
Optimization for Learning - FRTN50
Assignment 3

Introduction
In this assignment we will look at different variants of proximal gradient meth-
ods. We’ll mainly focus on the key concepts behind solving large scale problems.
Practical concerns and concepts that facilitate their implementations will also
be touched upon.

When problem sizes grow the cost of evaluating gradients grows with it,
making gradient descent based methods more and more expensive. Current
research is therefore directed towards using cheap approximate gradient eval-
uations instead of full gradients. This is the idea behind coordinate gradient,
stochastic gradient, and their many variants. In this assignment you will imple-
ment variants of both.

The assignment consists of two main parts. The first will cover and compare
some algorithms for solving the standard composite optimization problem we
have previous been working with,

min
x∈Rn

f(x) + g(x). (1)

The second will cover the finite sum optimization problem commonly found in
model fitting, function approximation and supervised learning tasks,

min
x∈Rn

1
N

∑N

i=1
fi(x) (2)

Composite Optimization
Accelerated Proximal Gradient
Ordinary proximal gradient computes the next iterate based only on the current
iterate, completely forgetting the trajectory. However, the trajectory can con-
tain useful information about the function. Accelerated methods (also called
momentum methods) store some information regarding the previous iterates
and extrapolate based on this information. There are a couple different ways of
doing this but here we choose the following Nesterov acceleration approach,

yk = xk + βk(xk − xk−1)

xk+1 = proxγg(yk − γ∇f(yk))

with x−1 = x0. The sequence βk is here a design choice and several different
choices have been presented in literature, a common choice is

βk =
tk − 1

tk+1
, t0 = 1, tk+1 =

1 +
√
1 + 4(tk)2

2
. (3)

Written by: Martin Morin
Latest update: October 9, 2020



If f is µ-strongly convex the following choice can be made

βk =
1−√

µγ

1 +
√
µγ

. (4)

Coordinate Gradient Descent
If the proximable-term g in (1) is separable, , it is possible to perform coordinate-
wise updates. With g(x) =

∑n
i=1 gi((x)i) where (·)i denotes the ith element,

coordinate gradient descent can be written as

Sample i uniformly from {1, ..., n}
(xk+1)i = proxγigi((xk)i − γi(∇f(xk))i)

(xk+1)j = (xk)j , ∀j ̸= i

where xk ∈ Rn. Index i could be selected in a number of different ways but
here we will simply sample it uniformly and independently in each iteration.

In general, coordinate gradient requires more iterations compared to stan-
dard proximal gradient but the idea is to make each iteration much cheaper. If
one coordinate of ∇f can be computed m times cheaper compared to the full
gradient, and the total number of iterations required to achieve a given precision
is less than m times more, a real world speed up will be achieved.

One such case where coordinate computation is cheap is when f is a quadratic,
f(x) = 1

2x
TQx+ qTx. One coordinate can be evaluated up to n times cheaper

than a full gradient since the coordinates of ∇f(x) are independent of each
other. This can be seen from the expression of the gradient,

∇f(x) = Qx+ q = (Q1x+ (q)1, . . . , Qnx+ (q)n)

where Qi is the i:th row of Q. More general assumptions for cheap coordi-
nate evaluations exist but for the purposes of this assignment the quadratic is
sufficient.

One other benefit of coordinate descent is that it is possible to use coordinate-
wise step-sizes, γi, for coordinate gradient. This allows the step-size to be
adapted to the curvature/smoothness in each direction instead of defining a
step-size based on the global smoothness constant. This can greatly reduce the
number of iterations needed.

Support Vector Machines
We will compare the algorithms presented above on a support vector machine
(SVM) problem.

Given training data xi ∈ Rn with corresponding class labels yi ∈ {−1, 1} for
i ∈ {1, . . . , N}, an SVM is a classifier on the form yi ≈ sign(wTϕ(xi)) where ϕ
is some non-linear feature map chosen beforehand. The parameter w is chosen
by solving the following problem

min
w

h(Y XTw) + λ
2 ∥w∥

2
2

2



where X = [ϕ(x1), ϕ(x2), . . . , ϕ(xN )], Y = diag(y1, y2, . . . , yN ), λ is a tunable
regularization parameter and h is the hinge loss

h(z) = 1
N

∑N

i=1
max(0, 1− zi).

Since the non-smooth term is not proximable, this problem is easiest solved via
the dual

min
ν

h∗(ν) + 1
2λ∥−XY ν∥22.

The last term in the dual problem is a quadratic function which we define
as

f(ν) = 1
2λ∥−XY ν∥22 = 1

2λν
TY XTXY ν = 1

2ν
TQν

where the matrix Q is given by Qij = λ−1yiϕ(xi)
Tϕ(xj)yj . The matrix Q can be

evaluated by only evaluating the kernel, K(x, y) = ϕ(x)Tϕ(y), associated with
the feature map ϕ. It is also possible to evaluate the model itself with only the
kernel and dual solution. This means that it is possible to build a SVM classifier
without explicitly using the feature map. We will not go into details regarding
kernels and only note that it is the standard way of implementing SVMs since
the implementation no longer depends on the dimension of the feature map.
Kernels therefore allows for the use of more interesting feature maps with very
high dimension. For example, one of the most commonly used kernels is the
Gaussian RBF kernel whose corresponding feature map is infinit dimensional.

Tasks
Task 1 Find the convex conjugate of h. Also, given a solution to the dual
SVM problem, ν⋆, find the primal SVM solution w⋆.

Task 2 For the dual SVM problem above, compare proximal gradient (PG),
accelerated proximal gradient (APG) and coordinate proximal gradient (CG).
The file svm_problem.jl contains a function for generating objective functions,
problem parameters and initial dual point ν0.

Use the same initial point, ν0, for all algorithms. For PG and APG, use a
step-size of γ = 1

L where L is the smoothness-constant of f . Compare both
APG with (3) and (4). For CG, compare both the coordinate-wise step-size
of γi = 1

Qii
and the uniform choice γi = 1

L . The element Qii is here the i:th
diagonal element of the Q matrix of the function f .

Plot ∥νk − ν⋆∥ where ν⋆ is the solution. Find ν⋆ by simply solving the
problem to extra high precision before generating your plot. For CG, scale the
iteration axis with 1

N to normalize the computational cost. We assume the
evaluation cost of the proximal operator is negligible and the computational
cost is dominated by vector multiplication. Each iteration of CG should then
be 1

N th as expensive as PG, so N iterations of CG correspond to the same
computational effort as one iteration of PG.

Which method required the least amount of computational effort? Which
method required the least amount of iterations? Which was fastest in real time?
Can you comment on the similarities/differences between real time performance

3



and number of iterations needed? How fair is it to compare real time perfor-
mance? Can it be easily affected? For APG, did the choice of beta sequence
have a large or small effect on the result? For CG, was it beneficial to use
coordinate wise step-sizes?

Hints:

• ProximalOperators.jl expects array inputs and returns arrays, even if
they are one dimensional.

• Be mindful of the code inside your update loop. Any operation involving
the full iterate, νk, is likely to add a considerate amount of computational
time to each iteration. This includes any type of logging, printing and
convergence checking. It is therefore advisable to only do this every 1000-
10000 iteration.

• The macro @time can be used to time a function call in Julia.

Finite Sum Optimization
Stochastic Gradient Descent
One of the most commonly used families of methods to solve problem (2) are
stochastic gradient (SG) methods. The most basic SG method is to, given some
initial point x0, perform

Sample i uniformly from {1, ..., N}
xk+1 = xk − γk∇fi(xk).

where γk > 0. Similarly to CG, the index i can be selected in various different
ways but we choose to restrict ourselves to this uniformly random case.

The main benefit of SG methods is that they are N times cheaper per iter-
ation compared to ordinary gradient methods. However, ∇fi and ∇ 1

N

∑N
i=1 fi

do not need to be well correlated so each iteration does not necessarily bring
xk+1 closer to the solution. Even in the convex case the sequence of step-sizes,
{γk}t=1,2,..., must be chosen with care in order to guarantee convergence. Usu-
ally this means that {γk}t=1,2,... must go to zero sufficiently fast but not too
fast. In this assignment we will use step-sizes on the form

γk =
γ

1 + βk

where γ > 0 and β ≥ 0.

Model Fitting
In the coming tasks we will look at a couple of different model fitting/function
approximation/supervised learning problems.

min
p∈Rn

1
N

∑N

i=1
l(m(xi; p), yi)

4



where for i ∈ {1, . . . , N} the variables xi and yi are the input and output data
of the model/function/mapping we want to fit/find/learn. The function m is
the model and it is parameterized by the variable p. The output of the model
is compared to the expected output data yi and the error is penalized with the
loss function l.

Automatic Differentiation
Since we will not need to calculate any proximal operators in either the above
stated SG or ADAM method we will not be using ProximalOperators.jl. In-
stead we will be using Flux.jl and its Automatic Differentiation (AD) package
called Zygote.jl. The use of an AD package will allow us to use neural networks
and other (almost) arbitrary functions as models.

AD is exactly what it sounds like, it is an automated way to calculate gra-
dients of functions you have implemented in some programming language. The
now classic backpropagation algorithm for neural network is an example of an
AD method. Efficient AD implementations are an integral part of machine
learning libraries like TensorFlow, PyTorch and Flux.jl.

For simplicity you will not interact with Flux.jl directly, instead we have
provided a wrapper for setting set up your optimization problems and calculate
gradients. The wrapper is very simple, it mainly gathers and vectorizes all
parameters in order to provide easy-to-work-with arrays.

One final note on AD. We said it calculates gradients and you will use
stochastic gradient methods. However, AD does not necessarily calculates gra-
dients since the model f and loss l are not necessarily differentiable everywhere
and can contain kinks and discontinuities. AD algorithms will in these cases
return something closer to a one-sided derivative. This has consequences with
regards to algorithm design since even in the convex case we usually need to
guarantee some form of local smoothness in order to prove convergence. In
practice have SG methods still proven themselves to be useful so we (and the
majority of the machine learning community) will for now not make this dis-
tinction and simply call everything gradients.

Tasks
In order to perform the following tasks you need to install Flux.jl by running
the following in the Julia REPL.

using Pkg
Pkg.add(PackageSpec(name="Flux", version="0.10.4"))

Note that we need a specific version of Flux.jl.
The wrapper mentioned above is found in the file flux_wrapper.jl. The

file stoch-grad.jl contains the skeleton code you will use in this part of the
assignment. It uses ordinary gradient descent to fit a 2nd order polynomial
model to a 5th order model. A 2nd order model is of course not enough to fit
the 5th order model well, but it is enough for our purposes. Furthermore, the
resulting optimization problem is a convex least squares problem so convergence

5



is guaranteed is guaranteed for a small enough step-size. Read the code and
make sure you understand it.

Run the code and make sure that the distance to the solution approaches
zero and that the mean loss decrease. Flux.jl uses 32-bit floating point numbers
instead of the more standard 64-bit numbers. This means that the numerical
precision is around only 10−6 to 10−9. This loss of precision is a trade-off
made in order to reduce the memory requirement of large neural networks. The
benefit of larger networks usually outweighs the loss of numerical precision in
many modern machine learning problems.

Task 3 Add a stochastic gradient implementation to stoch-grad.jl and solve
the existing model fitting problem with it. Use γ = 0.01 and β = 0, i.e., no
step-size decay, and run for 50N iterations. How close to the solution do you
get? Can you get closer to the solution if you let the algorithm run longer? On
average, how close can you get? Redo the experiment with γ = 0.0001. How
does the step-size affect how close to the solution you can get?

Task 4 Set γ = 0.01 and β = 0.1 and run the SG algorithm on the existing
model fitting problem for 100N iterations. This decaying step-size guarantees
convergence for this smooth convex problem. But, how close to the solution
do you get? Run for 100N iterations more. How much closer to the solution
did you get? Rerun the experiment with a slower decay speed of β = 0.01 and
compare the results. Which β performs best? Based on the results in this and
the previous task, what is the risks of having too small or too large decay speed?

Task 5 To get a better fitting model, increase the order of the model in the
get_poly_model() function to a 5th order model. 1 Run SG with γ = 0.001
and β = 0 for 100N iterations. Look at both the mean loss and distance to the
solution, has the algorithm reached numerical precision? Reset the problem and
instead run ordinary gradient descent for 100 iterations with γ = 0.009. Which
algorithm performs best? In this case, both are actually guaranteed to converge
but why is it fair to compare 100 iterations of GD against 100N iterations of
SG.

Task 6 Change from the polynomial model to the neural network model. Run
gradient descent for 100 iterations with γ = 0.02. Does it appear to converge?
Reset the problem and run SG for 100N iterations with γ = 0.001 and β = 0.
How is the fit compared to gradient descent? Run for an additional 100N
iterations. Does the mean loss improve? Both for the neural network and the
5th order model we used no decay on the step-size, β = 0. What differentiate
the neural network and 5th order models from the 2nd order model with regards
to the model we are trying to learn?

Hints:

• Remember to redefine the model/network and algorithm between experi-
ments so that you start from scratch.

1We will here ignore issues regarding overfitting. However, in a real world scenario overfit-
ting is of course an important problem to handle.

6



• It is often advantageous for an optimization algorithm to able to be re-
sumed after an initial number of iterations have been performed. For this,
your SG implementation needs to keep track of its state, i.e., the decaying
step-size.

Remark: Stochastic Gradient in Practice SG variants are the de facto standard meth-
ods for fitting large neural networks. Arguably, the most popular variant is ADAM which
incorporates variants of both acceleration/momentum and coordinate scaling. However, the
main drawback of ADAM is that it is not guaranteed to converge, not even for smooth convex
problems. One of the reasons for this is that the step-size does not necessarily go to zero.
Still, ADAM have shown to perform well on a huge amount of deep learning problems.

SG methods often use some form of batching and sampling without replacement that
further improves the stochastic approximation of the gradient. Batching is simply to sample
several data points and calculate the mean loss and gradient w.r.t. to all of those data
points instead of only one. Sampling without replacement no longer samples the data points
independently but samples only from the data points not yet used. Once all data points have
been used the sampling is reset and started over again. This epoch based way of sampling
prevents some data points from being used too often and forces all data to be used regularly.

Submission
Your submission should contain the following.

• All your code.

• A single pdf where you answer and/or discuss the questions raised in each
task.

Use plots, figures and tables to motivate your answers.

7


