proximal gradient method achieves linear convergence

® Stochastic gradient descent does not achieve linear convergence
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Unifying convergence results

® Convergence in nonconvex and convex settings are:
Vo +DC

S —
bZzzo Bl

where C'= 3772 77 < oo by summability of (%) ken
e Convex setting: D =G?, b=2, Vy = ||wg — 2*[3

Qr =E[ min f(z:)) = f(@")] or  Qr=E[f(Zx) - f(z")]

Q

.....
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Step-size requirements

® Step-size requirement Zfio ;1 = oo makes upper bound

Vo + DC
b Z;C:O "

as k — oo, with @y from previous slide, since C' = Z[’io fyf < o0
e Step-sizes that satisfy > ;=7 = o0 and Y ;2,77 <

® v, =c/k, withc>0
® = c/k” for a € (0.5,1), with ¢ >0

Qr < -0
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Estimating rates via integrals

For convergence need to verify > ;° v = oo and Y ;=77 < o
To estimate rate we need to lower bound Z?’:o ol

Assume ~y; = ¢(1) with decreasing and nonnegative ¢ : R, — R
We can estimate sums using integral formula:

k k

k
o(t)dt + (k Z oD+ 6(0)

t=0

(we can remove ¢(k) > 0 from lower bound to simplify)

Will use upper bound on Zf:o 7# and lower bound on Zf:o Y
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Estimating rates — Example v, = k_j-l

® Let v, = ¢(k) with ¢(k) = %7 and estimate the sum

Z’n / —dt =clog(k+1) — o0
t=0 L+

as k — oo and

2
me/ ————dt + ¢(0)* = 2(1—ﬁ)+62§202<oo
=0 (t+1)?
® We arrive at the following (slow) O(1/log(k + 1)) rate:

Vo+DC _ Vo +2Dc®  Vy/c+2Dc
b oy belog(k+1)  blog(k+1)

Qr <

® The constant c trades off the two constant terms Vj and 2D
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Estimating rates — Example v, = W
® Let v = ¢(k) with ¢(k) = T and a € (0.5,1) and estimate

ZW / t+cl) di =

as k — oo and, since ¢(0)? = ¢%:

S ((k+1)'—1) 5 00

k k 2
2 _ 2 ¢ 27 ¢+ 2% 1k c?
E —c° < ————dt=c¢ o0 < < 00
Z M > /t:o (t+ 1)2a [ 1—2a ]th = 2a—1
® We arrive at the following O(1/(k + 1)1 =) rate:

0, < Vo +DC _ (1 —a) (Vo + Dc?52)
oy gy T be((BH 1))

® Comments:
® Rate improves with smaller a: W — k +1lasa— 0.5

® Constant worse with smaller a: (1 —a) 7, 52% M as a \(0.5
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Refining the step-size analysis

® Have not assumed Zzoio fyf finite for general convergence bound

VO"'DZl o'Yl
bZl oM

® \We can divide the sum into two parts

Qr <

Vo D

beZO’Yl b%z O’Yl
1=0"7

Qr <

Zz o“ﬂ
Zl 0 l

(don't need 37, 77 < oo for Qg — 0)

'SoQk%Oifozo’yl%ooand — 0

40



Refined step-size analysis interpretation

o let (k) < Zl o and ¥o(k) < %l 07 and restate bound:

=0 f
Vo D
by (k) bwz(k)

® oy decides how fast Vi (f(wo) — p* or ||xg — 2*||3) is supressed

Qr <

® )5 decides how fast D, that comes from noise, is supressed
® There is a tradeoff between supressing these quantities
® Actual convergence very much dependent on constants Vj and D
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Estimating rates — Example v, = =55

® let now o € (0,0.5) and estimate

((k+1)2 1)

squared sum does not converge, but can be shown to satisfy

Z’}/l S 194 20¢ k+1)1 2a_20[)

® We use these to arrive at the following rate when v, = W

(1-a)W (1 —a)Dc

<
S kT D 1) 20) e

where rate is worst of these: O(((’Zill);f:) = O((Hll)a)
® Comments:

® Rate improves with larger a: W k+1lasa—0.5
® Constant worse with larger a: ﬁ Sasa 0.5
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Estimating rates — Example v, = \/kc?
® We know from before that
k k
Z%ZZ T WVk+1-1)
=0 =0

and that the sum of step-sizes does not converge, but satisfies

k k
Z ZT *log(k + 1)
1=0

® Since Zl o — oo and Zl Oyl/zl 0P — oo also

Q < Vo DC N O
k>

2bevk + 1 2b1VO:E’;€+11)
log (k+1)

with rate O( = ) (since slower than O( kl+1))

~—



C

_ C
k+1 and ; = Vi

Comparing rates for +;, =

Rates for v, = 757 and v, = \/ﬁ respectively:

Vo/c+2Dc Vo Dc
< — d <
@ = blog(k+1) @k < 2bc\k + Tt 2b Vkﬁﬂl)

Constants in the two terms similar or same

Rate better for v, = 2 (0(103%)) vs O(m))

This is worst-case analysis, might not reflect actual performance
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Rate comparison

Setting Quantity Gradient  Stochastic v, = k%
a=1 =0.5
1 1
Nonconvex omin V@B OG) O(gg) ( ogk)
. 1 1 1 k
Convex  min (f()~f")  O()  Olgkz) O(%)
Strongly convex - linear sublinear  sublinear

® For stochastic, we have expectation around convergence quantity
® For convex gradient method, smallest suboptimality is the latest
® Constants similar except extra term from gradient estimate noise
® Stochastic gradient descent rate slower in all settings

® However, every iteration in stochastic gradient descent cheaper
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Finite sum comparison

® \We consider

N
minimize Z fi(x)
i=1
where NN is large and use one f; for each stochastic gradient
® N iterations of stochastic gradient is at cost of 1 full gradient

® Progress after k epochs (stochastic) vs k iterations (full):

Setting Quantity Gradient Stochastic v, = ,%a
a=1 a=0.5

. 2 1 1 log Nk

Nonconvex le{?ln,k} IV £zl O(k) O(logNk) O( VNE
: _ * 1 1 log Nk

Convex le{r(?,%.r?,k}(f(xl) f(z*)) O(k) O(logNk) O( Nk




Finite sum comparison — Quantification

® Assume that finite sum of N equals 10 million summands
® Assume constant for SGD 10x larger than for GD
¢ Computational budget is that we run k = 10 iterations/epochs

® Replacing upper bounds with numbers:

Setting Quantity Gradient  Stochastic v, = l%a
a=1 a=0.5
Nonconvex min ||V f(z)|3 0.1 0.54 0.018
1{0,....k}
C i — * 0.1 0.54 0.018
onvex le{nol,%?,k}(f(zl) f(z™)

® Stochastic gives better worst case guarantees
® Significant difference between stochastic methods

® Actual performance depends a lot on relation between constants
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Adaptive diagonal scaling

Diagonal scaling gives one step-size (learning rate) per variable
Gives SGD with diagonal scaling Hy, = diag(h1 k,...,hn k)

Tppr =z — YHT 'V f (1)

. . —1 o . 1 1
where the inverse is H, ~ = dlag(—hl,k e 7hN,k)

A few methods exists that adaptively select individual step sizes
® Adagrad
® RMSProp

Adam

Adamax

Adadelta

Among these, Adagrad was first but Adam most popular

Sometimes improve convergence compared to SGD
Will briefly motivate Adagrad and show how Adam differs
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Motivation for Adagrad

® Consider SGD with diagonal scaling Hy:
Thar = 2 — VH 'V f ()

® Update our analysis in the convex setting by
® expanding the square in the Hyx norm and
® assuming determiﬂistic Hy = Hy_1 for all k
® not replacing IE[HVf(xk)HiI;l\xk] by upper bound G?
® using fixed step-size v, = vy
we get bound (that converges if Hy, increases fast enough)

Blf (o) — fo)] < e Pl +7 i BV A @), 1]
) — flx < e

20k + 1)

® Adagrad idea: select Hj to optimize constant

51



Adagrad idea for selecting H;

Assume Hj = H has been constant and optimize bound constant

k

v M lwo — 213+ D BNV S (@) 1F-]
=0

Don't know ||zg — 2*||%, approximate with tr(H )|z — *||3

® Estimate sum from realization E[H%f(xl)ﬂi,,l] = ||§f(9cl)||%,,1
Let R = ||zo — 2*||2 to get optimization problem

v~ Rtr(H HZHW a1
=0

Problem is separable in diagonal elements with solution
hii = 2 l1(V (@) |12

where (Vf(2:))%% = (V£ (z0)s, ., VI(zx)i)
Since we do not know R, we can set R = 2
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Adagrad summary

® Adagrad adds € to above estimate for numerical reasons
® The algorithm is

1. Vf(zk) is subgradient or stochastic (sub)gradient of f at
2. Select metric Hj,

® set s, = 3o (V(21))?

® set hy = el + /5

® set Hy =~ ! diag(hs)

3. @1 =y — Hy 'gi = o1 — g/ (€1 + /51)
® Sometimes Hj, sums up too fast so too short steps are taken
® Possible reason, in smooth settings, we would get rate constant

k

Y M lwo — |3 + v Y EIIVS (@) = V(@) -]
=0

where second term in this rate constant
® depends on noise, not full gradient as in Adagrad development
® would give smaller Hy and longer steps
® is more difficult to estimate online
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Variations — RMSprop and Adam

In Adagrad, H; may grow too fast which gives too short steps

Instead: Don't sum gradient square, estimate variance:
O = byO—1 + (1= bo) (Vf(a1))?

where 99 =0, b, € (0,1)

Hj, is chosen (approximately) as standard deviation:
® RMSprop: biased estimate Hj, = diag(y/x + €)
® Adam: unbiased estimate Hj = diag( fkbﬁ +e€)

1
which is much smaller than in Adagrad = longer steps
Intuition:

® Reduce step size for high variance coordinates
® |ncrease step size for low variance coordinates

Adam also filters stochastic gradients for smoother updates
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Filtered stochastic gradients
® Let mo =0 and b, € (0,1), and update
Mg = bmg—1 + (1 — b)) g

® Adam uses unbiased estimate:

T—bF
® Does not improve convergence properties, but slower changes
® Problem from before, fixed step-size, without filtered gradient

Levelsets of summands
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Filtered stochastic gradients
Let mo = 0 and b,,, € (0,1), and update
Mg = bmg—1 + (1 — b)) g

Adam uses unbiased estimate:

T—bF
Does not improve convergence properties, but slower changes
Problem from before, fixed step-size, with filtered gradient

Levelsets of summands
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Adam — Summary

Initialize mo = 09 = 0, by, by € (0,1), and select v > 0

1.

arwN

6.

gr = Vf(zx) (stochastic gradient)
Mi = bmMi—1 + (1 — bm) gk

U = bylk—1 + (1 - bv)g]%

mg = mk/(l — bfn)

V = f}k/(l — bﬁ)

Tp1 = T — yMi./(y/Vk + €1)

Suggested choices b, = 0.9 and b, = 0.999

Similar to Adagrad, but /vy < /S = longer steps
May not work in deterministic setting (unlike Adagrad):

® If method converges V f(zx) — 0
® Then vy — 0 and steps become very large
® Needs noise and stochastic gradients to work well
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