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Introduction

The exercises are divided into problem areas that roughly match the lecture
schedule.

Exercises marked with (H) have hints available, listed in the end of each chapter.
Not as fundamental or challenging exercises are marked with (⋆). Even more
challenging exercises are marked with (⋆⋆).
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Chapter 1

Convex Sets and Convex
Functions

EXERCISE 1.1
Given the following sets.

a. b.

c. d.

1. Which of the sets are convex. Motivate.

2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

EXERCISE 1.2 (H)
Which of the following sets are convex? If convex, prove it using the definition
of convex sets, if not convex, disprove it. You may assume that the data defining
the sets generate nonempty sets.

1. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm

2. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : x ≥ 0}
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4. S = {x ∈ Rn : l ≤ x ≤ u} with l, b ∈ Rn such that l ≤ u

5. S = {x ∈ Rn : ∥x∥2 ≤ 1}

6. S = {x ∈ Rn : −∥x∥2 ≤ −1}

7. S = {x ∈ Rn : −∥x∥2 ≤ 1}

8. S = {(x, t) ∈ Rn × R : ∥x∥2 ≤ t}

9. S = {X ∈ Rn×n : X ⪰ 0} (i.e. X is restricted to be positive semidefinite)

10. S = {x ∈ Rn : x = a} with a ∈ Rn

11. S = {x ∈ Rn : x = a or x = b} with a, b ∈ Rn such that a ̸= b

EXERCISE 1.3

Which of the following sets are affine?

1. V = {x ∈ Rn : x = a} for some a ∈ Rn

2. V = {x ∈ Rn : x = αa + (1 − α)b, α ∈ [0, 1]} for some a, b ∈ Rn such that
a ̸= b

3. V = {x ∈ Rn : x = αa+ (1− α)b, α ∈ R} for some a, b ∈ Rn such that a ̸= b

EXERCISE 1.4

A set K is a cone if for all x ∈ K also αx ∈ K for all α ≥ 0. Which of the following
figures represent cones? Which of them are convex?

a. b.

c. d.
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EXERCISE 1.5

Which of the following sets are convex cones? Prove or disprove. You can assume
that the data defining the sets generate nonempty sets.

1. S = {x ∈ Rn : Ax = 0} with A ∈ Rm×n

2. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm such that b ̸= 0

3. S = {x ∈ Rn : Ax ≤ 0} with A ∈ Rm×n

4. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm such that A ̸= 0 and
b ̸= 0

5. S = {x ∈ Rn : x ≥ 0}

6. S = {(x, t) ∈ Rn × R : ∥x∥2 ≤ t}

7. S = {X ∈ Rn×n : X ⪰ 0}

EXERCISE 1.6

Suppose that C1 and C2 are convex sets.

1. Is the set C = {x ∈ Rn : x ∈ C1 and x ∈ C2} the union or intersection of C1

and C2? Is it convex? Prove or provide counter example

2. Is the set C = {x ∈ Rn : x ∈ C1 or x ∈ C2} the union or intersection of C1

and C2? Is it convex? Prove or provide counter example

EXERCISE 1.7

Let {Cj}j∈J be an indexed family of convex sets in Rn, with index set J (J can be
finite, countable or uncountable). Show that⋂

j∈J
Cj ,

is convex.

EXERCISE 1.8
Prove convexity for each of the following sets.

1. Affine hyperplanes. Recall that affine hyperplanes are written as hs,r =
{x ∈ Rn : sTx = r} for some s ∈ Rn and r ∈ R

2. Halfspaces. Recall that halfspaces are written asHs,r = {x ∈ Rn : sTx ≤ r}
for some s ∈ Rn and r ∈ R
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3. Polytopes. Recall that a polytope C can be represented as

C = {x ∈ Rn : sTi x ≤ ri for i ∈ {1, . . . ,m} and sTi x = ri for i ∈ {m+ 1, . . . , p}},

where si ∈ Rn and ri ∈ R for each i ∈ {1, . . . , p}

EXERCISE 1.9 (H)
Prove, without explicitly using the definition of convex sets, that each of the
following sets are convex set. You may assume that the data defining the sets
generate nonempty sets.

1. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm

2. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : x ≥ 0}

4. S = {x ∈ Rn : l ≤ x ≤ u} with l, b ∈ Rn such that l ≤ u

5. S = {x ∈ Rn : x = a} with a ∈ Rn

EXERCISE 1.10 (⋆)

Let f : Rn → Rm be a function, and let C ⊆ Rn and D ⊆ Rm be two sets. The
image of C under f is denote by f(C) and is defined by

f(C) = {f(x) : x ∈ C}.

The inverse image of D under f is denote by f−1(D) and is defined by

f−1(D) = {x : f(x) ∈ D}.

Now suppose that f is an affine function (or map), i.e. f(x) = Ax + b for some
A ∈ Rm×n and b ∈ Rm, and let both sets C and D be convex. Show that

1. f(C) is convex

2. f−1(D) is convex

EXERCISE 1.11 (⋆)
Let f : Rn → R ∪ {∞} be convex, i.e., let f satisfy

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all θ = [0, 1] and let X be (effective) domain of f , i.e. X = domf = {x ∈ Rn :
f(x) <∞}. Show that X is convex.
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EXERCISE 1.12
Prove or disprove that the following functions f : Rn → R ∪ {∞} are convex.

1. Indicator function of convex set C:

f(x) = ιC(x) =

{
0 if x ∈ C

∞ else

2. f(x) = ∥x∥

3. f(x) = −∥x∥

4. f(x, y) = xy

5. f(x) = aTx+ b

6. f(x) = 1
2x

TQx with Q ∈ Rn×n such that Q ⪰ 0

7. f(x) = distC(x) = infy∈C ∥x− y∥ where C is a convex set

EXERCISE 1.13

Draw the epigraph of the following functions.

• f(x) = |x|

• f(x) = x2

• f(x) = |x|+ x2

• f(x) = max(|x|, x2)

• f(x) = min(|x|, x2)

EXERCISE 1.14
Let f : Rn → R be an affine function defined by f(x) = aTx+ b. Show that epif
is a halfspace in Rn+1.

EXERCISE 1.15

Let f : Rn → R ∪ {∞} be a function. Recall that the epigraph of f is given by
epif = {(x, r) ∈ Rn × R : f(x) ≤ r}. Show that f is convex if and only if epif is
convex.

EXERCISE 1.16 (H)
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For each i ∈ {1, . . . ,m}, assume that the function fi : Rn → R ∪ {∞} is a con-
vex. Prove the following explicitly, without resorting to convexity preserving
operations on functions.

1. Show that f(x) =
∑m

i=1 αifi(x) is convex, whereαi ≥ 0 for each i ∈ {1, . . . ,m}

2. Show that f(x) = maxi∈{1,...,m} fi(x) is convex

EXERCISE 1.17

Show that the following functions f : Rn → R ∪ {∞} are convex. You may use
convexity preserving operations.

1. f(x) = ∥x∥p with p ≥ 1

2. f(x) = ∥Ax− b∥22 + ∥x∥1

3. f(x) = max(∥x∥, ∥x∥2, ∥x∥3)

4. f(x) =
∑n

i=1 max(0, 1 + xi) + ∥x∥22
5. f(x) = supy(x

T y − g(y)) (these will be called conjugate functions)

EXERCISE 1.18 (H)

Let g : Rn → R ∪ {∞} and define Cα = {x ∈ Rn : g(x) ≤ α} for some α ∈ R.

1. Suppose that g is a convex function for which x̄ ∈ Rn exists with g(x̄) < α.
Show that Cα is a nonempty convex set.

2. For n = 1, construct a nonconvex function g such that C0 is convex.

3. For n = 1, construct a nonconvex function g such that C0 is nonconvex.

EXERCISE 1.19

Let f : Rn1 → R∪{∞} be a convex function and define a function g : Rn1 ×Rn2 →
R ∪ {∞} such that g(x, y) = f(x). Show that g is a convex function.

EXERCISE 1.20 (H)
Prove, without explicitly using the definition of convex sets, that each of the
following sets are convex.
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1. S = {x ∈ Rn : ∥x∥2 ≤ 1}

2. S = {(x, t) ∈ Rn × R : ∥x∥2 ≤ t}

EXERCISE 1.21 (H)
Suppose that f : Rn → R ∪ {∞} is a convex function and assume that x⋆ ∈ Rn

is locally optimal. That is, for all x ∈ Rn such that ∥x − x⋆∥ ≤ δ, we get that
f(x⋆) ≤ f(x), for some δ > 0. Show that x⋆ is a global minimum.

EXERCISE 1.22
Suppose that f : Rn → R ∪ {∞} is a strictly convex function.

1. Suppose that a point x⋆ exists such that f(x⋆) ≤ f(x) for all x ∈ Rn. Show
that x⋆ is the unique minimizer of f .

2. Provide a strictly convex f whose minimum is not attained by any point x⋆.

For strongly convex functions (which are also strictly convex) the minimum al-
ways exists.

EXERCISE 1.23
Show for each of the following convex functions if it is smooth, strongly convex,
strictly convex, or none of the above. Draw/plot the functions and decide from
the drawings.

1. f(x) =
{
− log(x) if x > 0

∞ if x ≤ 0

2. f(x) =
{

1
x if x > 0

∞ if x ≤ 0

3. f(x) = x

4. f(x) = 1
2x

2

5. f(x) = |x|

6. f(x) =
{

1
2x

2 if |x| ≤ 1

|x| − 1
2 else

7. f(x) = ex

8. f(x) = x4

EXERCISE 1.24 (H)
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Given some unknown function f where we know f(1) = 1, f(−1) = 0. For x ∈
[−1, 1], draw the known bounds on f given the following assumptions::

• f is convex.

• f is convex and 2-smooth.

• f is 2-smooth and 1
2 -strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

EXERCISE 1.25
Given some unknown differentiable function f : R → R where we know f(1) = 1,
f ′(1) = 1. Draw the known bounds on f given the following assumptions:

• f is strictly convex.

• f is strictly convex and 2-smooth.

• f is 2-smooth and 1-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

EXERCISE 1.26 (H) (⋆)

A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) (1.1)

holds for all x, y ∈ Rn.

1. Provide a nonconvex differentiable function f and a point y for which (1.1)
does not hold.

2. Prove the result.

EXERCISE 1.27 (⋆)
The indicator function of a set C is defined as

ιC(x) :=

{
0 if x ∈ C

∞ else

Show the following.

1. Let K ∈ Rm×n be a matrix, b ∈ Rm be a vector and define the convex set
C := {x ∈ Rn : Kx− b = 0}. Show that

ιC(x) = sup
µ
µT (Kx− b)

where µ ∈ Rm.
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2. Let g : Rn → Rm be a function and define the set C := {x : g(x) ≤ 0}. Show
that

ιC(x) = sup
µ≥0

µT g(x)

where µ ∈ Rm.

EXERCISE 1.28 (⋆)

Let f : Rn → R ∪ {∞} be convex function. We get that

f

(
n∑

i=1

θixi

)
≤

n∑
i=1

θif(xi)

holds for for all integers n ≥ 2, where xi ∈ Rn, θi ≥ 0, and
∑n

i=1 θi = 1. This
inequality is called Jensen’s inequality. Prove Jensen’s inequality.

EXERCISE 1.29 (⋆)

Let L(u, y) be convex in u for every fixed y.

1. Let m(x; θ) = θx, where x ∈ Rm is fixed and θ ∈ Rn×m. Is the function
L(m(x; θ), y) convex in θ for all fixed x and y? Prove or provide counterex-
ample.

2. Let θ = (θ1, θ2) ∈ Rn1×m1 ×Rn2×m2 and m(x; θ) = θ2σ(θ1x), where σ : Rn1 →
Rm2 is differentiable and x ∈ Rm1 is fixed. Is L(m(x; θ), y) convex in θ for
all fixed x and y and differentiable σ? Prove or provide counterexample.

EXERCISE 1.30 (⋆)

Let f : Rn → R ∪ {∞}. Show that f(x) − σ
2 ∥x∥

2
2 is convex (i.e., f is σ-strongly

convex) if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)∥x− y∥2

for all x, y ∈ Rn and all θ ∈ [0, 1].

EXERCISE 1.31 (⋆⋆)

Let f : Rn → R be a differentiable function and let β ≥ 0. Consider the following
properties
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I) ∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2, for all x, y ∈ Rn, i.e., f is β-smooth

II) For each x, y ∈ Rn{
f(y) ≤ f(x) +∇f(x)T (y − x) + β

2 ∥x− y∥22,
f(y) ≥ f(x) +∇f(x)T (y − x)− β

2 ∥x− y∥22

III) β
2 ∥x∥

2
2 − f(x) and f(x) + β

2 ∥x∥
2
2 are convex

IV) For each x, y ∈ Rn and θ ∈ [0, 1]{
f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β

2 θ(1− θ)∥x− y∥22,
f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β

2 θ(1− θ)∥x− y∥22

Show that these properties are equivalent.

EXERCISE 1.32 (H)(⋆)

Let f : Rn → R be a twice differentiable function and let β ≥ 0. Show that the
following properties are equivalent

I) ∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2, for all x, y ∈ Rn, i.e., f is β-smooth

II) −βI ⪯ ∇2f(x) ⪯ βI, for all x ∈ Rn

Hints
HINT TO EXERCISE 1.2
A matrixQ ∈ Rn×n is positive semidefinite if and only ifQ is symmetric (Q = QT )
and xTQx ≥ 0 for all x ∈ Rn. This second condition is equivalent to that all
eigenvalues are nonnegative.

HINT TO EXERCISE 1.9
Use the results from Exercise 1.8.

HINT TO EXERCISE 1.16
For the second subproblem, use the fact that a function is convex if and only if
its epigraph is convex.

HINT TO EXERCISE 1.18
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A function g : Rn → R ∪ {∞} is convex if

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y)

for all x, y ∈ Rn and θ ∈ [0, 1].

HINT TO EXERCISE 1.20
Use the results from Exercise 1.18 and 1.19.

HINT TO EXERCISE 1.21
Use a proof by contradiction.

HINT TO EXERCISE 1.24
See Exercises 1.30 and 1.31(IV) for the smoothness and strong-convexity bounds.

HINT TO EXERCISE 1.26
The directional derivative at x ∈ Rn in direction d ∈ Rn satisfies

lim
θ→0

f(x+ θd)− f(x)

θ
= ∇f(x)Td.

(This is given by the chain-rule.)

HINT TO EXERCISE 1.32

Use Exercise 1.31 and the second order condition for convex functions.
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Chapter 2

Subdifferentials and Proximal
Operators

EXERCISE 2.1

Compute the subdifferentials for the following convex functions.

1. f(x) = 1
2∥x∥

2
2

2. f(x) = 1
2x

THx+ hTx with H positive semidefinite

3. f(x) = |x|

4. f(x) = ι[−1,1](x)

5. f(x) = max(0, 1 + x) (hinge loss)

6. f(x) = max(0, 1− x)

EXERCISE 2.2

Consider the following even nonconvex function f .

2

2-2

f(x)

x
x1

x2

x3

1. Compute (approximate) gradient and subdifferential at x1, x2, and x3.

2. As which points x1, x2, and x3 do Fermat’s rule hold?
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EXERCISE 2.3

Figure (a) depicts ∂f(x) and Figure (b) depicts ∂g(y).

(a) (b)

1. Is x a minimum to f?

2. Is y a minimum to g?

3. Is f differentiable at x

4. Is g differentiable at y

5. Draw/explain examples of functions f and g that comply with the figure.

EXERCISE 2.4
Suppose that f : R → R satisfies f(−1) = 1, ∂f(−1) = {−1}, f(1) = 1 and
∂f(1) = {1}.

1. Draw a function that lower bounds f .

2. Compute a lower bound to the optimal value of f .

3. Draw a function f that complies with the requirements.

EXERCISE 2.5

Consider the following set-valued operators A : R → 2R.

• Which are monotone?

• Which can be subdifferentials of closed convex functions?
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x

A

a.

x

A

b.

x

A

c.

x

A

d.

EXERCISE 2.6
Let A : Rn → 2R

n be an operator and σ > 0. Show that A is σ-strongly mono-
tone if and only if A − σI is monotone. In particular, note that ∂f is σ-strongly
monotone if and only if ∂f − σI is monotone.

EXERCISE 2.7 (⋆)
Provide a monotone operator A : Rn → 2R

n that is monotone but not the subdif-
ferential of a function.

EXERCISE 2.8 (H)(⋆)
Let f : Rn → R be a differentiable function. Then the following properties are
equivalent

I) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn, i.e. f is convex

II) (∇f(y)−∇f(x))T (y − x) ≥ 0 for all x, y ∈ Rn, i.e. ∇f is monotone

1. Show that I) implies II)

2. Show that II) implies I)

EXERCISE 2.9
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The subdifferentials ∂f of two functions f : R → R are drawn below.

x

∂f

a.

x

∂f

b.

1. Are the correspoding functions f convex?

2. Can you find the x∗ that minimizes f . If so, where is it?

3. Can you compute the optimal value f(x∗)?

4. Draw examples of corresponding f .

EXERCISE 2.10
Assume that f : Rn → R ∪ {∞} is σ-strongly convex. Show that

f(y) ≥ f(x) + sT (y − x) + σ
2 ∥x− y∥22

for all x ∈ dom∂f = {z ∈ Rn : ∂f(z) ̸= ∅}, y ∈ Rn and s ∈ ∂f(x).

EXERCISE 2.11

The subdifferentials of four convex functions f are drawn below. State for each if
f is differentiable, ∇f is Lipschitz continuous, f strongly convex. Also, estimate
Lipschitz and strong convexity constants (given the axes are equal).

(a) (b)

(c) (d)
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EXERCISE 2.12 (⋆)

Suppose that g(x) =
∑n

i=1 gi(xi), where x = (x1, . . . , xn). Show that s ∈ ∂g(x) if
and only if si ∈ ∂gi(xi), where s = (s1, . . . , sn).

EXERCISE 2.13 (⋆)

Assume that f : Rn → R ∪ {∞} is convex and that there exists y ∈ Rn with
f(y) <∞. Show that ∂f(x) is empty for x ̸∈ domf , i.e., for x such that f(x) = ∞.

EXERCISE 2.14 (⋆)

Show that the subdifferential of the indicator function of a nonempty set C is
the normal cone to C.

EXERCISE 2.15

Compute the proximal mapping for the following convex functions.

1. f(x) = 1
2∥x∥

2
2

2. f(x) = 1
2x

THx+ hTx with H positive semidefinite

3. f(x) = |x|

4. f(x) = ι[−1,1](x)

5. f(x) = max(0, 1 + x)

6. f(x) = max(0, 1− x)

EXERCISE 2.16

Suppose that g(x) =
∑n

i=1 gi(xi), where x = (x1, . . . , xn). Show that

proxγg(z) =

proxγg1(z1)...
proxγgn(zn)

 .

17



Hints
HINT TO EXERCISE 2.8

1. Add I) and I) with x and y swapped.

2. Note that for x, y ∈ Rn and t ∈ R,

∂

∂t
f(x+ t(y − x)) = ∇f(x+ t(y − x))T (y − x),

by the chain-rule. This gives that

f(y)− f(x) =

∫ 1

0
∇f(x+ t(y − x))T (y − x)dt, (2.1)

for all x, y ∈ Rn. Subtracting ∇f(x)T (y − x) from the expression above
yields

f(y)− f(x)−∇f(x)T (y − x)

=

∫ 1

0
(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

=

∫ 1

0
t−1(∇f(x+ t(y − x))−∇f(x))T ((x+ t(y − x))− x)dt.
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Chapter 3

Conjugate Functions and
Duality

EXERCISE 3.1

Compute the conjugates for the following convex functions.

1. f(x) = 1
2∥x∥

2
2

2. f(x) = 1
2x

THx+ hTx with H ∈ Rn×n positive definite

3. f(x) = ι[−1,1](x)

4. f(x) = |x|

5. f(x) = max(0, 1 + x)

6. f(x) = max(0, 1− x)

EXERCISE 3.2

Let f, g : Rn → R ∪ {∞} be two functions. Show that

1. f ≤ g implies that f∗ ≥ g∗

2. f ≤ g implies that f∗∗ ≤ g∗∗

3. f = f∗ if and only if f = 1
2∥ · ∥

2
2

EXERCISE 3.3 (H)

Let p ∈ (1,∞) and q = p/(p− 1). Show that(
|·|p

p

)∗
=

(
|·|q

q

)
.
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EXERCISE 3.4

Let f, g : Rn → R ∪ {∞} and α ∈ (0, 1). Show that

(αf + (1− α)g)∗ ≤ αf∗ + (1− α)g∗.

EXERCISE 3.5

Assume that g(x) =
∑n

i=1 gi(xi), i.e, g is separable. Show that g∗(s) =
∑n

i=1 g
∗
i (si),

where g∗i is the conjugate of gi.

EXERCISE 3.6 (H)

Compute the conjugates of the following functions f : Rn → R ∪ {∞}.

1. f(x) = ∥x∥1

2. f(x) = ι[−1,1](x), where 1 = (1, . . . , 1)

EXERCISE 3.7

Let f be the nonconvex function in the following figure. It satisfies f(−1) = 0,
f(0) = 1, f(1) = −1, f(2) = 0, f(x) = ∞ for all x ∈ R\{−1, 0, 1, 2}.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

1. Draw the conjugate f∗ of f

2. Draw the bi-conjugate f∗∗ of f

EXERCISE 3.8 (H) (⋆)

Let f : Rn → R ∪ {∞} such that f(x) = ∥x∥2.
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1. Compute the conjugate f∗ via the following steps

(a) Show that f∗(s) ≥ 0 for all s

(b) Show that f∗(s) ≤ 0 for all s with ∥s∥2 ≤ 1

(c) Show that f∗(s) = ∞ for all s with ∥s∥2 > 1

(d) Combine there results to state f∗(s)

2. Use the conjugate to compute the subdifferential of f

EXERCISE 3.9 (⋆)
Let ∆ be the probability simplex

∆ = {x : xi ≥ 0 and
∑
i

xi = 1},

and let D be the similar set

D = {x : xi ≥ 0 and
∑
i

xi ≤ 1}.

1. Let f = ι∆, where ι is the indicator function, show that f∗(s) = maxi(si),
i.e., the element-wise max

2. Provide the conjugate of the maxi(si)

3. Let f = ιD, where ι is the indicator function, show that f∗(s) = max(0,maxi(si)),
where maxi(si) is the element-wise max

4. Provide the conjugate of max(0,maxi(si))

EXERCISE 3.10

Consider the following set-valued operators A : R → 2R.

1. Draw the inverses A−1 : R → 2R

2. Which operators A are functions f : R → R?

3. Which operator inverses A−1 are functions f : R → R?
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a. b.

c. d.

EXERCISE 3.11

Consider the following four subdifferentials ∂f of convex functions. Decide ∂f∗,
i.e., the subdifferential of the conjugate.

x

∂f(x) = σx

a.

x

∂f(x) = 0

b.

x

∂f(x)

−1

1

c.

x

∂f(x)

−1

1

−1

1

d.

EXERCISE 3.12
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Assume that f : Rn → R ∪ {∞} is convex and γ > 0. Show that proxγf (z) =
(I + γ∂f)−1(z), where the inverse means the operator inverse.

EXERCISE 3.13 (H)

Compute the proximal mapping for the following convex functions on R. Use
graphical arguments and that proxγf (z) = (I + γ∂f)−1(z).

1. f(x) = |x|

2. f(x) = ι[−1,1](x)

3. f(x) = max(0, 1 + x)

4. f(x) = max(0, 1− x)

EXERCISE 3.14 (H)
Let f : Rn → R ∪ {∞} and γ > 0. Show that

1. proxf (z) + proxf∗(z) = z

2. (γf)∗(s) = γf∗(γ−1s)

3. prox(γf)∗(z) = γproxγ−1f∗(γ−1z)

4. proxγf (z) + γproxγ−1f∗(γ−1z) = z

EXERCISE 3.15

Compute the prox(γf)∗ for the following f .

1. f(x) = 1
2x

THx+ hTx with H positive definite

2. f(x) = max(0, 1 + x)

3. f(x) = max(0, 1− x)

EXERCISE 3.16

Show the following.

1. That

inf
x
f(x) = −f∗(0)
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2. That the set of minimizers, Argminx f(x), for a convex function f satisfies

Argmin
x

f(x) = ∂f∗(0)

EXERCISE 3.17

Consider a primal problem of the form

minimize
x

f(x) + g(x),

where f : Rn → R∪{∞} and g : Rn → R∪{∞} are (closed) convex functions and
relint dom f ∩ relint dom g ̸= ∅.

1. Show that this problem is equivalent to finding x, y ∈ Rn such that{
x ∈ ∂f∗(y),

x ∈ ∂g∗(−y)

2. Show that this inclusion problem is equivalent to the following dual opti-
mality condition

0 ∈ ∂f∗(y)− ∂g∗(−y), (3.1)

that solves the dual problem

minimize f∗(y) + g∗(−y)

3. Given a solution y⋆ to the dual condition (3.1) and a subgradient selector
function, sf∗(y) : Rn → Rn such that sf∗(y) ∈ ∂f∗(y). Can you recover a
primal solution x⋆? What if f∗ is differentiable?

EXERCISE 3.18 (H)

Consider primal problems of the form

minimize f(Lx) + g(x),

where f : Rm → R ∪ {∞} and g : Rn → R ∪ {∞} are (closed) convex functions,
L ∈ Rm×n, and relint dom (f ◦ L) ∩ relint dom g ̸= ∅. Derive the dual problem

minimize f∗(y) + g∗(−LT y).
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EXERCISE 3.19

Consider primal problems of the form

minimize f(Lx) + g(x),

where f : Rm → R ∪ {∞}, g : Rn → R ∪ {∞}, and L ∈ Rm×n. State the dual
problem and show how to recover a primal solution from a dual solution for the
following particular cases.

1. f(y) = λ
2∥y∥

2
2 where λ > 0 and g(x) =

∑n
i=1 xi + ι[−1,0](xi). Assume m = n

and L is invertible

2. f(y) = ι[−1,1](y) and g(x) = λ
2∥x∥

2
2 − bTx where λ > 0

EXERCISE 3.20 (⋆)

Let f : Rn → R ∪ {∞}. Prove Fenchel-Young’s equality,

f∗(x) = sTx− f(s) if and only if s ∈ ∂f(x),

via the following steps.

1. Prove Fenchel-Young’s inequality, i.e. f∗(s) ≥ sTx− f(x)

2. Suppose that s ∈ ∂f(x). Show that f∗(s) ≤ sTx − f(x). We may conclude
that s ∈ ∂f(x) implies f∗(s) = sTx− f(x)

3. Suppose that f∗(s) = sTx− f(x). Show that s ∈ ∂f(x)

EXERCISE 3.21 (⋆)

Let f : Rn → R ∪ {∞}. Show that

1. s ∈ ∂f(x) implies x ∈ ∂f∗(s)

2. x ∈ ∂f∗(s) implies s ∈ ∂f∗∗(x)

3. Suppose f closed and convex, then

s ∈ ∂f(x) ⇔ x ∈ ∂f∗(s)

i.e. (∂f)−1 = ∂f∗ (the inverse of the subdifferential is the subdifferential
of the conjugate)

EXERCISE 3.22 (⋆)
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Let g(x) = f(Lx+c) where f : Rm → R∪{∞} is closed convex, L ∈ Rm×n, c ∈ Rm

and relint dom g ̸= ∅. Show that

g∗(s) = inf
µ:s=LTµ

(f∗(µ)− cTµ).

EXERCISE 3.23 (⋆)

In this exercise we study a type of duality in a nonconvex setting called Toland
duality. Let f, g : Rn → R ∪ {∞} be two functions, where f is closed convex and
dom g ⊆ dom f . Show that

sup
x∈Rn

(f(x)− g(x)),

is equal to

sup
s∈Rn

(g∗(s)− f∗(s)).

Hints
HINT TO EXERCISE 3.3

Note that

∂

(
|·|p

p

)
(x) =

{
x |x|p−2 if x ̸= 0,

0 if x = 0.

HINT TO EXERCISE 3.6
Use the results from Exercise 3.1 and 3.5.

HINT TO EXERCISE 3.8

Cauchy-Schwarz inequality sTx ≤ ∥x∥2∥s∥2 holds for all x, s.

HINT TO EXERCISE 3.13
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The subgradients for all functions have already been computed in previous ex-
ercises.

HINT TO EXERCISE 3.14

For the first subproblem, let x = proxf (z), introduce u = z − x and show that
u = proxf∗(z). To prove this, use Fermat’s rule on the definition of the prox.

HINT TO EXERCISE 3.18
A very similar approach to Exercise 3.17 can be used.
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Chapter 4

Proximal Gradient Method -
Basics

EXERCISE 4.1

Suppose that f : Rn → R is convex and differentiable. Consider the gradient
descent algorithm

xk+1 = xk − γ∇f(xk)

where γ > 0. Let x⋆ be a fixed point of this algorithm. Show that x⋆ minimizes
f .

EXERCISE 4.2

Suppose that f : Rn → R∪{∞} is closed convex and x is such that x = proxγf (x)
for some γ > 0. Show that x minimizes f .

EXERCISE 4.3

Suppose that f, g : Rn → R ∪ {∞} are closed convex, f is differentiable, and x is
such that x = proxγg(x− γ∇f(x)) for γ > 0. Show that x minimizes f + g.

EXERCISE 4.4
Which of the algorithms

• gradient method

• proximal gradient method
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are applicable to the minimization problem minimizex∈Rn h(x) where h(x) is

1. 1
2∥Ax− b∥22, where A ∈ Rm×n,m < n

2. 1
2x

TQx+ bTx+ ∥x∥1, where Q ≻ 0

3. 1
2∥Ax− b∥22 + ∥x∥22, where A ∈ Rm×n,m < n

4. 1
2∥Ax− b∥22 + ∥x∥2, where A ∈ Rm×n,m < n

5. ιAx=b(x) + ι[−1,1](x)

6. e∥x−y∥42 + ι[−1,1](x)

7. 1
2x

TQx+ ∥Dx∥1, where Q ≻ 0, D diagonal

8. 1
2x

TQx+ ι[−1,1](Lx), where Q ≻ 0, L ∈ Rm×n

9. log(1 + e−wT x) + 1
2

∑
i max(0, xi)2

EXERCISE 4.5
For each of the algorithms and functions in Excercise 4.4, which of the algo-
rithms are applicable to some dual formulation of each of the problems?

EXERCISE 4.6
Consider the problem

minimize
x

∥x∥1 + 1
2x

TQx

where Q ∈ Rn×n and Q ≻ 0. The goal of this exercise is to state a dual problem
and state the proximal gradient method for this dual problem. Let

f(x) = ∥x∥1 and g(x) = 1
2x

TQx.

The problem can be written as

minimize
x

f(x) + g(x).

1. Compute f∗

2. Compute g∗

3. State a dual problem using general f∗ and g∗

4. State a proximal gradient method step for this general dual problem. Specif-
ically, assume that f is closed, convex and proximable, and g is closed and
strongly convex (which in fact is true in our particular case). Construct
a proximal gradient method that is computationally reasonable based on
this information.

5. Specify the proximal gradient method step for the dual problem with our
particular choice of f and g
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EXERCISE 4.7 (⋆)

Consider a primal problem of the form

minimize
x

f(Lx) + g(x),

where f : Rm → R ∪ {∞} is closed convex and proximable, g : Rn → R ∪ {∞} is
closed and strongly convex, L ∈ Rm×n, and relint dom (f ◦ L) ∩ relint dom g ̸= ∅.
We know that a dual problem can be written as

minimize
µ

f∗(µ) + g∗(−LTµ).

We also know that f∗ is closed convex and proximable and that g∗ is closed convex
and smooth. If γk > 0, a proximal gradient step can be written as

µk+1 = proxγkf∗
(
µk − γk∇(g∗ ◦ −LT )(µk)

)
.

Show that this equivalently can be written as
xk = argminx(g(x) + µTkLx),

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk).

(4.1)

I.e. we can perform the proximal gradient method step for the dual problem
using only primal information (f and g).

EXERCISE 4.8
Consider the dual problem obtained in Exercise 4.6. For these particular choices
of f and g, explicitly evaluate the dual proximal gradient method step and show
that the resulting step is the same as the implicit step (4.1) obtained in Exercise
4.6.

EXERCISE 4.9 (H) (⋆)
Let f : Rn → R be a β-smooth function for some β > 0. Consider the gradient
method step

xk+1 = xk − γk∇f(xk),

for some γk in (0, 1/β). Show that the gradient method is a majorization-minimization
algorithm. A majorization-minimization algorithm is an algorithm on the form

xk+1 = argmin
y

g(y)

for some function g : Rn → R such that f ≤ g, i.e. g is a majorizer of f . Thus,
the goal is to find such a g.
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Hints
HINT TO EXERCISE 4.9
Start from the decent lemma, i.e.

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ∥y − x∥22, ∀x, y ∈ Rn,

and use that γk < 1/β.
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Chapter 5

Learning

EXERCISE 5.1
Consider the logistic regression problem

min
w,b

N∑
i=1

log(1 + e−yi(x
T
i w+b)),

with data points xi ∈ Rn and class labels yi ∈ {−1, 1}, for each i ∈ {1, . . . , N}.
Show that this problem is equivalent to

min
w,b

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(x

T
i w + b)

)
,

if the classes are labeled with yi ∈ {0, 1} instead of yi ∈ {−1, 1}.

EXERCISE 5.2
Consider the logistic regression problem

min
w,b

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(x

T
i w + b)

)
,

with data points xi ∈ Rn and class labels yi ∈ {0, 1}, for each i ∈ {1, . . . , N}.
Assume that there exists (w̄, b̄) ∈ Rn × R such that xTi w̄ + b̄ < 0 if yi = 0 and
xTi w̄ + b̄ > 0 if yi = 1, for each i ∈ {1, . . . , n}. Show that the infimal value of the
cost is 0, and that no (w, b) exists that attains the value.

EXERCISE 5.3
Consider the univariate Lasso problem

min
x∈R

1
2∥ax− b∥22 + λ |x| ,

where a ∈ Rn, b ∈ Rn and λ > 0 are given.
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Assume that a ̸= 0 and b ̸= 0 (since otherwise the optimal solution of this prob-
lem is simply x = 0). Prove that the optimal solution of this problem is

x =

{
0 if λ ≥

∣∣aT b∣∣ ,
xls − λ

∥a∥22
sgn (xls) if λ <

∣∣aT b∣∣ ,
where

xls =
aT b
∥a∥22

,

corresponds to the solution of the problem for λ = 0, i.e. the corresponding
univariate least squares problem.

EXERCISE 5.4
Consider the Lasso problem

min
x∈Rm

1
2∥Ax− b∥22 + λ∥x∥1

with A ∈ Rn×m, b ∈ Rn and λ ≥ ∥AT b∥∞. Show x = 0 is a solution.

EXERCISE 5.5 (H)(⋆⋆)
Consider the following bivariate Lasso problem

min
x∈R2

1
2∥Ax− b∥22 + λ∥x∥1,

where A ∈ Rn×2, b ∈ Rn, n ≥ 2, and λ > 0. Assume that the columns of A
are normalized, ∥a1∥2 = ∥a2∥2 = 1, and A has full column rank (in particular,
|aT1 a2| < 1). For each of the four possible sparsity patterns,

X0,0 = {(0, 0) ∈ R2}, X1,1 = {(x1, x2) ∈ R2 : x1 ̸= 0, x2 ̸= 0},
X1,0 = {(x, 0) ∈ R2 : x ̸= 0}, X0,1 = {(0, x) ∈ R2 : x ̸= 0},

find the set Λi,j s.t. if x⋆ ∈ Xi,j then λ ∈ Λi,j where x⋆ is a solution to the problem.
Verify that for a given problem the four ranges Λi,j are disjoint and the number
of zeros in the solution increase with λ.

EXERCISE 5.6
Consider the following SVM problem with an affine model

min
w∈Rm,b∈R

n∑
i=1

max
(
0, 1− yi(x

T
i w + b)

)
+ λ

2∥w∥
2
2,

with for each i ∈ {1, . . . , n}, data points xi ∈ Rm, class labels yi = {−1, 1} and a
regularization parameter λ ≥ 0.
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1. Consider the unregularized problem, λ = 0, where examples for both classes
exists. Assume the data is fully separable, i.e. there exists a non-zero
pair of parameters (w, b) ∈ Rm × R such that xTi w + b < 0 if yi = −1 and
xTi w+ b > 0 if yi = 1, for each i ∈ {1, . . . , n}. Show the optimal cost is 0 and
that the that the set of optimal (w, b) is unbounded.

2. Consider again the unregularized problem, λ = 0, but assume the data
only consists of one class, e.g., there are no i ∈ {1, . . . , n} such that yi = −1.
Show that arbitrary w is optimal and the set of optimal (w, b) is unbounded.

3. Consider the regularized problem, λ > 0. Assume the data only consists
of one class, e.g., there are no i ∈ {1, . . . , n} such that yi = −1. Show that
w = 0 is optimal and the set of optimal (w, b) is unbounded.

EXERCISE 5.7
Find X ∈ Rm×n and ϕ ∈ Rn such that the SVM problem in 5.6 can be reformu-
lated as

min
w∈Rm,b∈R

1T max
(
0,1 − (XTw + bϕ)

)
+ λ

2∥w∥
2
2,

where the max function is applied element-wise and 1 ∈ Rn is a vector of all
ones.

EXERCISE 5.8
Consider the reformulated SVM problem in Exercise 5.7

min
w∈Rm,b∈R

1T max(0, 1− (XTw + bϕ))︸ ︷︷ ︸
f(L(w,b))

+ λ
2∥w∥

2
2︸ ︷︷ ︸

g(w,b)

,

where L = [XT , ϕ].

1. Derive the dual problem minµ f
∗(µ) + g∗(−LTµ).

2. Show how to recover a primal solution from a dual solution.

3. A support vector for this kind of soft-margin SVM is defined as any data
point x of class y that lies on the wrong side of the margin, 1 ≥ y(xTw+ b),
for a model given by (w, b). It is easy to see that only the support vectors con-
tribute to the cost of the objective (see objective in Exercise 5.6). Show that
the non-zero elements of the optimal dual variable µ⋆ correspond to sup-
port vectors of the optimal model (w⋆, b⋆). Show that the optimal model can
be recovered from the dual solution by only considering support vectors.

EXERCISE 5.9
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Consider the typical supervised learning problem

min
w

n∑
i=1

L(mw(xi), yi)

where xi ∈ Rd is data, yi ∈ Rl the response variable, mw : Rd → Rk the param-
eterized model we wish to train, and L : Rk × Rl → R the loss comparing the
model output mw(xi) with the known correct output yi.

Assume L(ŷ, y) is convex in ŷ. Prove or disprove the following statements.

1.
∑n

i=1 L(mw(xi), yi) is convex if a feature mapped model is used. I.e. mw(x) =
wTϕ(x) where ϕ : Rd → Rf for some w ∈ Rf×k.

2.
∑n

i=1 L(mw(xi), yi) is convex if a DNN model is used. I.e. mw(x) = σ1(w
T
1 σ2(w

T
2 ...σD(w

T
Dx)...))

where σi are some activation functions.

Hints
HINT TO EXERCISE 5.5
For x⋆ ∈ X1,0, first find the optimal x⋆1. Use this together with the optimality
condition for x⋆2 = 0 to find the bounds on λ. For x⋆ ∈ X1,1, first find the ordinary
least squares solution and show the coordinates of the Lasso solution have the
same signs. Use this, the optimality condition and x⋆ ̸= 0 to find the bound on
λ. Useful identities are sgn(x) = sgn(x)−1, |x| = sgn(x)x and sgn(x) sgn(y) =
sgn(xy)
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Chapter 6

Algorithm Convergence

EXERCISE 6.1
For a given optimization problem, we used two algorithms to solve it up to a
desired precision.

1. The first algorithm, performed 5000 floating point operations in each iter-
ation and we ran it for 105 iterations

2. The second algorithm, performed 50 floating point operations in each iter-
ation and we ran it for 2× 106 iterations

which algorithm had better performance?

EXERCISE 6.2
Match the following rates with the corresponding curve given in figure below.
For each rate, specify if it is linear, sublinear or superlinear.

1. O(ρk1), with 0 < ρ1 < 1

2. O(ρk2), with ρ1 < ρ2 < 1

3. O(1/ log(k))

4. O(1/k)

5. O(1/k2)
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EXERCISE 6.3
Let (Vk)k∈♮ be a non-negative convergence measure. Show that

1. Q-linear rate

Vk+1 ≤ ρVk, ∀k ∈ N,

for some ρ ∈ [0, 1), implies an R-linear rate

Vk ≤ ρkCL, ∀k ∈ N,

for some CL ≥ 0 and find CL

2. Q-quadratic rate

Vk+1 ≤ ρV 2
k , ∀k ∈ N,

for some ρ ∈ [0, 1), implies a local R-quadratic rate

Vk ≤ ρ2
k

Q CQ, ∀k ∈ N,

for some ρQ ∈ [0, 1) and CQ ≥ 0. We say that the rate is local since R-
quadratic convergences depends on the initial value V0. Find ρQ and CQ

and for which ρ and V0 this R-quadratic rate imply that Vk → 0 as k → ∞.

EXERCISE 6.4
Let f : Rn → R be a function and consider the problem

inf
x∈Rn

f(x).

37



Suppose that some iterative descent algorithm generates a sequence (xk)k∈N in
Rn, i.e.

f(xk+1) ≤ f(xk), ∀k ∈ N.

We call such a sequence (xk)k∈N a descent sequence (for f ).

1. Give an example of a function f and descent sequence (xk)k∈N where this
does not imply convergence of the sequence of function values (f(xk))k∈N

2. In addition, assume that the function f is bounded from below, i.e. there
exists a B ∈ R such that f(x) ≥ B for all x ∈ Rn. Prove that the sequence
of function values (f(xk))k∈N converges

3. Give an example of a function f that is bounded from below and descent
sequence (xk)k∈N such that (f(xk))k∈N does not converge to infx∈Rn f(x)

EXERCISE 6.5
Let f(x) = ex − 2x + x2 and x ∈ R. Consider finding the minimizer of f using
the standard Newton’s method without line search

xk+1 = xk − (∇2f(xk))
−1∇f(xk).

Below you find the 10 first iterations for when x0 = 5.
k xk |xk − x⋆|
0 5.000000000000000 4.685076942154594
1 3.960109873126804 3.645186815281398
2 2.888130487596392 2.573207429750986
3 1.799138129515975 1.484215071670569
4 0.849076217909656 0.534153160064250
5 0.379763183818023 0.064840125972617
6 0.315791881094192 0.000868823248786
7 0.314923211324986 0.000000153479580
8 0.314923057845411 0.000000000000005
9 0.314923057845406 0.000000000000000

Calculate the ratios |xk+1−x⋆|/|xk−x⋆| and |xk+1−x⋆|/|xk−x⋆|2. Based on these
ratios, estimate whether the sequence {|xk − x⋆|}k∈N is Q-linear or Q-quadratic
convergent and find the corresponding rate parameter.

EXERCISE 6.6
A sequence {Qk}k∈N in R is generated by some iterative algorithm and is found
to satisfy the following inequality

0 ≤ Qk ≤ V

ψ1(k)
+

D

ψ2(k)
, ∀k ∈ N,

where D and V are positive constants. The functions ψ1 : R → R and ψ2 : R → R
are parameters of the algorithm that generated {Qk}k∈N.
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1. Show that Qk → 0 as k → ∞ if{
ψ1(k) → ∞ as k → ∞,

ψ2(k) → ∞ as k → ∞

2. Let c > 0 and decide the rate of convergence for the following cases

(a) When

ψ1(k) =

{
1 if k ≤ 0,

2c
√
k if k > 0,

and ψ2(k) =

{
1 if k ≤ 1,

√
k

c log(k) if k > 1

(b) When

ψ1(k) =

{
1 if k ≤ 1,
2c(k1−α−1)

1−α if k > 1,

and

ψ2(k) =

{
1 if k ≤ 1,
(1−2α)(k1−α−1)

c(1−α)(k1−2α−2α)
if k > 1,

where α ∈ (0, 0.5)

(c) When

ψ1(k) =

{
1 if k ≤ 1,
2c(k1−α−1)

1−α if k > 1,

and

ψ2(k) =

{
1 if k ≤ 1,
(1−2α)(k1−α−1)

c(1−α)(k1−2α−2α)
if k > 1,

where α ∈ (0.5, 1)

3. Which case above gives the fastest convergence rate?

EXERCISE 6.7
An iterative algorithm for minimizing a function f : Rn → R produces a sequence
{xk}k∈N in Rn. A convergence analysis results in the following inequality

f(xk)− f(x⋆) ≤
V +D

∑k
i=0 γ

2
i

b
∑k

i=0 γi
, ∀k ∈ N,

where V , D and b are positive constants, x⋆ is a minimizer of f and γi > 0, for
each i ∈ N, are step-size parameters.

1. Show f(xk) converges to f(x⋆) if {γ2i }i∈N is summable and {γi}i∈N is not,
i.e.,

∑∞
i=0 γ

2
i <∞ and

∑∞
i=0 γi = ∞
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2. Let c > 0 and estimate the convergence rates for the following step-sizes

(a) γi = c/(i+ 1)

(b) γi = c/(i+ 1)α with α ∈ (0.5, 1)

3. Which step-size γi above gives the fastest convergence rate?

EXERCISE 6.8
Let f : Rn → R be a β-smooth convex function, for some β > 0 and x⋆ ∈ Rn a
minimizer of f . Consider finding a minimizer of f , not necessarily x⋆, using the
gradient descent method

xk+1 = xk − γ∇f(xk), ∀k ∈ N,

where x0 ∈ Rn is given and the step-size γ ∈ (0, 1/β] is constant. In this case,
the gradient descent method can be shown to be a descent algorithm

f(xk+1) ≤ f(xk), ∀k ∈ N,

i.e. (xk)k∈N is a descent sequence for f . Moreover, the following Lyapunov in-
equality

∥xk − x⋆∥22 ≤ ∥xk−1 − x⋆∥22 − 2γ(f(xk)− f(x⋆)), ∀k ∈ N \ {0},

can be shown to hold. Show that f(xk) → f(x⋆) as k → ∞ and find the conver-
gence rate.

EXERCISE 6.9
Consider minimizing a function f : Rn → R, with minimizer x⋆ ∈ Rn, using a
stochastic optimization algorithm, starting at some predetermined (determinis-
tic) point x0 ∈ Rn. Analysis of the algorithm resulted in the following inequality

E
[
∥xk+1 − x⋆∥22 | xk

]
≤ ∥xk − x⋆∥22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2, ∀k ∈ N,

whereG is a positive constant and the γk ’s are positive step-sizes of the algorithm
satisfying

∑∞
k=0 γk = ∞ and

∑∞
k=0 γ

2
k < ∞. In particular, (xk)k∈N is a stochastic

process.

1. Apply an expectation to the above inequality to derive a Lyapunov inequal-
ity for the algorithm

2. Use the obtained Lyapunov inequality to show that

2
k∑

i=0

γi E[f(xi)− f(x⋆)] ≤ ∥x0 − x⋆∥22 +G2
k∑

i=0

γ2i , ∀k ∈ N
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EXERCISE 6.10 (H) (⋆)
Let f : Rn → R be a β-smooth convex function, for some β > 0. Consider finding
a minimizer of f using Nesterov’s accelerated gradient descent method, i.e.{

yk+1 = xk − 1
β∇f(xk),

xk+1 = (1− γk)yk+1 + γkyk,
∀k ∈ N,

for some initial points x0 = y0 ∈ Rn, where

γk =
1− λk
λk+1

, ∀k ∈ N and λk =

{
1 if k = 0,

0.5 +
√
0.25 + λ2k−1 otherwise.

Suppose that the function f has a minimum at x⋆ ∈ Rn. Nesterov’s accelerated
gradient descent method can be shown to satisfy

Vk+1 − Vk ≤ 2λ2
k

β (f(xk)− f(x⋆))− 2λ2
k+1

β (f(xk+1)− f(x⋆)), ∀k ∈ N \ {0}, (6.1)

where Vk = ∥(λk − 1)(xk−1 − xk)− xk + x⋆∥2 for each k ∈ N \ {0}.

1. Show that f(xk) → f(x⋆) as k → ∞ and find the rate of convergence

2. Show that if the number of iterations k is as large or greater than

max
(⌈√

C

ϵ
− 2

⌉
, 2

)
,

where C = 2βV1 + 4(f(x1) − f(x⋆)), the methods achieves an ϵ-accurate
objective value, i.e., f(xk)− f(x⋆) ≤ ϵ

Hints
HINT TO EXERCISE 6.10
For the first part, show that λk ≥ 1 + 0.5k for each k ∈ N.
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Chapter 7

Proximal Gradient Based
Algorithms

EXERCISE 7.1
Let f : Rn → R be a β-smooth function. Consider the gradient descent algorithm
with a fixed step-size γ > 0 applied to this problem,

xk+1 = xk − γ∇f(xk)

where x0 ∈ Rn is given.

1. Find the Lyapunov inequality

Vk+1 ≤ Vk − γ(1− β
2γ)∥∇f(xk)∥

2
2

where Vk = f(xk)− f(x⋆) and x⋆ is a minimizer of f , assuming it exists.

2. Show that ∥∇f(xk)∥22 → 0 if 0 < γ < 2
β . Find the convergence rate of

gk = mini∈{0,...,k} ∥∇f(xi)∥22.

EXERCISE 7.2
Let f : Rn → R be a β-smooth convex function. Consider minimizing f(x) using
the gradient descent algorithm and with fixed step-size γ ∈ (0, β2 ),

xk+1 = xk − γ∇f(xk)

where x0 ∈ Rn is given.

1. With x⋆ being a minimizer of f , show that the iterates satisfy

∥xk+1 − x⋆∥22
≤ ∥xk − x⋆∥22 − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1)∥∇f(xk)∥22

by, in order, expand the square ∥xk+1 − x⋆∥22, use the first order condition
for convexity, and use the Lyapunov inequality from Exercise 7.1.

2. Show that f(xk) → f(x⋆) as k → ∞, by summing all inequalities for
i = 0, . . . , k and using the results in Exercise 7.1 to bound

∑k
i=0 ∥∇f(xk)∥22.

What is the convergence rate?
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EXERCISE 7.3
Assume that f : Rn → R is β-smooth and µ-strongly convex. Consider minimiz-
ing f(x) using the gradient descent algorithm and with fixed step-size γ > 0,

xk+1 = xk − γ∇f(xk)

where x0 ∈ Rn is given.

1. Show that the iterates satisfy the inequality

∥xk+1 − x⋆∥22 ≤ (1− µγ)∥xk − x⋆∥22.

for γ ∈ (0, 1/β] by using the same technique as in Exercise 7.2 but replac-
ing the first order condition for convexity with the first order condition for
strong convexity. Which step-size γ maximize the convergence rate?

2. A different approach is used to analyze the convergence in the lectures.
There they get the following convergence inequality,

∥xk+1 − x⋆∥2 ≤ max(1− µγ, βγ − 1)∥xk − x⋆∥2

which hold for γ ∈ (0, 2/β). What is the best step-size γ according to this
inequality? Which approach gives the fastest possible rate?

EXERCISE 7.4
Consider the problem

minimize
x

xTQx+ qTx, where Q ≻ 0

with the gradient descent algorithm xk+1 = xk−γ∇f(xk) where γ ∈ (0, 2/L) and
L = ∥Q∥.

1. Show that ∥xk+1−x∗∥ ≤ ∥(I −γQ)∥∥xk −x∗∥ and that ∥I −γQ∥ < 1, where
x∗ is the solution to the problem.

2. Let γ = 1/L and find an expression of ∥(I−γQ)∥ in terms of the eigenvalues
of Q.

Let the (geometric) convergence rate r be defined as the smallest r so that ∥xk −
x∗∥ ≤ rk∥x0 − x∗∥ holds.

3. Let Q =

[
ϵ 0
0 1

]
where 0 < ϵ ≪ 1. What is the worst case convergence rate

r we can expect given the result above? Let q = 0, can you find a point x0
where this is the practical rate.

4. Let Q =

[
ϵ ϵ/10

ϵ/10 1

]
. The eigenvalues of this matrix is approximately 1

and ϵ. Gradient descent will therefore be slow also on this problem. To
improve the convergence rate, we want to find a variable change x = V y,
where V is invertible, so that the equivalent problem minimizey yTV TQV y+
qTV y has better properties. This is often called preconditioning. Find a di-
agonal matrix V so that the diagonal elements in V TQV are 1.
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5. What are (rougly) the eigenvalues of the new matrix V TQV ? What can we
expect in terms of convergence rate of ∥yk − y∗∥?

6. When we have a problem where the proximal gradient method is needed
instead of just gradient descent, why do we usually have to limit ourselves
to diagonal scalings V ?

EXERCISE 7.5
Consider the proximal point algorithm, i.e. select x0 ∈ Rn and for all k ∈ N

xk+1 = proxγf (x
k)

where γ > 0.

1. Show that (f(xk))k∈N is a decreasing sequence according to

f(xk+1) ≤ f(xk)− 1
2γ ∥x

k+1 − xk∥22.

for all γ > 0.

2. Assume that f is lower bounded by B (i.e., B is such that f(x) ≥ B for all
x). Show that ∥xk+1 − xk∥ → 0 as k → ∞.

3. Assume (closed) convexity of f . Show that ∥xk+1 − xk∥ → 0 implies that
dist∂f(xk)(0) → 0 where dist∂f(x)(0) = infs∈∂f(x) ∥s− 0∥, i.e. the distance
between the subdifferential and zero becomes arbitrary small.

4. Assume strong convexity of f , show that xk → x⋆ where f(x⋆) = min f(x).

Note about the last point. There exist weaker conditions than strong convexity
for the sequence to converge but strong convexity is arguably the simplest.

EXERCISE 7.6
Let f : Rn → R be convex and β-smooth and g : Rn → R∪∞ be closed, convex and
proper. We consider minimizing f(x) + g(x) using proximal gradient algorithm
given a x0 ∈ Rn, with fixed step-size γ ∈ (0, 1/β]

xk+1 = proxγg(xk − γ∇f(xk)).

A procedure of proving convergence of the algorithm is given below, however,
some of the steps are missing. Fill in the gaps marked by . . . to complete the
procedure.

1. The goal is to get an inequality on the form

Vk+1 ≤ Vk −Qk

where Qk is some non-negative convergence measure. Here we choose
Vk = ∥xk − x⋆∥22 as the Lyapunov function. We further define the resid-
ual mapping as Rxk = xk − proxγg(xk − γ∇f(xk)). The proximal gradient
update can then be written as

xk+1 = xk −Rxk (7.1)
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and we can use this to relate Vk+1 to Vk by expanding the square,

Vk+1 = Vk + . . . (7.2)

2. The quantity −2(xk − x⋆)T (Rxk) + ∥Rxk∥22 now needs to be bounded. We
start by using (7.1) to re-write it as

− 2(xk − x⋆)T (Rxk) + ∥Rxk∥22 = −2(xk+1 − x⋆)T (Rxk) + . . . (7.3)

3. We now turn to bounding−2(xk+1−x⋆)T (Rxk). From the proximal gradient
update we have

xk − γ∇f(xk)− xk +Rxk ∈ γ∂g(xk+1)

=⇒ γ−1Rxk −∇f(xk) ∈ ∂g(xk+1).

The definition of a subgradient then gives

−2(xk+1 − x⋆)T (Rxk) ≤ . . . (7.4)

4. We continue to bound −2γ∇f(xk)T (xk+1 − x⋆). Using β-smoothness of f
and definition of convexity of f gives the two following inequalities

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β
2 ∥xk+1 − xk∥22

= f(xk) +∇f(xk)T (xk+1 − xk) +
β
2 ∥Rxk∥

2
2

f(xk) ≤ f(x⋆) +∇f(xk)T (xk − x⋆).

Adding these two together and rearranging yield

−2γ∇f(xk)T (xk+1 − x⋆) ≤ . . . (7.5)

5. Inserting (7.5) into (7.4), (7.4) into (7.3), and finally (7.3) into (7.2) yield

Vk+1 ≤ Vk + . . .

6. Using the assumption γ < β−1 finally gives

Vk+1 ≤ Vk −Qk

where

Qk = . . .

which is non-negative since γ > 0 and . . . ≥ . . . since x⋆ is a minimum.

7. Since Vk ≥ 0 and Qk ≥ 0 we have that Qk → 0 which implies that

. . . → . . .

as k → ∞.

45



EXERCISE 7.7
Consider the problem

min
x∈Rn

f(x) + g(x) (7.6)

where f : Rn → R and g : Rn → R ∪ ∞ are closed functions that are µf -, and
µg-strongly convex respectively. We further assume f is β-smooth and g is prox-
imable. The problem can then be solved with the proximal gradient method,

xk+1 = proxγg(xk − γ∇f(xk)).

where γ > 0 and x0 ∈ Rn are given.

1. Show that the proximal gradient method satisfy

∥xk+1 − x⋆∥22 ≤
max(1−µfγ,βγ−1)2

1+µgγ
∥xk − x⋆∥22

by inserting the definition of xk+1 in ∥xk+1 = x⋆∥22 and then use the follow-
ing in order. A minimum x⋆ is a fixed point to the proximal gradient step.
The proximal operator of a µ-strongly convex function is 1

1+µγ -Lipschitz
continuous. The gradient of a β-smooth and µ-strongly convex function h
satisfies

(∇h(x)−∇h(y))T (x− y) ≥ 1
β+µ∥∇h(x)−∇h(y)∥22 +

βµ
β+µ∥x− y∥22

for all x, y. Then, in two different cases, use β-Lipschitz continuity of ∇f
or the fact that the gradient of a µ-smooth function h satisfies

∥∇h(x)−∇h(y)∥2 ≥ µ∥x− y∥2

for all x, y.

2. For which step-sizes γ and combinations of µf ≥ 0 and µg ≥ 0 does the
algoritm converge linearly?

3. It is sometimes possible to move the strong convexity between f and g. For
instance, consider the following problem,

min
x∈Rn

h(x) + ϕ(x) + µ
2∥x∥

2
2

where h is L-smooth closed convex and ϕ is closed convex and proximable.
This can be written as a problem of the form (7.6) by choosing any δ ∈ [0, 1]
and forming

f(x) = h(x) + δ µ2∥x∥
2
2, g(x) = ϕ(x) + (1− δ)µ2∥x∥

2
2.

The objective f + g will always be the same and will always be µ-strongly
convex regardless of the choice of δ. However, the individual strong con-
vexity of f and g will depend on δ and hence so will the convergence rate
of the proximal gradient method 1.

Compare the convergence rates for the best choice of step-size γ when all
strong convexity is put in the gradient step, δ = 1, and when it is put in
the proximal operator, δ = 0.

1We assume the function g is proximable here. In general is it not easy to prox on the sum of
two functions, even if both are proximable. However, since we add a square norm term which and
the proximal operator already solves a square norm regularized problem, this is not too strong of
an assumption.
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EXERCISE 7.8 (H)
Consider the problem of minimizing the function F (x) where

F (x) = 1
N

∑N

i=1
fi(x).

The stochastic gradient method is

Sample i uniformly from {1, ..., N}
xk+1 = xk − γk∇fi(xk).

Note that E[∇fi(x)|x] = ∇F (x) given that x is known. Further assume that the
variance is bounded, E[∥∇fi(x) −∇F (x)∥2|x] ≤ σ2 for all x, and that F is lower
bounded and L-smooth.

1. Show that stochastic gradient descent satisfies

E[F (xk+1)|xk] ≤ F (xk)− γk(1− L
2 γ

k)∥∇F (xk)∥2 + (γk)2Lσ
2

2 .

2. Show that it is possible for E∥∇F (xk)∥ → σ if γk = 1
L .

3. Show that mink≤T E∥∇F (xk)∥ → 0 as T → ∞ if γk = 1
k .

4. Show that it is possible for E∥∇F (xk)∥ → c > 0 if γk = 1
k2

for some constant
c.

EXERCISE 7.9
For the two problems below, estimate the per-iteration computational complex-
ity for gradient descent, proximal gradient descent and their coordinate-wise
variants. For the proximal algorithms, apply the prox to the term for which it is
cheapest to compute.

• 1
2x

TQx+ bTx+ ∥x∥22, where Q ≻ 0.

• log(1 + e−wT x) +
∑

i max(0, xi)2

EXERCISE 7.10 (⋆)
Show that it is possible to implement coordinate gradient (and coordinate proxi-
mal gradient) for the function log(1+e−wT x)+

∑
i max(0, xi)2 with a per-iteration

cost that doesn’t grow with the number of elements in x.

EXERCISE 7.11
One interpretation of coordinate descent is that you restrict the function to a
line and take a gradient step of the function along this line. Let the direction we
want to take a gradient step along be coordinate i, i.e. the direction ei, where
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index i of ei is 1 and the others are 0. Let fi,x(α) := f(x + eiα), we can then
formulate the problem as taking a gradient step of fi,x from α0 = 0, i.e

ᾱ = α0 − γi∇fi,x(α0)

If fi,x is Li-smooth, then we know that fi,x(ᾱ) ≤ fi,x(α0) as long as γi ∈ (0, 2/Li).
With α0 = 0 we therefore get a non-increasing sequence

f(xk+1) = f(xk + eiᾱ) = fi,xk(ᾱ) ≤ fi,xk(α0) = f(xk)

when xk+1 = xk + eiᾱ.

• Consider the function f(x) = 1
2∥Ax − b∥2. Find the smoothness constants

Li, i.e the bounds on γi.

• Show that Li ≤ L for all i, where L is the smoothness constant for f , i.e, we
are able to take longer steps with the coordinate gradient algorithm than
with regular gradient descent.

EXERCISE 7.12
Consider the minimization problem

min
x∈Rn

f(x) +
∑n

i=1
gi(xi)

and the proximal coordinate descent algorithm

Choose i from {1, ..., n}
xk+1
i = proxγgi(x

k
i − γ∇if(x

k))

xk+1
j = xkj ∀j ̸= i

where ∇if(x) is the i:th coordinate of the gradient and γ > 0. Assume L-
smoothness of f , (closed) convexity of gi and that each i ∈ {1, ..., n} is chosen
an infinite number of times.

Show that this is an descent method for sufficiently small γ. Find the upper
bound on γ.

EXERCISE 7.13
Consider the problem and the proximal coordinate descent algorithm from Ex-
ercise 7.12 but allow for coordinate-wise step-sizes,

xk+1
i = proxγigi(x

k
i − γi∇if(x

k))

xk+1
j = xkj ∀j ̸= i

where γi > 0. Find better upper bounds for each γi that still ensures descent
under the following refined smoothness assumption on f .
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For all x, y is

f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2(y − x)TM(y − x)

satisfied for some positive definite M . Since 1
2(y−x)

TM(y−x) ≤ λmax(M)
2 ∥y−x∥2

this implies regular smoothness. Ordinary L-smoothness can also be written on
this form with M = LI where I is the identity matrix. However, allowing for
arbitrary quadratic upper bound on f means it can be made tighter.

EXERCISE 7.14 (*)
In this exercise we want to study the convergence of gradient descent and coor-
dinate gradient descent. Consider the simple problem

p∗ = min
x

1

2
∥Ax− b∥2,

where we assume that A ∈ Rm×n. Let m = 40, n = 20 and generate a random
matrix A and random vector b. The optimal point x∗ can in this case can be
found directly using the least squares solution in Julia: xsol=A\b.

• Implement gradient descent, and plot the cost 1
2∥Ax

k−b∥2−p∗ as a function
of the iteration k. Note that you can compute and save the matrix ATA
and the vector AT b to reduce the number of computations needed at each
iteration.

• Implement coordinate gradient descent and compare the cost 1
2∥Ax

k−b∥2−
p∗ to that of the full gradient descent. Take make the comparison fair, use
the same initial point x0 and same step-length, let the number of iterations
be n times as many and plot the cost for every n iterations.

• Implement coordinate gradient descent with the step-lengths computed in
Excercise 7.11 and make the same comparison.

EXERCISE 7.15 (*)
In this exercise we want to study the convergence of stochastic gradient descent.
Consider the same problem as in Exercise 7.14, where we can write the cost as
1
2∥Ax

k−b∥2 = 1
2

∑
i(Aix

k−bi)2, where Ai is row i in A. Implement the stochastic
gradient algorithm for this problem. Note that you may need significantly more
iterations with this algorithm compared to Exercise 7.14.

• Run the algorithm with a few different constant step sizes γ, for example
λmax, λmax/10, λmax/100, where λmax is the largest eigenvalue ofATA. What
happens with the error 1

2∥Ax
k − b∥2 − p∗ after many iterations?

• Run the algorithm with a decreasing step size, for example γ/k or 10γ/k.
How does the behavior differ?

• What happens if we let gamma decrease faster, e.g. 10γ/k2?
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Hints
HINT TO EXERCISE 7.8

E∥X − EX∥2 = E∥X∥2 − ∥EX∥2
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Solutions to Chapter 1

SOLUTION 1.1

1. Figures b. and d. represent convex sets since the straight line connecting
any two points with the sets are contained within the sets.

Figures a. and c. represent nonconvex sets since the lines drawn below
between two points in the respective sets are partially outside the sets.

a. b.

c. d.

2. Figures b. and d. are convex so there exist supporting hyperplanes at the
entire boundary.

a. b.

c. d.
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3. Figures b. and d. are convex so the convex hull is the set itself.

a. b.

c. d.

SOLUTION 1.2

1. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then Ax = b, Ay = b,
and

Az = A(θx+ (1− θ)y) = θAx+ (1− θ)Ay = θb+ (1− θ)b = b.

Hence z ∈ S and the set is convex. (This is an affine subspace/intersection
of hyperplanes.)

2. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then Ax ≤ b, Ay ≤ b,
and

Az = A(θx+ (1− θ)y) = θAx+ (1− θ)Ay ≤ θb+ (1− θ)b = b.

Hence z ∈ S and the set is convex. (This is a polytope /intersection of
halfspaces.)

3. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx + (1 − θ)y. Then x ≥ 0, y ≥ 0,
and

z = θx+ (1− θ)y ≥ 0.

Hence z ∈ S and the set is convex. (This is the non-negative orthant.)

4. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx + (1 − θ)y. Then, since θ and
(1− θ) are positive,

z = θx+ (1− θ)y ≤ θu+ (1− θ)u = u

and

z = θx+ (1− θ)y ≥ θl + (1− θ)l = l.

Hence x ∈ S and the set is convex. (The constraints that defines the set
are called box-constraints.)
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5. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx + (1 − θ)y. Then ∥x∥2 ≤ 1,
∥y∥2 ≤ 1, and

∥z∥2 = ∥θx+ (1− θ)y∥2 ≤ θ∥x∥2 + (1− θ)∥y∥2 ≤ 1.

Hence z ∈ S and the set is convex. (This is the unit 2-norm ball, i.e. all
points with distance to the origin less than one.)

6. Consider n = 1, i.e., x ∈ R. Let x = −1, y = 1, and z = 1
2(x + y) = 0.

Then −∥x∥2 = −1 and x ∈ S. Similarly −∥y∥2 = −1 and y ∈ S. However,
−∥z∥2 = 0 and z ̸∈ S. Hence the set is not convex.

7. The condition −∥x∥2 ≤ 1 holds for all x ∈ Rn. Hence S = Rn, which is
convex.

8. Take (x, tx) ∈ S, (y, ty) ∈ S, θ ∈ [0, 1], and let (z, tz) = θ(x, tx)+ (1− θ)(y, ty).
Then ∥x∥2 ≤ tx, ∥y∥2 ≤ ty, and

∥z∥2 = ∥θx+ (1− θ)y∥2 ≤ θ∥x∥2 + (1− θ)∥y∥2 ≤ θtx + (1− θ)ty = tz.

Hence z ∈ S and the set is convex. (This set is called a second order cone
and is shaped like an ice cream cone.)

9. Take X ∈ S, Y ∈ S, θ ∈ [0, 1], and let Z = θX + (1 − θ)Y . Then xTXx ≥ 0
and xTY x ≥ 0 for all x ∈ Rn, and for arbitrary x ∈ Rn:

xTZx = xT (θX + (1− θ)Y )x = θxTXx+ (1− θ)xTY x ≥ 0.

In addition, Z is symmetric since X and Y are. Hence z ∈ S and the set is
convex.

10. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx + (1 − θ)y. Then x = a, y = a,
and

z = θx+ (1− θ)y = a.

Hence z ∈ S and the set is convex.

11. Consider n = 1, i.e., x ∈ R. Let x = a := −1, y = b := 1, and z = 1
2(x+y) = 0.

Then z ̸= a and z ̸= b, hence z ̸∈ S and the set is not convex.

SOLUTION 1.3

1. Affine. Let x ∈ V and y ∈ V . Then x = y = a and αx+ (1− α)y = a ∈ V for
all α ∈ R and x, y ∈ V . Hence the set is affine.

2. Not affine. Affine means that βx+(1− β)y ∈ V for all choices of β ∈ R and
x, y ∈ V . But, for instance the choice of x = a, y = b and β = 2 is quite
obvious not in V .

For a numerical example we can take n = 1, a = −1, b = 1. Then V = [−1, 1]
while βx+ (1− β)y =, 2 ∗ (−1) + (−1) ∗ 1 = −3 ̸∈ V .
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3. Affine. Take x, y ∈ V . This means ∃β1, β2 ∈ R such that

x = β1a+ (1− β1)b

y = β2a+ (1− β2)b

Then for all α ∈ R,

αx+ (1 − α)y

= (αβ1 + (1− α)β2)a+ (α(1− β1) + (1− α)(1− β2))b

= (αβ1 + (1− α)β2)a+ (1− (αβ1 + (1− α)β2))b

= σa+ (1− σ)b

where σ = αβ1 + (1 − α)β2 ∈ R. Hence αx + (1 − α)y ∈ V and the set is
affine.

SOLUTION 1.4
Figures (a), (b), and (d) are cones. Figures (a), (b) and (c) are convex.

SOLUTION 1.5

All sets are in Exercise 1.2 shown to be convex. It is left to decide which sets
that are cones.

1. Let x ∈ S, i.e., Ax = 0. Then A(αx) = αAx = 0 for all α ≥ 0. Hence, αx ∈ S
for all α ≥ 0 and S is a cone.

2. Let x ∈ S, i.e., Ax = b ̸= 0. Then A(αx) = αAx = αb ̸= b for all α ̸= 1
(unless b = 0), and therefore αx ̸∈ S. Hence S is not a cone.

3. Let x ∈ S, i.e., Ax ≤ 0. Then A(αx) = αAx ≤ 0 for all α ≥ 0. Hence αx ∈ S
for all α ≥ 0 and S is a cone.

4. The inequality Ax ≤ b consists of m scalar inqualities aTi x ≤ bi that all
must hold. Let x ∈ S and j ∈ {1, . . . ,m} be such that aTj x = bj and bj ̸= 0

(such x always exists since A ̸= 0 and since b ̸= 0). Now, aTj (αx) = αaTj x =
αbj for all α ≥ 0.

If bj > 0 and α > 1, then aTj (αx) = αbj > bj and αx ̸∈ S.

If bj < 0 and α ∈ [0, 1), then aTj (αx) = αbj > bj and αx ̸∈ S.

Hence S is not a cone.

5. Let x ∈ S, i.e., x ≥ 0. Then αx ≥ 0 for all α ≥ 0. Hence, αx ∈ S for all α ≥ 0
and S is a cone.

6. Let (x, t) ∈ S, i.e., ∥x∥2 ≤ t. Then ∥αx∥2 = α∥x∥2 ≤ αt for all α ≥ 0. Hence
(αx, αt) ∈ S for all α ≥ 0 and S is a cone.
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7. Let X ∈ S, i.e., X is symmetric and xTXx ≥ 0 holds for all x ∈ Rn. Scaling
X by α does not destroy symmetry. Also xT (αX)x = αxTXx ≥ 0 for all
α ≥ 0 and all x ∈ Rn. Hence, αX ∈ S for all α ≥ 0 and S is a cone.

SOLUTION 1.6

1. Intersection. Take x, y ∈ C. Then x, y ∈ C1 and x, y ∈ C2. Therefore, by
convexity of C1 and C2, we have for all θ ∈ [0, 1] that θx+ (1− θ)y ∈ C1 and
θx+ (1− θ)y ∈ C2. Hence θx+ (1− θ)y ∈ C which shows that it is convex.

2. Union. Take C1 = {0} and C2 = {1}. Then C = {0, 1}. This is not convex
since, e.g., 0.5 ̸∈ C.

SOLUTION 1.7

Note that for any x, y ∈
⋂

j∈J Cj and any θ ∈ [0, 1], we get that

θx+ (1− θ)y ∈ Cj ,

for each j ∈ J . Therefore,

θx+ (1− θ)y ∈
⋂
j∈J

Cj .

We conclude that the set
⋂

j∈J Cj is convex.

SOLUTION 1.8

1. Consider any x, y ∈ hs,r and any θ ∈ [0, 1]. Note that
sT (θx+ (1− θ)y) = θsTx+ (1− θ)sT y = θr + (1− θ)r = r.

Therefore, θx+ (1− θ)y ∈ hs,r. We conclude that hs,r is convex.

2. Consider any x, y ∈ Hs,r and any θ ∈ [0, 1]. Note that
sT (θx+ (1− θ)y) = θsTx+ (1− θ)sT y ≤ θr + (1− θ)r = r.

Therefore, θx+ (1− θ)y ∈ Hs,r. We conclude that Hs,r is convex.

3. Note that the set C can be written as an intersection of affine hyperplanes
and halfspaces;

C =

 ⋂
i∈{1,...,m}

hsi,ri

⋂ ⋂
i∈{m+1,...,p}

Hsi,ri

 .

In particular, we see that the set C is given by an intersection of convex
sets, and therefore itself convex.
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SOLUTION 1.9

All of the sets are polytopes and therefore convex.

SOLUTION 1.10

1. Consider any y1, y2 ∈ f(C) = {Ax + b : x ∈ C} and any θ ∈ [0, 1]. Then
there exists x1, x2 ∈ C such that

y1 = Ax1 + b and y2 = Ax2 + b.

We get that θx1 + (1− θ)x2 ∈ C since C is convex. Note that

θy1 + (1− θ)y2 = A(θx1 + (1− θ)x2) + b ∈ f(C).

We conclude that f(C) is convex.

2. Consider any x1, x2 ∈ f−1(D) = {x : Ax + b ∈ D} and any θ ∈ [0, 1]. We
know that

Ax1 + b ∈ D and Ax2 + b ∈ D.

By convexity of D we get that

θ(Ax1 + b) + (1− θ)(Ax2 + b) = A(θx1 + (1− θ)x2) + b ∈ D.

In particular, we note that θx1 + (1 − θ)x2 ∈ f−1(D). We conclude that
f−1(D) is convex.

SOLUTION 1.11
Let x, y ∈ domf . Then, by definition of convexity, f(θx+ (1− θ)y) ≤ θf(x) + (1−
θ)f(y) < ∞ for all θ ∈ [0, 1]. That is (θx + (1 − θ)y) ∈ domf if x, y ∈ domf and
domf is convex.

SOLUTION 1.12

1. Convex. We should prove that

ιC(θx+ (1− θ)y) ≤ θιC(x) + (1− θ)ιC(y) (7.7)

for all x, y ∈ Rn and all θ ∈ [0, 1]. If x, y ∈ C, then the lefthand side and the
righthand side are 0 by convexity of C, hence (7.7) holds. If x ̸∈ C or y ̸∈ C,
the RHS is ∞ which means that (7.7) is satisfied.
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2. Convex. By the tringle inequality and positive homogenity of norms, we
have for all θ ∈ [0, 1]:

∥θx+ (1− θ)y∥ ≤ θ∥x∥+ (1− θ)∥y∥.

3. Not convex. By the tringle inequality and positive homogenity of norms,
we have for all θ ∈ [0, 1]:

−∥θx+ (1− θ)y∥ ≥ θ(−∥x∥) + (1− θ)(−∥y∥).

Hence f(x) = −∥x∥ is only convex if we have equality for all x, y and θ ∈
[0, 1]. Now, let y = −x ̸= 0 and θ = 1

2 , which gives 0 ≥ −∥x∥. This holds
with strict inequality for all x ̸= 0. Hence f is not convex. (Another way
to prove the second fact is that the convexity definition holds with equality
everywhere if and only if f is affine.)

4. Not convex. The function is twice continuously differentiable. The gradient
∇f(x, y) = (y, x) and the Hessian

∇2f(x, y) =

[
0 1
1 0

]
.

This is not positive semidefinite (symmetric but eigenvalues -1,1). Hence
f is not convex.

5. Convex. We have

aT (θx+ (1− θ)y) + b = θ(aTx+ b) + (1− θ)(aT y + b)

and the convexity definition holds with equality.

6. Convex. The Hessian is ∇2f(x) = Q ⪰ 0, so f is convex.

7. Convex. Let y1 and y2 be arbitrary. Let x1 ∈ C be the closest point in C
from y1 and let x2 be the closed poitn in C from y2. Further, let θ ∈ [0, 1]
and define z = θx1 + (1− θ)x2 ∈ C due to convexity of C. Then

θdistC(y1) + (1− θ)distC(y2) = θ∥y1 − x1∥+ (1− θ)∥y2 − x2∥
= ∥θ(y1 − x1)∥+ ∥(1− θ)(y2 − x2)∥
≥ ∥θy1 + (1− θ)y2 − (θx1 + (1− θ)x2)∥
= ∥θy1 + (1− θ)y2 − z∥
≥ distC(θy1 + (1− θ)y2).

SOLUTION 1.13
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f(x) = |x| f(x) = x2

f(x) = |x|+ x2 f(x) = max(|x|, x2)

f(x) = min(|x|, x2)

SOLUTION 1.14

The epigraph of f is

epif = {(x, r) : f(x) ≤ r} = {(x, r) : aTx+ b ≤ r}

= {(x, r) : [aT ,−1]

[
x
r

]
≤ −b}

which is a halfspace in Rn+1.

SOLUTION 1.15
Suppose that f is convex. Let (x1, r1), (x2, r2) ∈ epif and θ ∈ [0, 1]. By convexity
of f , we get that

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

≤ θr1 + (1− θ)r2.

We conclude that,

θ(x1, r1) + (1− θ)(x2, r2) = (θx1 + (1− θ)x2, θr1 + (1− θ)r2) ∈ epif,
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for all (x1, r1), (x2, r2) ∈ epif and all θ ∈ [0, 1]. Thus, epif is convex.

Conversely, suppose that epif is convex. Consider the relationship

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), (7.8)

for x1, x2 ∈ Rn and θ ∈ [0, 1]. If x1 /∈ domf or x1 /∈ domf , relationship (7.8) clearly
holds for all θ ∈ [0, 1]. Thus, consider the case when x1, x2 ∈ domf . Note that
(x1, f(x1)), (x2, f(x2)) ∈ epif . By convexity of epif , we get that

θ(x1, f(x1)) + (1− θ)(x2, f(x2)) = (θx1 + (1− θ)x2, θf(x1) + (1− θ)f(x2)) ∈ epif,

for all θ ∈ [0, 1]. In particular,

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2),

for all x1, x2 ∈ domf and all θ ∈ [0, 1]. Thus, f is convex.

SOLUTION 1.16

1. Consider any x, y ∈ Rn and any θ ∈ [0, 1]. We get that

f(θx+ (1− θ)y) =

m∑
i=1

αifi(θx+ (1− θ)y)

≤
m∑
i=1

αi [θfi(x) + (1− θ)fi(y)]

= θ
m∑
i=1

αifi(x) + (1− θ)
m∑
i=1

αifi(y)

= θf(x) + (1− θ)f(y).

Hence f is convex.

2. Recall that a function is convex if and only if the epigraph is convex. Note
that

epif = {(x, r) ∈ Rn × R : f(x) ≤ r}

=

{
(x, r) ∈ Rn × R : max

i∈{1,...,m}
fi(x) ≤ r

}
= {(x, r) ∈ Rn × R : f1(x) ≤ r and f2(x) ≤ r . . . and fm(x) ≤ r}

=
⋂

i∈{1,...,m}

{(x, r) ∈ Rn × R : fi(x) ≤ r}

=
⋂

i∈{1,...,m}

epifi.

We conclude that epif is convex since it is the intersection of convex sets.

SOLUTION 1.17
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1. We know that ∥x∥ is convex. Define

h(y) =

{
yp if y > 0

0 otherwise

Since h is a non-decreasing and convex, the composition h(∥x∥) = ∥x∥p is
convex.

2. First term: ∥z∥22 is convex and ∥Ax − b∥22 is convex since composition with
affine mapping. ∥x∥1 convex since norm. Finally, sums of convex functions
are convex.

3. All norms in the max expression are convex. The max operation preserves
convexity.

4. max(0, 1+xi)max of convex functions, hence convex. Sum over these convex
functions is convex. Second term is increasing function of (convex) norm,
hence convex. Nonnegative sum is convex.

5. Index all y using j from the uncountable index set J to get yj . Further
define rj = g(yj). Then aj(x) = xT yj − rj are affine functions of x and
f(x) = supj(aj(x) : j ∈ J). Since f is the supremum over a family of convex
(affine) functions, it is convex.

SOLUTION 1.18

1. It is nonempty since obviously x̄ ∈ Cα. Now, let x1 ∈ Cα and x2 ∈ Cα be
arbitrary. Then, g(x1) ≤ α and g(x2) ≤ α. Now, by convexity of g, we have
for all θ ∈ [0, 1] that x = θx1+(1−θ)x2 satisfies g(x) ≤ θg(x1)+(1−θ)g(x2) ≤
α. Hence x ∈ Cα, and Cα is convex.

2. Let g be as follows:

g(x)

0

3. Let g be as follows:

g(x)

0

60



SOLUTION 1.19

Consider any (x1, y1), (x2, y2) ∈ Rn1 × Rn2 and any θ ∈ [0, 1]. Note that

g(θx1 + (1− θ)x2, θy1 + (1− θ)y2) = f(θx1 + (1− θ)x2)

≤ θf(x1) + (1− θ)f(x2)

= θg(x1, y1) + (1− θ)g(x2, y2)

due to convexity of f . We conclude that g is convex.

SOLUTION 1.20

1. The set is a sublevel set of a norm and norms are convex. We conclude that
the set is convex.

2. The norm ∥x∥2 is convex in (x, y) and −t is convex in (x, t). Therefore, their
sum ∥x∥2 − t is convex in (x, t). But the set in nothing but a sublevel set of
the convex function ∥x∥2 − t, and therefore a convex set.

SOLUTION 1.21

Assume on the contrary that x∗ is a local minimum, but not a global minimum,
i.e., that there exists x̄ ∈ Rn such that f(x̄) < f(x∗) but that f(x∗) ≤ f(x) for all
x such that ∥x− x∗∥ ≤ δ. Then, by convexity, for all θ ∈ (0, 1] we have

f((1− θ)x∗ + θx̄) ≤ (1− θ)f(x∗) + θf(x̄) < (1− θ)f(x∗) + θf(x∗) = f(x∗).

Now, let x = (1 − θ)x∗ + θx̄ and for small enough θ ∈ (0, 1] (for instance θ =
min(1, δ

∥x∗−x̄∥ )) we have ∥x − x∗∥ = ∥(1 − θ)x∗ + θx̄ − x∗∥ = θ∥x∗ − x̄∥ ≤ δ but
f(x) < f(x∗), i.e., x∗ is not a local minimum and we have reached a contradition.
More specifically, we have shown that if x∗ is not a global minimum, it is not a
local minimum. Hence, if x∗ is a local minimum, it must be a global minimum.

SOLUTION 1.22

1. Assume on the contrary that two minimizers exist, i.e., that x ̸= x∗ exists
that satisfies f(x) = f(x∗). Then, by strict convexity of f :

f(12x+ 1
2x

∗) < 1
2(f(x) + f(x∗)) = f(x∗)

which is a contradition. Hence, at most one minimizer can exist.

2. The function f(x) = 1
x with domain x > 0 is strictly convex with infimum

0. But no x exists such that f(x) = 0. See figure.
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SOLUTION 1.23

See figure below.

1. 2.

3. 4.

5. 6.

7. 8.

1. Not full domain, hence not smooth, strictly convex since no flat regions, not
strongly convex since no quadratic lower bound.

2. Not full domain, hence not smooth, strictly convex since no flat regions, not
strongly convex since no quadratic lower bound.

3. Smooth, not strictly convex since flat regions, not strongly convex.

4. Smooth, strictly convex, strongly convex.
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5. Not smooth (no quadratic upper bound at 0), not strictly convex, not strongly
convex.

6. Smooth since quadratic upper bounds everywhere, not strictly convex since
flat regions, not strongly convex.

7. Not smooth since no uniform quadratic upper bound, stricly convex (since
no flat regions), not strongly convex since no quadratic lower bound.

8. Not smooth since not uniform quadratic upper bound, strictly convex (since
no flat regions), not strongly convex since no quadratic lower bound.

SOLUTION 1.24

1. See the following figure. The graph a valid function must lie within the
dark shaded areas. The dashed lines are examples of valid functions f .
Note that smoothness implies differentiability. The example in the convex
case can therefore not be used in the smooth case even though it lies within
the shaded region.

1

1

Convex

1

1

Convex and Smooth

1

1

Strongly Convex and Smooth

SOLUTION 1.25

1. See the following figure. The graph a valid function must lie within the
shaded areas. The dashed lines is are possible functions f .

1

1

Strictly Convex
1

1

Strictly Convex and Smooth
1

1

Strongly Convex and Smooth

SOLUTION 1.26

1. Consider the following function f and point x:
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f

x

2. Assume first that f is convex and x, y ∈ Rn. By convexity of f

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y)

for all θ ∈ [0, 1]. If we divide both sides by θ and take the limit as θ ↘ 0, we
obtain

f(y) ≥ f(x) + lim
θ↘0

f(x+ θ(y − x))− f(x)

θ

= f(x) +∇f(x)T (y − x),

where the equality follows from the hint. That is, if f is convex, then (1.1)
holds.

Now, assume instead that (1.1) holds. Choose any x ̸= y, and θ ∈ [0, 1], and
let z = θx+ (1− θ)y. Then

f(x) ≥ f(z) +∇f(z)T (x− z) = f(z) + (1− θ)∇f(z)T (x− y),

f(y) ≥ f(z) +∇f(z)T (y − z) = f(z)− θ∇f(z)T (x− y)

Multiplying the first inequality by θ, the second by 1− θ, and adding them
gives (since θ ∈ [0, 1])

θf(x) + (1− θ)f(y) ≥ f(z) = f(θx+ (1− θ)y).

That is, f is convex.

SOLUTION 1.27

1. Let f(x) := supµ µ
T (Kx − b) and let x ∈ C, i.e., Kx − b = 0. Then f(x) =

supµ µ
T 0 = 0. That is, f(x) = 0 for all x ∈ C.

If instead x ̸∈ C, i.e., Kx− b ̸= 0, then select µ = t(Kx− b) to get

f(x) = sup
µ
µT (Kx− b) = sup

t
t∥Kx− b∥2 → ∞

as t→ ∞. That is, f(x) = ∞ for all x ̸∈ C.

2. Let f(x) := supµ≥0 µ
T g(x) and let x ∈ C, i.e., g(x) ≤ 0. Then for all µ ≥ 0,

we have µT g(x) ≤ 0. In particular, for µ = 0, we get µT g(x) = 0. Hence
f(x) = supµ µ

T g(x) = 0. That is, f(x) = 0 for all x ∈ C.
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If instead x ̸∈ C, i.e., g(x) > 0, then select µ = tg(x) (which is nonnegative
for all t ≥ 0) to get

f(x) = sup
µ
µT g(x) = sup

t
t∥g(x)∥2 → ∞

as t→ ∞. That is, f(x) = ∞ for all x ̸∈ C.

SOLUTION 1.28
We proceed by induction on n. The base case n = 2 is simply the definition of
a convex function, and thus true. For the inductive step, assume that Jensen’s
inequality holds for n = k, were k is an integer greater than or equal to 2. We
need to prove that Jensen’s inequality holds for n = k+1. The case when θk+1 = 1
holds trivially, thus, we assume that θk+1 < 1. We get that

f

(
k+1∑
i=1

θixi

)
= f

(
k∑

i=1

θixi + θk+1xk+1

)

= f

(
(1− θk+1)

(
k∑

i=1

θi
1− θk+1

xi

)
+ θk+1xk+1

)
convexity of f

≤ (1− θk+1)f

(
k∑

i=1

θi
1− θk+1

xi

)
+ θk+1f(xk+1)

inductive assumption
≤ (1− θk+1)

k∑
i=1

θi
1− θk+1

f(xi) + θk+1f(xk+1)

=
k+1∑
i=1

θif(xi).

That is, the Jensen’s inequality holds true for n = k + 1, establishing the induc-
tive step. Thus, by mathematical induction, Jensen’s inequality holds true for
all integers n ≥ 2.

SOLUTION 1.29

Since θ only affects the first argument of L, convexity w.r.t. the second is direct.

1. The function reads L(θx, y) where x fixed. This is convex in the first argu-
ment w.r.t. θ since L is convex and it is a composition with an affine (linear)
mapping θ.

2. Let, e.g., σ(u) = u, L(u, y) = u, x = 1 and y ∈ R. Then L(m(x; θ), y) =
m(x; θ) = θ2θ1, which is nonconvex. Hence, this formulation is nonconvex
in general.

SOLUTION 1.30
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f(x)− σ
2 ∥x∥

2
2 is convex, by definition, means that for all x, y ∈ Rn and all θ ∈ [0, 1]

f(z)− σ
2 ∥z∥

2
2 ≤ θ(f(x)− σ

2 ∥x∥
2
2) + (1− θ)(f(y)− σ

2 ∥y∥
2
2),

where z = θx+ (1− θ)y. This is equivalent to

f(z) ≤ θf(x) + (1− θ)f(y) + σ
2 (∥z∥

2
2 − θ∥x∥22 − (1− θ)∥y∥22). (7.9)

Note that

∥z∥22 − θ∥x∥22 − (1− θ)∥y∥22
= ∥θ x+ (1− θ)y∥22 − θ∥x∥22 − (1− θ)∥y∥22
= (θ2 − θ)∥x∥22 + ((1− θ)2 − (1− θ))∥y∥22 + 2θ(1− θ)xT y

= (θ(1− θ))(−∥x∥22 − ∥y∥22 + 2xT y)

= −(θ(1− θ))(∥x− y∥22). (7.10)

Inserting (7.10) into (7.9) gives the desired result.

SOLUTION 1.31

We first prove the equivalence in the simple case when β = 0. Property I) is
equivalent to f being affine. Moreover, property II)-IV) simply give that f is
convex and concave. But this holds if and only if f is affine. Therefore, I)-IV) are
equivalent.

Next, we consider the case when β > 0.

I) ⇒ II): Assume that I) holds. Note that for x, y ∈ Rn and t ∈ R,
∂

∂t
f(x+ t(y − x)) = ∇f(x+ t(y − x))T (y − x),

by the chain-rule. This gives that

f(y)− f(x) =

∫ 1

0
∇f(x+ t(y − x))T (y − x)dt, (7.11)

for all x, y ∈ Rn. Subtracting ∇f(x)T (y−x) from the expression above and taking
absolute value yields∣∣f(y)− f(x)−∇f(x)T (y − x)

∣∣
=

∣∣∣∣∫ 1

0
(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

∣∣∣∣
≤
∫ 1

0

∣∣(∇f(x+ t(y − x))−∇f(x))T (y − x)
∣∣ dt

Cauchy-Schwartz
≤

∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥2∥y − x∥2dt

I)
≤
∫ 1

0
tβ∥y − x∥22dt

=
β

2
∥y − x∥22.
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I.e. II) holds.

II) ⇒ I): Assume that II) holds. Consider any x, y, z ∈ Rn. In II), insert z for y
in the first inequality, and insert y for x and z for y in the second inequality. I.e.{

f(z) ≤ f(x) +∇f(x)T (z − x) + β
2 ∥x− z∥22,

f(z) ≥ f(y) +∇f(y)T (z − y)− β
2 ∥y − z∥22,

or {
f(z) ≤ f(x) +∇f(x)T (z − x) + β

2 ∥x− z∥22,
f(y) ≤ f(z)−∇f(y)T (z − y) + β

2 ∥y − z∥22.

Adding this pair of inequalities yields

f(y) ≤ f(x) +∇f(x)T (z − x)−∇f(y)T (z − y) +
β

2
∥x− z∥22 +

β

2
∥y − z∥22

= f(x)−∇f(x)Tx+∇f(y)T y + β

2
∥x∥22 +

β

2
∥y∥22 + β∥z∥22 + zT (∇f(x)−∇f(y)− βx− βy)

= f(x)−∇f(x)Tx+∇f(y)T y + β

2
∥x∥22 +

β

2
∥y∥22

+ β∥z + 1

2β
(∇f(x)−∇f(y)− βx− βy)∥22 − β∥ 1

2β
(∇f(x)−∇f(y)− βx− βy)∥22.

We are free to choose z = − 1
2β (∇f(x)−∇f(y)− βx− βy). This gives

f(y) ≤ f(x)−∇f(x)Tx+∇f(y)T y + β

2
∥x∥22 +

β

2
∥y∥22 −

1

4β
∥∇f(x)−∇f(y)− βx− βy∥22

= f(x)− 1

4β
∥(∇f(x)−∇f(y)∥22

+
β

2
∥x∥22 +

β

2
∥y∥22 −

β

4
∥x+ y∥22 −∇f(x)Tx+∇f(y)T y + 1

2
(∇f(x)−∇f(y))T (x+ y)

= f(x)− 1

4β
∥∇f(x)−∇f(y)∥22 +

β

4
∥x− y∥22 +

1

2
(∇f(x) +∇f(y))T (y − x).

We may insert x for y and y for x in the in inequality above. This yields the pair
of inequalities{
f(y) ≤ f(x)− 1

4β∥∇f(x)−∇f(y)∥22 +
β
4 ∥x− y∥22 + 1

2(∇f(x) +∇f(y))T (y − x),

f(x) ≤ f(y)− 1
4β∥∇f(y)−∇f(x)∥22 +

β
4 ∥y − x∥22 + 1

2(∇f(y) +∇f(x))T (x− y).

Adding the pair of inequalities gives

0 ≤ − 1

2β
∥∇f(y)−∇f(x)∥22 +

β

2
∥y − x∥22,

i.e. I) holds.

II) ⇔ III): Note that the gradient of β
2 ∥x∥

2
2−f(x) and f(x)+ β

2 ∥x∥
2
2 are βx−∇f(x)

and ∇f(x) + βx, respectively. By the first order condition for convexity, we get
that β

2 ∥x∥
2
2 − f(x) and f(x) + β

2 ∥x∥
2
2 are convex if and only if{

β
2 ∥y∥

2
2 − f(y) ≥ β

2 ∥x∥
2
2 − f(x) + (βx−∇f(x))T (y − x),

f(y) + β
2 ∥y∥

2
2 ≥ f(x) + β

2 ∥x∥
2
2 + (∇f(x) + βx)T (y − x),
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or {
f(y) ≤ f(x) +∇f(x)T (y − x) + β

2 ∥x− y∥22,
f(y) ≥ f(x) +∇f(x)T (y − x)− β

2 ∥x− y∥22,

holds for all x, y ∈ Rn. But this is II).

III) ⇔ IV): Applying Exercise 1.30 to β
2 ∥x∥

2
2 − f(x) and f(x) + β

2 ∥x∥
2
2 gives the

result immediately.

SOLUTION 1.32

By Exercise 1.31 we get that I) is equivalent to that β
2 ∥x∥

2
2−f(x) and f(x)+ β

2 ∥x∥
2
2

are convex function. However, by the second order condition for convex functions,
this is equivalent to

βI −∇2f(x) ⪰ 0 and ∇2f(x) + βI ⪰ 0, for all x ∈ Rn,

respectively. This is simply II). This establishes the desired equivalence.
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Solutions to Chapter 2

SOLUTION 2.1

1. Function is convex and differentiable with ∇f(x) = x. Hence ∂f(x) = {x}.

2. Function is convex and differentiable with ∇f(x) = Hx+h. Hence ∂f(x) =
{Hx+ h}.

3. For x < 0, the function is −x and differentiable with gradient -1. For x > 0,
the function is x and differentiable with gradient 1. At x = 0, all elements
in [−1, 1] are subgradients (see figure).

∂f(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

(−1,−1)

(−1,−1)

(0,−1)

(1,−1)

(1,−1)

|x|
∂f

x

4. The function is convex. Whenever x ∈ (−1, 1), the function is 0 with gradi-
ent 0, hence ∂f(x) = 0. When x > 1 or x < −1, x is outside the domain and
∂f(x) = ∅. When x = 1, all s ≥ 0 are subgradients. When x = −1 all s ≤ 0
are subgradient (see figure). Note that this subdifferential is the inverse
of the subdifferential of |x|.

∂f(x) =


[−∞, 0] if x = −1

0 if x ∈ (−1, 1)

[0,∞] if x = 1

∅ else
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(0,−1)
(1,−1)

(∞,−1)

(0,−1)
(−1,−1)

(−∞,−1)

∂f

x

5. The function is convex. For x < −1, the function is 0 and the gradient is 0,
hence ∂f(x) = 0. For x > −1, the function is x + 1 and the gradient is 1,
hence ∂f(x) = 1. For x = −1, all s ∈ [0, 1] are subgradients (see figure).

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1

(0,−1)

(1,−1)

(0.5,−1)

x

f(x)
∂f

x

6. The function is convex. For x > 1, the function is 0 and the gradient is 0,
hence ∂f(x) = 0. For x < 1, the function is −x + 1 and the gradient is -1,
hence ∂f(x) = −1. For x = 1, all s ∈ [−1, 0] are subgradients (see figure).

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

(0,−1)

(−1,−1)

(−0.5,−1)

x

f(x) ∂f

x

SOLUTION 2.2
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1. See figure below.

x1: There is one affine minorizor to f at x1 with slope −3. Hence ∂f(x1) =
{−3}. f is also differentiable at x1 with gradient −3. Hence ∇f(x1) =
−3

x2: There is no affine minorizor to f at x2. Hence ∂f(x) = ∅. However, f
is differentiable at x2 with ∇f(x2) = 0.

x3: There are several affine minorizors to f and x3. Their slopes range
from 0 to 3. Hence ∂f(x3) = [0, 3]. However, f is not differentiable at
x3.

f(x)

x
x1

(−3,−1)

x2

x3

(0,−1)

(3,−1)

(1,−1)

2. Fermat’s rule 0 ∈ ∂f(x) holds for x3 but not for x1 and x2. Therefore, x3 is
a global minimum to the nonconvex function f .

SOLUTION 2.3

1. Yes, since 0 ∈ ∂f(x).

2. No, since 0 ̸∈ ∂g(y).

3. No, since subdifferential not singleton (unique) at x.

4. No, since subdifferential not singleton (unique) at y.

5. See examples below.

SOLUTION 2.4

1. The following function (which is the absolute value |x|) is a lower bound to
f .
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−y

(−1,−1) (1,−1)

y

(0, 0)

2. Since the function above is a lower bound to f , its minimum 0 is a lower
bound to the minimum of f .

3. An example of function f is given below. The function is f(x) = 1
2(x

2 + 1).

−y

(−1,−1) (1,−1)

y

(0, 0)

SOLUTION 2.5

• From the definition of monotonicity, we know that the minimum slope is 0
and maximum is ∞. Therefore a. and b. are monotone while c. and d. are
not.

• We rule out c. and d. since they are not monotone. Since operators A :
R → 2R for Figures a. and b. are monotone, there exist functions f such
that A = ∂f . The subdifferential in a. is maximally monotone, hence the
subdifferential of a closed convex function. The subdifferential in b. is
not maximally monotone, hence not the subdifferential of a closed convex
function.

SOLUTION 2.6
A− σI is monotone means that

((sx − σx)− (sy − σy))T (x− y) ≥ 0,

for all x, y ∈ domA, sx ∈ Ax and sy ∈ Ay. The inequality is equivalent to

(sx − sy)
T (x− y) ≥ σ∥x− y∥22.

But this is the definition of A being σ-strongly monotone.

SOLUTION 2.7
We know that we need to consider n ≥ 2 since for n = 1, all monotone operators
are subdifferentials of functions. Let n = 2 and set linear single-valuedA : R2 →

72



R2 asA(x1, x2) = (x2,−x1), which can (with notation overloading) be represented
by the matrix

A =

[
0 1
−1 0

]
.

Then A = −AT (it is skew symmetric) and

(Ax−Ay)T (x− y) = (x− y)TAT (x− y) = −(x− y)T (Ax−Ay)

= −(Ax−Ay)T (x− y).

Hence (Ax−Ay)T (x− y) = 0 and monotonicity holds with equality.

It is not the gradient of a function since the matrix A would be the Hessian, but
it is not symmetric.

SOLUTION 2.8

1. Write I) and I) with x and y swapped,{
f(y) ≥ f(x) +∇f(x)T (y − x),

f(x) ≥ f(y) +∇f(y)T (x− y).

Adding these gives

(∇f(y)−∇f(x))T (y − x) ≥ 0,

i.e. II).

2. Using the hint we get that

f(y)− f(x)−∇f(x)T (y − x)

=

∫ 1

0
t−1(∇f(x+ t(y − x))−∇f(x))T ((x+ t(y − x))− x)dt ≥ 0.

But this is I).

SOLUTION 2.9

1. a. Since ∂f is maximally monotone, f is convex.

b. Since ∂f is not maximally monotone, f is not convex.

2. The optimal point x∗ satisfies 0 ∈ ∂f(x∗) (Fermat’s rule). Hence, the mini-
mizing x∗ are the x where the graph crosses the x-axis for both a and b.

3. No, since a constant offset of f is not visible in ∂f .

4. Below are example plots of f .
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a. b.

It is linear to the left of the minimum and quadratic to the right.

SOLUTION 2.10

Since f is σ-strongly convex, g(x) := f(x) − σ
2 ∥x∥

2
2 is convex. By the subdiffer-

ential sum rule, ∂g(x) = ∂f(x) − σx. Now, by convexity of g, we have for all
sg ∈ ∂g(x) that sg = sf − σx for some sf ∈ ∂f(x) and

f(y)− σ
2 ∥y∥

2
2 = g(y) ≥ g(x) + sTg (y − x) = f(x)− σ

2 ∥x∥
2
2 + sTg (y − x)

= f(x)− σ
2 ∥x∥

2
2 + (sf − σx)T (y − x).

Now, since ∥y∥22 − ∥x∥22 − 2xT (y − x) = ∥x− y∥22, this is equivalent to

f(y) = f(x) + sTf (y − x) + σ
2 ∥x− y∥22.

SOLUTION 2.11

(a) f not differentiable (∂f multivalued at 0), hence ∂f not Lipschitz. ∂f not
strongly monotone (minimum slope 0), hence f not strongly convex.

(b) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f 1-
Lipschitz. ∂f not strongly monotone (minimum slope 0), hence f not strongly
convex.

(c) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f 1-
Lipschitz. ∂f not strongly monotone (minimum slope 0), hence f not strongly
convex.

(d) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f 1-
Lipschitz. ∂f strongly monotone with minimum slope 1/2. Since ∂f is also
maximal, f is 1

2 -strongly convex.

SOLUTION 2.12
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Suppose that si ∈ ∂gi(xi). Then

gi(yi) ≥ gi(xi) + si(yi − xi).

Summing over i gives

g(y) ≥ g(x) +
n∑

i=1

si(yi − xi) = g(x) + sT (y − x)

and s = (s1, . . . , sn) is a subgradient of g.

Now suppose instead that s ∈ ∂g(x). Then
n∑

i=1

gi(yi) = g(y) ≥ g(x) + sT (x− y) =

n∑
i=1

(gi(xi) + si(yi − xi))

holds for all x, y. Let j ∈ {1, . . . , n} be arbitrary and set xi = yi for all i ̸= j, then
this recues to

gj(yj) ≥ gj(xj) + sj(yj − xj),

i.e., sj ∈ ∂gj . Since j is arbitrary, the result follows.

SOLUTION 2.13

For x /∈ domf , subgradients s ∈ ∂f(x) must satisfy

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn.

Since there exists y ∈ Rn such that f(y) < ∞ and f(x) = ∞, we see that ∂f(x)
must by empty.

SOLUTION 2.14

A vector s is in the subdifferential of the indicator function at x if

ιC(y) ≥ ιC(x) + sT (y − x)

for all y. Assume x ∈ C, then ιC(y) ≥ sT (y − x) for all y, which is equivalent to
that sT (y−x) ≤ 0 for all y ∈ C. Assume x ̸∈ C but y ∈ C. Then 0 ≥ ∞+sT (y−x)
for all y. No such s exists and ιC(x) = ∅.

SOLUTION 2.15

Fermat’s rule says x = proxγf (z) if and only if 0 ∈ ∂f(x) + γ−1(x− z).
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1. We have ∂f(x) = {x}, which gives 0 = γx+ (x− z) or x = (1 + γ)−1z.

2. We have ∂f(x) = {Hx+h}, which gives 0 = γ(Hx+h)+(x−z) or (I+γH)x =
z − γh or x = (I + γH)−1(z − γh).

3. Let x = proxγf (z), which means 0 ∈ ∂f(x)+γ−1(x−z). The subdifferential
satisfies

∂f(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

Let first x < 0 to have ∂f(x) = {−1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z + γ. Now x < 0 if z < −γ.

Let x > 0 to have ∂f(x) = {1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z − γ. Now x > 0 if z > γ.

Let x = 0 to have ∂f(x) = [−1, 1] Then (since x = 0)

0 ∈ ∂f(0) + γ−1(0− z)

implies that z ∈ [−γ, γ].

Hence, the prox becomes

proxγf =


z + γ if z < −γ
0 if z ∈ [−γ, γ]
z − γ if z > γ

4. The function is the indicator function of C := [−1, 1], hence the prox re-
duces to the projection onto C. If z ≤ −1, the projection is point is -1. If
z ∈ [−1, 1], the projection point is z since z ∈ C. If z ≥ 1, the projection
point is 1. Hence, the prox becomes

proxγf =


−1 if z < −1

z if z ∈ [−1, 1]

1 if z > 1

5. Let x = proxγf (z), which means 0 ∈ ∂f(x)+γ−1(x−z). The subdifferential
satisfies

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1
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Let first x < −1 to have ∂f(x) = {0}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z. Now x < −1 if z < −1.

Let x > −1 to have ∂f(x) = {1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z − γ. Now x > −1 if z > γ − 1.

Let x = −1 to have ∂f(x) = [0, 1] Then (since x = −1)

0 ∈ ∂f(−1) + γ−1(−1− z)

implies that z ∈ [−1, γ − 1].

Hence, the prox becomes

proxγf =


z if z < −1

−1 if z ∈ [−1, γ − 1]

z − γ if z > γ − 1

6. Let x = proxγf (z), which means 0 ∈ ∂f(x)+γ−1(x−z). The subdifferential
satisfies

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

Let first x < 1 to have ∂f(x) = {−1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z + γ. Now x < 1 if z < 1− γ.

Let x > 1 to have ∂f(x) = {0}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z. Now x > 1 if z > 1.

Let x = 1 to have ∂f(x) = [−1, 0] Then (since x = 1)

0 ∈ ∂f(1) + γ−1(1− z)

implies that z ∈ [1− γ, 1].

Hence, the prox becomes

proxγf =


z + γ if z < 1− γ

1 if z ∈ [1− γ, 1]

z if z > 1
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SOLUTION 2.16

We have

proxγg(z) = argmin
x

(g(x) + 1
2γ ∥x− z∥22)

= argmin
x

(

n∑
i=1

gi(xi) +
1
2γ

n∑
i=1

∥xi − zi∥22)

= argmin
x

(

n∑
i=1

(gi(xi) +
1
2γ ∥xi − zi∥22))

=

 argminx1
(g1(x1) +

1
2γ ∥x1 − z1∥22)

...
argminxn

(gn(xn) +
1
2γ ∥xn − zn∥22)


=

proxγg1(z1)...
proxγgn(zn)

 .
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Solutions to Chapter 3

SOLUTION 3.1

Compute explicit expressions for the conjugates of the following convex func-
tions.

1. We have

f∗(s) = sup
x

(sTx− 1
2∥x∥

2
2)

Now ∇f(x) = x. Fermat’s rule says x is a solution if and only if 0 = s − x.
Hence,

f∗(s) = sT s− 1
2∥x∥

2
2 =

1
2∥s∥

2
2.

2. We have

f∗(s) = sup
x

(sTx− 1
2x

THx− hTx)

Now ∇f(x) = Hx + h. Fermat’s rule says x is a solution if and only if
0 = s−Hx− h, i.e. x = H−1(s− h) (since H invertible). Hence,

f∗(s) = sT (H−1(s− h))− 1
2(s− h)TH−1HH−1(s− h)− hTH−1(s− h)

= 1
2(s− h)TH−1(s− h).

3. We have

f∗(s) = sup
x∈[−1,1]

sx

For s ≤ 0, an optimal x = −1 and f∗(s) = −s.

For x ≥ 0, an optimal x = 1 and f∗(s) = s.

Therefore

f∗(s) =

{
−s if s ≤ 0

s if s ≥ 0

i.e., f∗(s) = |s|.
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4. Since ι[−1,1] is (closed) convex, ι∗∗[−1,1] = ι[−1,1]. In view of the above f∗ =

| · |∗ = (ι∗[−1,1])
∗ = ι∗∗[−1,1] = ι[−1,1].

It can also be proven explicitly. We have

f∗(s) = sup
x

(sx− |x|).

For s < −1, let x = t− ≤ 0 with t− → −∞, which gives

f∗(s) = sup
x

(xs− |x|) ≥ st− − |t−| = (s+ 1)t− → ∞

since s < −1.

For s > 1, let x = t+ ≥ 0 with t+ → ∞, which gives

f∗(s) = sup
x

(xs− |x|) ≥ st+ − |t+| = (s− 1)t+ → ∞

since s > 1.

For s ∈ [−1, 1], we have by Cauchy-Schwarz that sx ≤ |x||s| ≤ |x| for all
x. Therefore f∗(s) = supx s

Tx − |x| ≤ supx |x| − |x| = 0. Further, f∗(s) =
supx sx− |x| ≥ s0− |0| = 0. Hence f∗(s) = 0 for all s ∈ [−1, 1].

The conjugate becomes

f∗(s) =

{
0 if s ∈ [−1, 1]

∞ else

i.e. f∗(s) = ι[−1,1](s)

5. For all s ∈ ∂f(x), the conjugate satisfies f∗(s) = sx− f(x) (Fenchel-Young).
The subdifferential is:

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1

Let x < −1, then s = 0 and f∗(0) = 0− f(x) = 0 (since x < −1).

Let x > −1, then s = 1 and f∗(1) = x − f(x) = x − (x + 1) = −1 (since
x > −1).

Let x = −1, then s ∈ [0, 1] and f∗(s) = −s− f(−1) = −s (since x = −1).

The other s are not subgradients to f at any x. We verify that f∗(s) = ∞.

For s < 0, let x = t− ≤ 0 with t− → −∞ and

f∗(s) ≥ st− − f(t−) = st− → ∞.

For s > 1, let x = t+ ≥ 1 with t+ → ∞ and

f∗(s) ≥ st+ − f(t+) = (s− 1)t+ + 1) → ∞.

Hence, the conjugate is

f∗(s) =

{
−s if s ∈ [0, 1]

∞ else
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6. For all s ∈ ∂f(x), the conjugate satisfies f∗(s) = sx− f(x) (Fenchel-Young).
The subdifferential is:

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

Let x < 1, then s = −1 and f∗(−1) = −x− (1− x) = −1 (since x < 1).

Let x > 1, then s = 0 and f∗(0) = 0− f(x) = 0 (since x > 1).

Let x = 1, then s ∈ [−1, 0] and f∗(s) = s− f(1) = s (since x = 1).

The other s are not subgradients to f at any x. We verify that f∗(s) = ∞.

For s− 1, let x = t− ≤ −1 with t− → −∞ and
f∗(s) ≥ st− − f(t−) = (s+ 1)t− − 1 → ∞.

For s > 0, let x = t+ ≥ 0 with t+ → ∞ and
f∗(s) ≥ st+ − f(t+) = st+ → ∞.

Hence, the conjugate is

f∗(s) =

{
s if s ∈ [−1, 0]

∞ else

SOLUTION 3.2

1. Assume that f ≤ g, i.e.
f(x) ≤ g(x),

for all x ∈ Rn. Then
sTx− f(x) ≥ sTx− g(x),

for all s, x ∈ Rn. In particular,
f∗(s) = sup

x

(
sTx− f(x)

)
≥ sup

x

(
sTx− g(x)

)
= g∗(s),

for all s ∈ Rn. We conclude that f∗ ≥ g∗.

2. Assume that f ≤ g. For the previous subproblem we get that f∗ ≥ g∗, i.e.
f∗(s) ≥ g∗(s),

for all s ∈ Rn. Then
xT s− f∗(s) ≤ xT s− g∗(s),

for all s, x ∈ Rn. In particular,
f∗∗(x) = sup

s

(
xT s− f∗(s)

)
≤ sup

s

(
xT s− g∗(s)

)
= g∗∗(x),

for all x ∈ Rn. We conclude that f∗∗ ≤ g∗∗.
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3. Assume that f = 1
2∥ · ∥22. From Exercise 3.1 we know that f∗ = 1

2∥ · ∥22.
Therefore, f = f∗.

Now assume that f = f∗. Note that

f(x) + f(s) = f(x) + f∗(s) ≥ xT s,

for all s, x ∈ Rn, by Fenchel-Young’s inequality. If we pick s = x, we get
that

f(x) ≥ 1

2
∥x∥22,

for all x ∈ Rn, i.e. f ≥ 1
2∥ · ∥

2
2. However, we know from the first subproblem

above that this implies that f = f∗ ≤ (12∥ · ∥
2
2)

∗ = 1
2∥ · ∥

2
2. We conclude that

f = 1
2∥ · ∥

2
2. This completes the proof.

SOLUTION 3.3

By definition, (
|·|p

p

)∗
(s) = sup

x

(
sx− |x|p

p

)
.

Using Fermat’s rule, we get that x is a solution if and only if

0 ∈ ∂

(
|·|p

p

)
(x)− s or s ∈ ∂

(
|·|p

p

)
(x).

By the hint we have that

∂

(
|·|p

p

)
(x) =

{
x |x|p−2 if x ̸= 0,

0 if x = 0.

Let x ̸= 0, then s = x |x|p−2, and(
|·|p

p

)∗
(s) = sx− |x|p

p

= x |x|p x− |x|p

p

=

(
1− 1

p

)
|x|p

=
|x|p

q

=
|x|(p−1)q

q

=

∣∣∣x |x|p−2
∣∣∣q

q

=
|s|q

q
.
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Let x = 0, then s = 0, and (
|·|p

p

)∗
(0) = 0 =

|0|q

q
.

This covers all cases for s ∈ R. We conclude that(
|·|p

p

)∗
=

(
|·|q

q

)
,

as desired.

SOLUTION 3.4

Note that, for every s ∈ Rn, it holds that

(αf + (1− α)g)∗(s) = sup
x

(
sTx− (αf(x) + (1− α)g(x))

)
= sup

x

(
α
(
sTx− f(x)

)
+ (1− α)

(
sTx− g(x)

))
≤ sup

x

(
α
(
sTx− f(x)

))
+ sup

x

(
(1− α)

(
sTx− g(x)

))
= α sup

x

(
sTx− f(x)

)
+ (1− α) sup

x

(
sTx− g(x)

)
= αf∗(s) + (1− α)g∗(s),

i.e. (αf + (1− α)g)∗ ≤ αf∗ + (1− α)g∗ holds, as desired.

SOLUTION 3.5

We have

g∗(s) = sup
x

(xT s− g(x)) = sup
x

(
n∑

i=1

xisi − gi(xi))

=
n∑

i=1

sup
xi

(xisi − gi(xi))

=
n∑

i=1

g∗i (si).

SOLUTION 3.6
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1. The function f(x) = ∥x∥1 =
∑n

i=1 |xi|. Therefore

f∗(s) =
n∑

i=1

f∗i (si) =
n∑

i=1

ι[−1,1](si) = ι∥·∥∞≤1(s)

2. The function f(x) = ι[−1,1](x) =
∑n

i=1 ι[−1,1](xi). Therefore

f∗(s) =
n∑

i=1

f∗i (si) =

n∑
i=1

|si| = ∥s∥1.

SOLUTION 3.7

1. Since f is only defined in in four points, the conjugate is

f∗(s) = sup
x

(sx− f(x)) = max(−s− 0,−1, s+ 1, 2s)

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

-1
-s

s+1
2s

s

f∗(s)

2. The biconjugate f∗∗ is the convex envelope of f . See figure.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

SOLUTION 3.8

1. Conjugate f∗(s) = supx(⟨s, x⟩ − ∥x∥2)
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(a) The conjugate satisfies f∗(s) ≥ 0 for all s since by selecting x = 0, we
get f∗(s) ≥ ⟨s, 0⟩ − ∥0∥2 = 0.

(b) By Cauchy-Schwarz ⟨s, x⟩ ≤ ∥x∥2∥s∥2, we have

f∗(s) = sup
x

(⟨s, x⟩ − ∥x∥2) ≤ sup
x

(∥s∥2∥x∥2 − ∥x∥2) = sup
x

((∥s∥2 − 1)∥x∥2).

Hence, if ∥s∥2 ≤ 1, f∗(s) ≤ 0, which implies that f∗(s) = 0.

(c) Set x = ts with t ≥ 0 to get

f∗(s) = sup
x

(⟨s, x⟩ − ∥x∥) ≥ t∥s∥22 − t∥s∥2 = t∥s∥2(∥s∥2 − 1).

Whenever ∥s∥2 > 1, we let t→ ∞ to conclude that f∗(s) = ∞.

(d) To summarize

f∗(s) =

{
0 if ∥s∥2 ≤ 1

∞ else

2. The subdifferential of f satisfies

∂f(x) = Argmax
s

(sTx− f∗(s)) = Argmax
∥s∥2≤1

(sTx).

If x = 0, then the objective is 0 and all feasible points are optimal, i.e.,
∂f(0) = B(0, 1) := {s : ∥s∥2 ≤ 1}.

If instead x ̸= 0, then max∥s∥2≤1(s
Tx) ≤ max∥s∥2≤1 ∥s∥2∥x∥2 = ∥x∥2. Now,

let s = x
∥x∥2 , to get max∥s∥2≤1(s

Tx) ≥ ∥x∥2.

Therefore

∂f(x) =

{
B(0, 1) if x = 0

x/∥x∥2 else

SOLUTION 3.9

1. The claim says that

f∗(s) = max
i

(si) = sup
x∈∆

sTx

Suppose that i is any index where si = maxi(si). First note that x = ei ∈ ∆
gives sTx = si. Now let x ̸= ei but x ∈ ∆. Then

sTx =

n∑
j=1

xjsj = xisi +
∑
j ̸=i

sjxj ≤ xisi + si
∑
j ̸=i

xj = si

n∑
j=1

xj = si.

Hence, all points x ∈ ∆\ei satisfy sTx ≤ si. Therefore supx∈∆ s
Tx =

maxi(si).
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2. Since element-wise max is closed and convex, the conjugate is ι∆.

3. The claim says that

f∗(s) = max(0,max
i

(si)) = sup
x∈D

sTx

Suppose that i is any index where si = maxi(si) and that si ≥ 0. First note
that x = ei ∈ ∆ gives sTx = si. Now let x ̸= ei but x ∈ D. Then

sTx =
n∑

j=1

xjsj = xisi +
∑
j ̸=i

sjxj ≤ xisi + si
∑
j ̸=i

xj = si

n∑
j=1

xj ≤ si,

where the last step uses si ≥ 0. Hence, whenever si ≥ 0 all points x ∈ D\ei
satisfy sTx ≤ si. Therefore supx∈D s

Tx = maxi(si) for all s with at least
one nonnegative element si ≥ 0.

Assume now all si are negative. Then for all x ∈ D:

sTx ≤ 0 = sT 0.

Hence x = 0 is optimal and f∗(s) = 0 for s with all negative elements.

Combined, this gives f∗(s) = max(0,maxi(si)).

4. Since max(0,maxi(si)) is closed and convex. The conjugate is ιD.

SOLUTION 3.10

1. Since we are dealing with set valued mappings it is no problem if the in-
verses are set valued, i.e. we do not need to care about surjectivity and
injectivity. The axis of the graphs are simply flipped.

2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are set-
valued

a. b.

c. d.
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SOLUTION 3.11

Since ∂f∗ = (∂f)−1, we can flip the figures as follows.
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x

∂f(x)

−1

1

c.

∂f∗(s)

s
1

−1

x

∂f(x)

a.

s

∂f∗(s)

x

∂f(x)

b.

s

∂f∗(s)

x

∂f(x)

−1

1

d.

∂f∗(s)

s
1

−1
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SOLUTION 3.12

By Fermat’s rule, z = proxγf (x) if and only if

0 ∈ ∂f(z) + γ−1(z − x)

⇔ x ∈ (I + γ∂f)(z)

⇔ (I + γ∂f)−1x = z.

We have equality in the last step since we know that the prox is single-valued
for convex functions.

SOLUTION 3.13

1. We will solve this graphically. Left plot shows I + γ∂f and the right shows
(I + γ∂f)−1 = proxγf .

proxγf (x) =


x+ γ if x ≤ −γ
0 if x ∈ [−γ, γ]
x− γ if x ≥ γ

γ

−γ

(I + γ∂f)

x
γ

−γ

(I + γ∂f)−1

x

2. We will solve this graphically. Left plot shows I + γ∂f and the right shows
(I + γ∂f)−1 = proxγf . The prox does not depend on γ (since it is actually a
projection).

proxγf (x) =


−1 if x ≤ −1

x if x ∈ [−1, 1]

1 if x ≥ 1

1

−1

(I + γ∂f)

x
1

−1

(I + γ∂f)−1

x
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3. We will solve this graphically. Left plot shows I + γ∂f and the right shows
(I + γ∂f)−1 = proxγf .

proxγf (x) =


x if x ≤ −1

−1 if x ∈ [−1, γ − 1]

x− γ if x ≥ γ − 1

γ − 1

−1

(I + γ∂f)

x
γ − 1−1

(I + γ∂f)−1

x

4. We will solve this graphically. Left plot shows I + γ∂f and the right shows
(I + γ∂f)−1 = proxγf .

proxγf (x) =


x+ γ if x ≤ 1− γ

1 if x ∈ [1− γ, 1]

x if x ≥ 1

1− γ

−γ

(I + γ∂f)

x
1− γ

−γ

(I + γ∂f)−1

x

SOLUTION 3.14

1. Let u = z − x. That x = proxf (z) is equivalent to that

0 ∈ ∂f(x) + x− z ⇔ z − x ∈ ∂f(x)

⇔ x ∈ ∂f∗(z − x)

⇔ z − u ∈ ∂f∗(u)

⇔ 0 ∈ ∂f∗(u) + u− z

⇔ u = proxf∗(z).

Since u = z − x the result follows.
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2. We have

(γf∗)(s) = sup
x

(sTx− γf(x)) = γ sup
x

((γ−1s)Tx− f(x)) = γf∗(γ−1s).

3. We have s = prox(γf)∗(z) if and only if

s = Argmin
y

((γf)∗(y) + 1
2∥y − z∥22)

= Argmin
y

(γf∗(γ−1y) + 1
2∥y − z∥22)

= γ Argmin
v

(γf∗(v) + 1
2∥γv − z∥22)

= γ Argmin
v

(γf∗(v) + γ2

2 ∥v − γ−1z∥22)

= γ Argmin
v

(γ−1f∗(v) + 1
2∥v − (γ−1z)∥22)

= γproxγ−1f∗(γ−1z)

4. Combine first and third subproblems.

SOLUTION 3.15

The Moreau decomposition says prox(γf)∗(z) = z − proxγf (z).

1. The prox of γf satisfies proxγf (z) = (I + γH)−1(z− γh) which implies that

prox(γf)∗(z) = z − (I + γH)−1(z − γh)

2. The prox of γf satisfies

proxγf (z) =


z if z < −1

−1 if z ∈ [−1, γ − 1]

z − γ if z > γ − 1

which implies that

prox(γf)∗(z) = z − proxγf (z) =


0 if z < −1

z + 1 if z ∈ [−1, γ − 1]

γ if z > γ − 1

3. The prox of γf satisfies

proxγf =


z + γ if z < 1− γ

1 if z ∈ [1− γ, 1]

z if z > 1

which implies that

prox(γf)∗(z) = z − proxγf (z) =


−γ if z < 1− γ

z − 1 if z ∈ [1− γ, 1]

0 if z > 1
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SOLUTION 3.16

1. We have

−f∗(0) = − sup
x

(0Tx− f(x)) = − sup
x

(−f(x)) = inf
x
f(x).

2. We have

∂f∗(0) = Argmax
x

(0Tx− f∗∗(x)) = Argmax(−f(x)) = Argmin f(x)

where we have used that f∗∗ = f .

SOLUTION 3.17

1. The functions are closed convex and constraint qualification holds so the
primal problem is equivalent to

0 ∈ ∂f(x) + ∂g(x) ⇔

{
y ∈ ∂f(x)

−y ∈ ∂g(x)
⇔

{
x ∈ ∂f∗(y)

x ∈ ∂g∗(−y)

since ∂f = (∂g∗)−1 for (closed) convex functions.

2. Eliminating the x gives:{
x ∈ ∂f∗(y)

x ∈ ∂g∗(−y)
⇔ 0 ∈ ∂f∗(y)− ∂g∗(−y)

3. In general no. Inspired by x ∈ ∂f∗(y) you could use the subgradient selec-
tor to generate a candidate solution x̂ = sf∗(y⋆). But{

x ∈ ∂f∗(y⋆)

x ∈ ∂g∗(−y⋆)

need not hold for all x ∈ ∂f∗(y⋆) so

x̂ = sf∗(y⋆) ∈ ∂f∗(y⋆) ⇏ x̂ ∈ ∂g∗(−y).

If f∗ is differentiable ∂f∗(y) is a singleton (unique) for all y. This means
that for every y⋆, x⋆ is unique such that{

x⋆ = ∇f∗(y⋆)
x⋆ ∈ ∂g∗(−y⋆).

In this case, the subgradient selector is the gradient and x̂ = sf∗(y⋆) =
∇f∗(y⋆) = x⋆ will recover the solution.
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SOLUTION 3.18
Fermat’s rule gives

0 ∈ LT∂f(Lx) + ∂g(x)

⇔

{
y ∈ ∂f(Lx)

−LT y ∈ ∂g(x)

⇔

{
Lx ∈ ∂f∗(y)

x ∈ ∂g∗(−LT y)

⇔ 0 ∈ f∗(y)− L∂g∗(−LT y)

⇒ 0 ∈ ∂(f∗ + g∗ ◦ −LT )(y)

which is Fermat’s rule (optimality conditions) for the dual problem

minimize
y

(f∗(y) + g∗(−LT y)).

SOLUTION 3.19
The general dual problem is

minimize f∗(µ) + g∗(−LTµ).

1. We have f∗(µ) = 1
2λ∥µ∥

2
2 (Exercise 3.1-1 and 3.14-2) and g∗(ν) =

∑n
i=1 max(0, 1−

νi) (Exercise 3.1-6 and 3.5 and using g∗∗ = g). Therefore the dual problem
is

minimize 1
2λ∥µ∥

2
2 +

n∑
i=1

max(0, 1 + (LTµ)i).

Since the functions are convex and the primal and dual constraint quali-
fications hold, we can recover a primal solution from the primal-dual op-
timality condition Lx = ∂f∗(µ) = 1

λµ ⇒ x = 1
λL

−1µ, which holds with
equality since f∗ is differentiable, i.e., ∂f∗(µ) is a singleton.

2. We have f∗(µ) = ∥µ∥1 (Exercise 3.6) and g∗(ν) = 1
2λ∥ν+b∥

2
2 (Exercise 3.1-2).

Therefore the dual problem is

minimize ∥µ∥1 + 1
2λ∥ − LTµ+ b∥22.

Since the functions are convex and the primal and dual constraint qualifi-
cations hold, we can recover a primal solution from the primal-dual opti-
mality condition x = ∂g∗(−LTµ) = 1

λ(−L
Tµ+ b), which holds with equality

since g∗ is differentiable, i.e., ∂g∗(−LTµ) is a singleton.

SOLUTION 3.20
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1. By definition, we have

f∗(s) = sup
z

(sT z − f(z)) ≥ sTx− f(x),

as desired.

2. Suppose that s ∈ ∂f(x). We have that

s ∈ ∂f(x)

⇔ f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn

⇔ sTx− f(x) ≥ sT y − f(y) for all y ∈ Rn

⇔ sTx− f(x) ≥ sup
y

(sT y − f(y))

⇔ sTx− f(x) ≥ f∗(s)

⇔ f∗(s) ≤ sTx− f(x),

as desired.

3. Suppose that f∗(s) = sTx − f(x). In partial, f∗(s) ≤ sTx − f(x). However,
the above equivalences gives that s ∈ ∂f(x), as as desired.

SOLUTION 3.21

1. Suppose that s ∈ ∂f(x). Fenchel-Young’s equality (see Exercise 3.20) gives
that

f∗(s) = sTx− f(x).

We know that f∗∗ ≤ f (see Exercise 3.2). We get that

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx ≥ 0,

where the last inequality follows from Fenchel Young’s inequality (see Ex-
ercise 3.2-1). Thus,

f∗∗(x) = sTx− f∗(s),

which is equivalent to x ∈ ∂f∗(s) by Fenchel-Young’s equality.

2. Apply the previous result to f∗.

3. Use above the results and that f∗∗ = f for closed convex f .

SOLUTION 3.22

Introduce h(y) = f(y + c). Then g(x) = h(Lx) and

g∗(s) = sup
x

(sTx− h(Lx))

= − inf
x
(h(Lx) + ls(x)),
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where ls(x) = −sTx. The conjugates satisfy

h∗(µ) = sup
y

(µT y − f(y + c))

= sup
v

(µT (v − c)− f(v))

= sup
v

(µT v − f(v))− µT c

= f∗(µ)− µT c

l∗s(ν) = sup
x

(νTx+ sTx)

= sup
x

((ν + s)Tx)

= ι{0}(ν + s).

Fenchel strong duality holds (constraint qualification is satisfied since dom ls =
Rn), and we get that

g∗(s) = − inf
x
(h(Lx) + ls(x))

= − sup
µ

(−h∗(µ)− l∗s(−LTµ))

= inf
µ
(h∗(µ) + l∗s(−LTµ))

= inf
µ:s=LTµ

(f∗(µ)− µT c).

SOLUTION 3.23

Since f is closed convex, we have that f(x) = f∗∗(x) = sups∈Rn(xT s − f∗(s)) for
each x ∈ Rn. Therefore,

sup
x∈Rn

(f(x)− g(x)),

is equal to

sup
x∈Rn

sup
s∈Rn

(xT s− f∗(s)− g(x)).

However, we may switch the supremums to get the equal problem

sup
s∈Rn

sup
x∈Rn

(xT s− g(x)− f∗(s)).

But this is equal to

sup
s∈Rn

(g∗(s)− f∗(s)),

since g∗(s) = supx∈Rn(xT s− g(x)) for each s ∈ Rn. This completes the proof.
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Solutions to Chapter 4

SOLUTION 4.1
That x⋆ is a fixed point means that

x⋆ = x⋆ − γ∇f(x⋆) ⇔ 0 = ∇f(x⋆).

The first order condition for differentiable convex functions then gives that x⋆
minimizes f .

SOLUTION 4.2

By definition,

z = proxγf (x) = argmin
y

(f(y) + 1
2γ ∥y − x∥22).

Fermat’s rule and subdifferential calculus rules gives that z satisfies

0 ∈ ∂f(z) + γ−1(z − x).

If x = z = proxγf (x), then this reduces to 0 ∈ ∂f(x), and x minimizes f .

SOLUTION 4.3
By definition,

x = proxγg(x− γ∇f(x)) = argmin
z

(
g(z) + 1

2γ ∥z − (x− γ∇f(x))∥22
)
.

Fermat’s rule and subdifferential calculus rules gives that this is equivalent to

0 ∈ ∂g(x) + 1
γ (x− (x− γ∇f(x)))

= ∂g(x) +∇f(x)
= ∂(g + f)(x).

This gives that x is a minimum of f + g.

SOLUTION 4.4
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1. The function is smooth so gradient descent works. No need to use prox.

2. First two parts are smooth, third is not smooth but separable and easy to
prox on, proximal gradient works but gradient-descent doesn’t.

3. Both functions are smooth, second is separable and easy to prox on. Gra-
dient descent and proximal gradient both work.

4. First function is smooth, second is easy to prox on but not smooth. Proximal
gradient is the only alternative.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first term is differentible, but not smooth (it grows too quick for large
x), and the second is proximable but not differentiable. So none of the
method works.

7. First term is smooth, second is proximable and seperable. Proximal gradi-
ent works.

8. The second term is neither smooth nor simple to prox on, nether of the
methods would be efficient.

9. The first part is smooth, and the second part is smooth and easy to prox
on. Both gradient descent and proximal gradient therefore works.

SOLUTION 4.5

1. ∥Ax− b∥22 is not strongly convex unless ATA is invertible. Since A ∈ Rm×n

with m < n, ATA has at most rank m and is therefore not invertible, and
the primal is not stronly convex. The dual will therefore not be smooth,
thus neither of the methods work.

2. 1
2x

TQx+ bTx is strongly convex since Q ≻ 0 so its dual is smooth. The dual
of the last part is easy to prox on but not smooth. Proximal gradient works.

3. First function is not strongly convex so dual of this part is not smooth and
not proximable. However, if we let f(x) = 1

2∥x − b∥22 and g(x) = ∥x∥22,
the problem is minx f(Ax) + g(x) and the dual can be written minµ f

∗(µ) +
g∗(−ATµ). f∗(µ) is convex, separable, smooth and proximable and g∗(−ATµ)
is smooth and strongly convex. Hence, any of the methods work.

4. First function is not strongly convex so dual is not smooth and it is not easy
to prox on. Doing the same trick as for the previous problem doesn’t work
since ∥Ax∥2 is not smooth. Hence none of the methods works.

5. Neither is strongly convex so neither of the duals are smooth. None of the
methods works.

6. Neither is strongly convex (e∥x∥4 ≈ ∥x4∥ + 1 for small x) so neither of the
duals are smooth. None of the methods works.

7. First term is strongly convex so dual is smooth, second is proximable so the
same is true for the dual. Proximal gradient works.
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8. With f(x) = ι[−1,1](x), g(x) = 1
2x

TQx, the primal problem can written as
minx f(Lx) + g(x) so the dual is minµ f

∗(µ) + g∗(−Lµ), where g∗(µ) =
1
2x

TQ−1x, i.e g∗(−Lµ) = 1
2x

TLTQ−1Lx which is smooth. f∗ is proximable
so proximal gradient works.

9. Neither of the functions are strongly convex so the neither of the duals will
be smooth. Hence, none of the algorithms work.

SOLUTION 4.6

1. From Exercise 3.1 we know that h∗(µi) = ι[−1,1](µi) if h(xi) = |xi|. Since
f(x) = ∥x∥1 =

∑n
i=1 h(xi) is separable, we know that f∗(µ) =

∑n
i=1 h

∗(µi) =∑n
i=1 ι[−1,1](µi) = ι−1≤µ≤1(µ), where 1 is the vector of all ones.

2. From Exercise 3.1 we know that g∗(µ) = 1
2µ

TQ−1µ.

3. One possible dual problem is given by

minimize
µ

f∗(µ) + g∗(−µ).

E.g., let L = I in Exercise 3.18. Similarly, another dual problem is given
by

minimize
µ

f∗(−µ) + g∗(µ).

In the remainder of the exercise, we will only consider the first dual prob-
lem.

4. Under the assumptions on f and g, we know that f∗ is closed, convex and
proximable, and g∗ is closed convex and smooth. Therefore, for the dual
problem

minimize
µ

f∗(µ) + g∗(−µ),

we get, for some appropriate γk > 0, that

µk+1 = proxγkf∗ (µk − γk∇(g∗ ◦ −I)(µk)) ,

is a computationally reasonable step for the proximal gradient method.

5. Consider our particular choice of f∗ and g∗. Differentiation yields

∇(g∗ ◦ −I)(µk) = −∇g∗(−µk) = Q−1µk.

By definition, the proximal operator of f∗ is

proxγkf∗(z) = argmin
µ

(
ι−1≤µ≤1(µ) +

1
2γk

∥µ− z∥22
)

= argmin
−1≤µ≤1

∥µ− z∥22.
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Note that both the constraint set and the objective function of this argmin-
problem are separable, yielding the following simple problem

(proxγkf∗(z))i = argmin
µi∈[−1,1]

|µi − zi|2 =


1 if zi > 1

−1 if zi < −1

zi otherwise
.

Thus, the proximal gradient method step for the dual problem becomes
vk = µk − γkQ

−1µk

(µk+1)i =


1 if (vk)i > 1,

−1 if (vk)i < −1,

(vk)i otherwise,
∀i ∈ {1, . . . , n}.

SOLUTION 4.7

We start with

µk+1 = proxγkf∗
(
µk − γk∇(g∗ ◦ −LT )(µk)

)
.

Note that ∇(g∗ ◦ −LT )(µk) = −L∇g∗(−LTµk). Therefore, the proximal gradient
method step can be rewritten as

xk = ∇g∗(−LTµk),

vk = µk + γkLxk,

µk+1 = proxγkf∗ (vk) .

Using Moreau decomposition, we have

proxγkf∗(z) = z − γkproxγ−1
k f∗∗(γ

−1
k z) = z − γkproxγ−1

k f (γ
−1
k z).

The last equality holds since f = f∗∗, by closed convexity of f . Using this, we
can write the proximal gradient method step as

xk = ∇g∗(−LTµk),

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk).

Recall the subdifferential formula for g∗, i.e.

∂g∗(µ) = Argmax
x

(
µTx− g∗∗(x)

)
= Argmax

x

(
µTx− g(x)

)
.

The last equality holds since g = g∗∗, by closed convexity of g. However, we know
that g∗ is smooth convex, and therefore, ∂g∗(µ) = {∇g∗(µ)}. In particular,

∇g∗(µ) = argmax
x

(
µTx− g(x)

)
= argmin

x

(
g(x)− µTx

)
.
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This lets us write the proximal gradient method step as
xk = argminx

(
g(x) + µTkLx

)
,

vk = µk + γkLxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk),

as desired.

SOLUTION 4.8

Recall that Exercise 4.6 gives the dual proximal gradient method step
vk = µk − γkQ

−1µk

(µk+1)i =


1 if (vk)i > 1,

−1 if (vk)i < −1,

(vk)i otherwise,
∀i ∈ {1, . . . , n}.

(7.12)

We must verify that 
xk = argminx

(
g(x) + µTk x

)
,

vk = µk + γkxk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk),

(7.13)

gives the same step for

f(x) = ∥x∥1 and g(x) = 1
2x

TQx.

To verify correctness, note that

argmin
x

(
g(x) + µTk x

)
= argmin

x

(
1
2x

TQx+ xTµk
)
= −Q−1µk.

Thus, we can write (7.13) as{
vk = µk − γkQ

−1µk,

µk+1 = vk − γkproxγ−1
k f (γ

−1
k vk).

(7.14)

Since f(x) = ∥x∥1 =
∑n

i=1 |xi| is separable, so is proxγf . From Exercise 2.15 we
then get

(proxγf (z))i =


zi + γ if zi < −γ,
0 if − γ ≤ zi ≤ γ,

zi − γ if zi > γ,

∀i ∈ {1, . . . , n}.
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We can then calculate µk+1 in (7.14) as

(µk+1)i = (vk)i − γk(proxγ−1
k f (γ

−1
k vk))i

= (vk)i − γk


γ−1
k (vk)i + γ−1

k if γ−1
k (vk)i < −γ−1

k ,

0 if − γ−1
k ≤ γ−1

k (vk)i ≤ γ−1
k ,

γ−1
k (vk)i − γ−1

k if γ−1
k (vk)i > γ−1

k ,

= (vk)i −


(vk)i + 1 if (vk)i < −1,

0 if − 1 ≤ (vk)i ≤ 1,

(vk)i − 1 if (vk)i > 1,

=


−1 if (vk)i < −1,

(vk)i if − 1 ≤ (vk)i ≤ 1,

1 if (vk)i > 1,

∀i ∈ {1, . . . , n}.

This establishes the desired equality.

SOLUTION 4.9

Using the hint we get, with x = xk, that

f(y) ≤ f(xk) +∇f(y)T (xk − y) + β
2 ∥xk − y∥22

< f(xk) +∇f(y)T (xk − y) + 1
2γk

∥xk − y∥22, ∀y ∈ Rn.

The function

g(y) = f(xk) +∇f(y)T (xk − y) + 1
2γk

∥xk − y∥22,

is then a majorizer to f , i.e., f ≤ g. What remain to be shown is that

xk+1 = argmin
y

g(y).

From Fermat’s rule we know this holds if and only if

∇g(xk+1) = 0.

Straight forward calculations show that this is equivalent to

xk+1 = xk − γk∇f(xk),

as desired.
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Solutions to Chapter 5

SOLUTION 5.1
Rearranging the cost yield

N∑
i=1

log(1 + e−yi(w
T xi+b))

=
∑

∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log(1 + e−(wT xi+b))

=
∑

∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log
(
1 + ew

T xi+b

ewT xi+b

)
=

∑
∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log(1 + ew
T xi+b)−

∑
∀i:yi=1

log(ewT xi+b)

=
N∑
i=1

log(1 + ew
T xi+b)−

∑
∀i:yi=1

log(ewT xi+b)

=
N∑
i=1

log(1 + ew
T xi+b)−

∑
∀i:yi=1

wTxi + b.

From here we can go over to the new labels, yi = 1 → ŷi = 1 and yi = −1 → ŷi = 0.

=

N∑
i=1

log(1 + ew
T xi+b)−

∑
∀i:ŷi=1

wTxi + b

=

N∑
i=1

log(1 + ew
T xi+b)−

N∑
i=1

ŷi(w
Txi + b)

=

N∑
i=1

(
log(1 + ew

T xi+b)− ŷi(w
Txi + b)

)
.

SOLUTION 5.2
We first note that all terms in the sum are positive for all finite (w, b). Let ui =
xTi w+ b, and each term reduces to log(1+eui)−yi(ui). For yi = 0, log(1+eui) > 0
since 1 + eui > 1. For yi = 1, log(1 + eui)− ui = log(1+eui

eui ) > 0 since 1+eui
eui > 1.
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Now, take an i with yi = 0. Let (w, b) = t(w̄, b̄), then

log(1 + ex
T
i w+b)− yi(x

T
i w + b) = log(1 + et(x

T
i w̄+b̄)) = log(1 + etex

T
i w̄+b̄)

≤ log(1 + et) → 0

as t → −∞, where ex
T
i w̄+b̄ ∈ (0, 1) (since xTi w̄ + b̄ < 0) has been used in the

inequality.

Instead, take i with yi = 1. Then

log(1 + ex
T
i w+b)− yi(x

T
i w + b) = log(1 + et(x

T
i w̄+b̄))− t(xTi w̄ + b̄)

= log(1+etex
T
i w̄+b̄

ete(x
T
i
w̄+b̄)

)

= log(1 + e−te−(xT
i w̄+b̄))

≤ log(1 + e−t) → 0

as t → ∞, where e−(xT
i w̄+b̄) ∈ (0, 1) (since xTi w̄ + b̄ > 0) has been used in the

inequality.

Hence, the infimum is 0 which is not attained by any (w, b) since the cost is
positive for all (finite) (w, b).

SOLUTION 5.3
First, consider the case when λ = 0. The objective function is

1
2∥ax− b∥22.

By Fermat’s rule, we get that the solution in this case is

0 = aT (axls − b) or xls =
aT b
∥a∥22

.

Now, consider the case when λ > 0. Using the subdifferential calculus rules (CQ
holds since both functions have full domain) and Fermat’s rule, the optimality
condition is given by

0 ∈ ∥a∥22x− aT b+ λ

{
sgn(x) if x ̸= 0,

[−1, 1] if x = 0.

Thus, x = 0 is optimal if and only if aT b ∈ [−λ, λ] or equivalently λ ≥
∣∣aT b∣∣. It

remains to consider the case λ <
∣∣aT b∣∣. But then x ̸= 0 by necessity, and x is

optimal if and only if

0 = ∥a∥22x− aT b+ λ sgn(x) or x = aT b
∥a∥22

− λ
∥a∥22

sgn(x).

However, since
∣∣aT b∣∣ > λ by assumption, sgn(x) = sgn(aT b) = sgn(xls) must hold

by necessity. Therefore, the solution in this case is given by

x = xls − λ
∥a∥22

sgn(xls).
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This concludes the proof.

SOLUTION 5.4

• Alternative 1:
Optimality conditions are

0 ∈ AT (Ax− b) + λ

 g(x1)...
g(xm)

 ,
where

g(xi) =


−1 if xi < 0

[−1, 1] if xi = 0

1 if xi > 0

For x = 0, the optimality condition reads

0 ∈ −AT b+ λ[−1, 1]m

which holds for all λ ≥ maxi(|(AT b)i|) = ∥AT b∥∞.

• Alternative 2:
Let f(x) = 1

2∥Ax − b∥22 + λ∥x∥1. Using Hölder’s inequality, we get the
following lower bound.

f(x) ≥ 1
2∥Ax− b∥22 + ∥AT b∥∞∥x∥1

≥ 1
2∥Ax− b∥22 + bTAx

= 1
2∥Ax∥

2
2 +

1
2∥b∥

2
2

≥ 1
2∥b∥

2
2.

Furthermore f(0) = 1
2∥b∥

2
2 so the lower bound is attained at x = 0, there-

fore x = 0 is optimal.

SOLUTION 5.5
Both functions of the problem have full domain so CQ holds. Fermat’s rule then
give that x = (x1, x2) is a solution if

0 ∈ ATAx−AT b+ λ∂(∥ · ∥1)(x)

⇐⇒ 0 ∈
2∑

j=1

aTi ajxj − aTi b+ λ∂(| · |)(xi) ∀i ∈ {1, 2}
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where ai is the ith column of A. The equivalence hold since ∥x∥1 = |x1| + |x2|.
Inserting the subdifferential of | · | give

0 ∈ x1 + aT1 a2x2 − aT1 b+ λ

{
sgn(x1) if x1 ̸= 0

[−1, 1] if x1 = 0

0 ∈ aT2 a1x1 + x2 − aT2 b+ λ

{
sgn(x2) if x2 ̸= 0

[−1, 1] if x2 = 0

(7.15)

where the fact that ∥ai∥2 = 1 was used. With the optimality conditions in place,
we can now look at the four cases.

• Assume x ∈ X0,0, then (7.15) is equivalent to{
aT1 b ∈ λ[−1, 1]

aT2 b ∈ λ[−1, 1]
.

This in turn is equivalent to maxi(|aTi b|) = ∥Ab∥∞ ≤ λ, i.e., Λ0,0 = {λ : λ ≥
|aT1 b|, λ ≥ |aT2 b|}.

• Assume x ∈ X1,0, then (7.15) is equivalent to{
0 = x1 − aT1 b+ λ sgn(x1)
0 ∈ aT2 a1x1 − aT2 b+ λ[−1, 1]

.

If aT1 b = 0 the first condition can’t be satisfied since x ̸= 0 by assumption,
i.e., if aT1 b = 0 then Λ1,0 = ∅.

From here on, we assume aT1 b ̸= 0. The first condition can be re-written to

0 = sgn(x1)|x1| − aT1 b+ λ sgn(x1) ⇐⇒ aT1 b
sgn(x1)

− |x1| = λ

Since λ > 0 this implies sgn(x1) = sgn(aT1 b) and

0 < λ = |aT1 b| − |x1| < |aT1 b|

since by assumption is x1 ̸= 0. Multiplying both rows in the original condi-
tion with sgn(x1) = sgn(aT1 b) =

|aT1 b|
aT1 b

gives

{
|x1| = |aT1 b| − λ

0 ∈ aT2 a1|x1| − |aT1 b|
aT2 b

aT1 b
+ λ[−1, 1]

=⇒ 0 ∈ |aT1 b|(aT2 a1 −
aT2 b

aT1 b
)− λ(aT2 a1 + [−1, 1]).

The last inclusion can be written as

λ(aT2 a1 − 1) ≤ |aT1 b|(aT2 a1 −
aT2 b

aT1 b
) ≤ λ(aT2 a1 + 1)

Since λ < |aT1 b| and |aT2 a1| < 1, this implies
∣∣∣aT2 b

aT1 b

∣∣∣ < 1, if
∣∣∣aT2 b

aT1 b

∣∣∣ ≥ 1 then
Λ1,0 = ∅.
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We can re-formulate these conditions as

|aT1 b|
aT2 a1 −

aT2 b

aT1 b

aT2 a1 + sgn(aT2 a1 −
aT2 b

aT1 b
)
≤ λ

Further simplification and including the λ < |aT1 b| condition finally give

|aT1 b||
aT2 b

aT1 b
− aT1 a2|

1− aT1 a2 sgn(a
T
2 b

aT1 b
− aT1 a2)

≤ λ < |aT1 b|. (7.16)

To summarize, the set of possible λ is then given by

Λ1,0 =

{
∅ if aT1 b = 0 or |aT2 b| ≥ |aT1 b|
{λ s.t. (7.16) is satisfied.} otherwise

• By symmetry is the set Λ0,1 the same as Λ1,0 but with the index swapped.

• Assume x ∈ X1,1, then (7.15) is equivalent to

0 = ATAx−AT b+ λ

[
sgn(x1)
sgn(x2)

]
where matrix ATA and it’s inverse is given by the following

ATA =

[
1 aT1 a2

aT1 a2 1

]
, (ATA)−1 = 1

1−(aT1 a2)2

[
1 −aT1 a2

−aT1 a2 1

]
.

The inverse exists by assumption since |aT1 a2| < 1. Multiplying the condi-
tion by the inverse gives

x = (ATA)−1AT b− λ(ATA)−1

[
sgn(x1)
sgn(x2)

]
.

We define

S =

[
sgn(x1) 0

0 sgn(x2)

]
and multiply with S from the left to get

0 <

[
|x1|
|x2|

]
= S(ATA)−1AT b− λS(ATA)−1

[
sgn(x1)
sgn(x2)

]
.

The last term is

S(ATA)−1

[
sgn(x1)
sgn(x2)

]
= 1

1−(aT1 a2)2

[
sgn(x1) 0

0 sgn(x2)

] [
1 −aT1 a2

−aT1 a2 1

] [
sgn(x1)
sgn(x2)

]
=

1−aT1 a2 sgn(x1x2)

1−(aT1 a2)2
1

> 0
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since |aT1 a2| < 1. In order for the condition to have a solution we need
S(ATA)−1AT b > 0. In other words, sgn(xi) = sgn(x̂i)where x̂ = (ATA)−1AT b
is the leasts squares solution. Inserting this back into the condition yields

0 <

[
|x̂1|
|x̂2|

]
− λ

1−aT1 a2 sgn(x̂1x̂2)

1−(aT1 a2)2
1.

To summarize

Λ1,1 = {λ : λ <
1−(aT1 a2)2

1−aT1 a2 sgn(x̂1x̂2)
min(|x̂1|, |x̂2|), x̂ = (ATA)−1AT b}.

To show that the Λi,j sets are disjoint we note there are three different cases
of interest regarding the data A and b. Either is |aT1 b| > |aT2 b|, |aT2 b| > |aT1 b|
or |aT1 b| = |aT2 b|. At least one of Λ1,0 and Λ0,1 is then empty since |aT1 b| > |aT2 b|
and |aT2 b| > |aT1 b| can’t hold at the same time. From symmetry it is enough to
consider only one these cases, here we choose the case when |aT1 b| > |aT2 b| and
Λ1,0 is non-empty. We will later cover the remaining case where |aT1 b| = |aT2 b|
and both Λ1,0 and Λ0,1 are empty.

Assume λ0,0 ∈ Λ0,0, λ1,0 ∈ Λ1,0 and λ1,1 ∈ Λ1,1, if we show

λ1,1 < λ1,0 < λ0,0

the three set are disjoint and sparsity increase with λ. Since λ1,0 < |aT1 b| and
|aT1 b| ≤ λ0,0 we have λ1,0 < λ0,0. For λ1,1 and λ1,0 we have

λ1,1 <
1− (aT1 a2)

2

1− aT1 a2 sgn(x̂1x̂2)
min(|x̂1|, |x̂2|),

|aT1 b||
aT2 b

aT1 b
− aT1 a2|

1− aT1 a2 sgn(a
T
2 b

aT1 b
− aT1 a2)

≤ λ1,0

and we wish to show that these bounds are the same. We start by showing that
min(|x̂1|, |x̂2|) = |x̂2|, i.e., |x̂2| ≤ |x̂1|. Using the definition of x̂

x̂ = (ATA)−1AT b = 1
1−(aT1 a2)2

[
aT1 b− aT1 a2a

T
2 b

aT2 b− aT1 a2a
T
1 b

]
means that this is equivalent to

|aT2 b− aT1 a2a
T
1 b| ≤ |aT1 b− aT1 a2a

T
2 b| ⇐⇒ |a

T
2 b

aT1 b
− aT1 a2| ≤ |1− aT1 a2

aT2 b

aT1 b
|.

This can be equivalently written as
aT2 b

aT1 b
− aT1 a2 ≤ 1− aT1 a2

aT2 b

aT1 b

aT1 a2 −
aT2 b

aT1 b
≤ 1− aT1 a2

aT2 b

aT1 b

⇐⇒

0 ≤ 1 + aT1 a2 − aT1 a2
aT2 b

aT1 b
− aT2 b

aT1 b
= (1 + aT1 a2)(1−

aT2 b

aT1 b
)

0 ≤ 1− aT1 a2 − aT1 a2
aT2 b

aT1 b
+

aT2 b

aT1 b
= (1− aT1 a2)(1 +

aT2 b

aT1 b
)

.

This hold since |aT1 a2| < 1 and aT2 b

aT1 b
< 1 by assumption. The upper bound on λ1,1

then reads

λ1,1 <
1− (aT1 a2)

2

1− aT1 a2 sgn(x̂1x̂2)
|x2| =

|aT1 b||
aT2 b

aT1 b
− aT1 a2|

1− aT1 a2 sgn(x̂1x̂2)
.
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This is the same as the lower bound on λ1,0 since

sgn(x̂1x̂1) = sgn((aT1 b− aT1 a2a
T
2 b)(a

T
2 b− aT1 a2a

T
1 b))

= sgn((1− aT1 a2
aT2 b

aT1 b
)(

aT2 b

aT1 b
− aT1 a2))

= sgn(a
T
2 b

aT1 b
− aT1 a2)

since |aT1 a2| < 1 and |aT2 b|
|aT1 b| < 1. This concludes the proof for when |aT1 b| > |aT2 b|.

When |aT1 b| = |aT2 b|, both Λ1,0 = ∅ and Λ0,1 = ∅ and we want to show

λ1,1 <
1−(aT1 a2)2

1−aT1 a2 sgn(x̂1x̂2)
min(|x̂1|, |x̂2|) = |aT1 b| = |aT2 b| ≤ λ0,0.

We know that
1

1−aT1 a2 sgn(x̂1x̂2)
|x̂1| = 1

1−aT1 a2 sgn(x̂1x̂2)
|aT2 b||

aT1 b

aT2 b
− aT1 a2|

=
sgn(

aT1 b

aT2 b
−aT1 a2)

1−aT1 a2 sgn(x̂1x̂2)
|aT2 b|(

aT1 b

aT2 b
− aT1 a2)

= 1

sgn(
aT1 b

aT2 b
−aT1 a2)−aT1 a2

|aT2 b|(
aT1 b

aT2 b
− aT1 a2)

where it was used that sgn(x̂1x̂2) = sgn(a
T
1 b

aT2 b
− aT1 a2). We now note that aT1 b

aT2 b
=

sgn(a
T
1 b

aT2 b
) since |aT1 b| = |aT2 b|. Furthermore, we then also have

sgn(a
T
1 b

aT2 b
− aT1 a2) = sgn(sgn(a

T
1 b

aT2 b
)− aT1 a2) = sgn(sgn(a

T
1 b

aT2 b
)) = sgn(a

T
1 b

aT2 b
)

since |aT1 a2| < 1. This yields

1
1−aT1 a2 sgn(x̂1x̂2)

|x̂1| = 1

sgn(
aT1 b

aT2 b
)−aT1 a2

|aT2 b|(sgn(a
T
1 b

aT2 b
)− aT1 a2)

= |aT2 b|.

By symmetry, the analogue holds for 1
1−aT1 a2 sgn(x̂1x̂2)

|x̂2|, which then yield the
desired inequality

λ1,1 < |aT1 b| = |aT2 b| ≤ λ0,0.

This concludes the proof for the |aT1 b| = |aT2 b| case and for the statement in its
entirety.

Note, in all cases can the distances |λ1,0 − λ0,0| and |λ1,1 − λ1,0| can be made
arbitrary small. This is to be expected since otherwise there would be λ for which
no solution exists. Since the Lasso problem is strongly convex for all λ > 0 we
know that this is not the case.

SOLUTION 5.6
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1. Let t > 0, then t(w, b) also separate the data. Inserting this into the cost
yields

n∑
i=1

max
(
0, 1− tyi(x

T
i w + b)

)
=

n∑
i=1

max
(
0, 1− t|xTi w + b|)

)
≥ 0.

Choosing any t ≥ (maxi |xTi w+b|)−1 then give a cost of 0 and therefore t(w, b)
must be optimal. The set of optimal points is unbounded since ∥t(w, b)∥ =
t∥(w, b)∥, ∥(w, b)∥ > 0 and t ≥ (maxi |xTi w + b|)−1 can be made arbitrary
large.

2. Choosing an arbitrary w and inserting into the cost gives
n∑

i=1

max
(
0, 1− yi(x

T
i w + b)

)
=

n∑
i=1

max
(
0, 1− xTi w − b)

)
≥ 0.

Choosing b ≥ 1− mini x
T
i w give cost 0 and therefore (w, b) is optimal. The

set of optimal points is unbounded since ∥(w, b)∥2 = ∥w∥2 + |b|2, were b ≥
1− mini x

T
i w, clearly can be made arbitrary large.

3. Letting w = 0 and inserting into the cost gives
n∑

i=1

max
(
0, 1− yi(x

T
i w + b)

)
+ λ

2∥w∥
2
2 =

n∑
i=1

max (0, 1− b) ≥ 0.

Any b ≥ 1 yields a cost of 0 and is therefore optimal. The set of optimal
points is unbounded since ∥(w, b)∥ = |b|, were b ≥ 1 can be made arbitrary
large.

SOLUTION 5.7
The regularization term is the same so we focus on the sum of hinge-losses.

n∑
i=1

max
(
0, 1− yi(x

T
i w + b)

)
= 1T

max
(
0, 1− y1(x

T
1 w + b)

)
...

max
(
0, 1− yn(x

T
nw + b)

)


= 1T max

0,

1− y1(x
T
1 w + b)
...

1− yn(x
T
nw + b)


 = 1T max

0,1 −

y1(x
T
1 w + b)

...
yn(x

T
nw + b)




= 1T max

0,1 −


y1x

T
1 w
...

ynx
T
nw

+

y1b...
ynb



 = 1T max

0,1 −


y1x

T
1

...
ynx

T
n

w + b

y1...
yn



 .

We can now identify X = [y1x1, . . . , ynxn] and ϕ = (y1, . . . , yn).

SOLUTION 5.8
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1. The function f is a separable sum of hinge-losses, h(x) = max(0, 1− x), i.e.

f(x) =

n∑
i=1

max(0, 1− xi) =
n∑

i=1

h(xi).

The conjugate f∗ is then

f∗(µ) =
n∑

i=1

h∗(µi) =
n∑

i=1

µi + ι[−1,0](µi) = 1Tµ+ ι[−1,0](µ).

See Exercises 3.1 and 3.5. The conjugate of g is

g∗(νw, νb) = sup
w,b

((νw, νb)
T (w, b)− λ

2∥w∥
2
2)

= sup
w

(νTww − λ
2∥w∥

2
2) + sup

b
(νbb)

= 1
2λ∥νw∥

2
2 + ι{0}(νb).

See Exercise 3.1. Note that

g∗
(
−LTµ

)
= g∗

(
−
[
X
ϕT

]
µ

)
= 1

2λ∥ −Xµ∥22 + ι{0}
(
−ϕTµ

)
.

The dual problem becomes

min 1Tµ+ 1
2λ∥ −Xµ∥22 + ι[−1,0](µ) + ι{0}

(
−ϕTµ

)
,

or written differently

minimize 1Tµ+ 1
2λµ

TXTXµ
subject to −1 ≤ µ ≤ 0

ϕTµ = 0

2. We first note that CQ hold for the dual problem as long as there are data
points of both classes, i.e., ϕ has both positive and negative elements. In-
deed, if all elements of ϕ have the same sign, the only µ in dom g∗ ◦ −LT is
µ = 0, however, 0 is on the relative boundary of dom f∗.

A dual optimal point µ must then satisfy

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)

⇐⇒

{
L(w, b) ∈ ∂f∗(µ)

(w, b) ∈ ∂g∗(−LTµ)

⇐⇒

{
∂f(L(w, b)) ∋ µ

∂g((w, b)) ∋ −LTµ

⇐⇒ 0 ∈ LT∂f(L(w, b)) + ∂g((w, b)).

Hence, (w, b) is a solution to the primal problem and we can recover (w, b)
from {

L(w, b) ∈ ∂f∗(µ)

(w, b) ∈ ∂g∗(−LTµ)

110



The second condition yields

w = −1
λ Xµ and b ∈ R,

since ∂ι{0}(s) = R if s = 0 and ∂ι{0}(s) = ∅ otherwise, and that −ϕTµ = 0
for any dual optimal µ. However, we need something else to recover the
optimal b. The first condition gives

[XT , ϕ](w, b) = XTw + bϕ ∈ ∂f∗(µ),

and we note that

(∂f∗(µ))i =


1 if − 1 < µi < 0,

[1,∞] if µi = 0,

[−∞, 1] if µi = −1,

∅ otherwise.

If −1 < µi < 0 for any i, we see that we can determine b uniquely, i.e., take
b such that

yix
T
i w + byi = 1 ⇐⇒ b = y−1

i − xTi w = yi − xTi w

where xi and yi denote data and class label defined in Exercise 5.6 and 5.7.

3. From the previous task we know that

w = 1
λXµ = 1

λ

n∑
i=1

xiµi =
1
λ

∑
i:µi ̸=0

xiµi.

Clearly w can be recovered by only considering xi s.t. µi ̸= 0. Since b =
yi − xTi w for i s.t. −1 < µi < 0 so can b.

It remains to show that µi < 0 means that xi is support vector. From the
primal-dual optimality condition we know that

[XT , ϕ](w, b) = XTw + bϕ ∈ ∂f∗(µ).

The ith coordinate of the inclusion problem can be written as

yi(x
T
i w + b) ∈


1 if − 1 < µi < 0,

[1,∞] if µi = 0,

[−∞, 1] if µi = −1,

∅ otherwise.

If µi < 0 this means yi(xTi + b) ≤ 1, or equivalently 0 ≤ 1− yi(x
T
i + b), and

xi is a support vector.

SOLUTION 5.9
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1. True. See the modelmw(x) as a function ofw instead of x,mw(x) = fx(w) =
wTϕ(x). Clearly, fx(w) is linear in w since ϕ(x) does not depend on w and
therefore is constant. Since yi also does not depend on w is L(mw(xi), yi) =
L(fxi(w), yi) a composition between convex and linear, which is convex. The
full cost is then a sum of convex functions which is convex.

2. False. Consider a two layer network with identity activation functions and
R → R layers, mw(x) = w1w2x. Take the square error loss and the data
x = 1 and y = 0, then L(mw(xi), yi) = ∥w1w2∥22 = (w1w2)

2 which is not
convex. The points (0, 1) and (1, 0) both have function value 0 but the point
(0.5, 0.5) on the line between them have a positive function value.
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Solutions to Chapter 6

SOLUTION 6.1
To estimate the overall computational cost of an algorithm, we can roughly use
(iterations count) × (per-iteration cost). This quantity for the first algorithm is
5× 108 and for the second one is 108. Hence, the second algorithm had a better
performance.

SOLUTION 6.2

1. O(ρk1) ↔ A2 (linear)

2. O(ρk2) ↔ A4 (linear)

3. O(1/ log(k)) ↔ A3 (sublinear)

4. O(1/k) ↔ A1 (sublinear)

5. O(1/k2) ↔ A5 (sublinear)

SOLUTION 6.3

1. From the Q-linear rate definition we have that

Vk ≤ ρVk−1 ≤ ρ2Vk−2 ≤ . . . ≤ ρkV0,

or

Vk ≤ ρkV0,

holds inductively for any k ∈ N. This implies anR-linear rate with CL = V0.
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2. From the Q-quadratic rate definition we have that

V1 ≤ ρV 2
0

V2 ≤ ρV 2
1 ≤ ρρ2V 22

0

V3 ≤ ρV 2
2 ≤ ρρ2ρ2

2
V 23

0

V4 ≤ ρV 2
3 ≤ ρρ2ρ2

2
ρ2

3
V 24

0

...
Vk ≤ ρV 2

k−1 ≤ ρρ2ρ2
2
ρ2

3
. . . ρ2

k−1
V 2k

0 = ρ2
k−1V 2k

0 = ρ2
k
V 2k

0 /ρ,

or

Vk ≤ (ρV0)
2kρ−1,

holds inductively for any k ∈ N. Here, we used that 1+2+22+ . . .+2k−1 =
2k − 1. This implies an R-quadratic rate with ρQ = ρV0 and CQ = ρ−1.
Since Vk ≥ 0 by assumption, it will converge to zero if the upper bound,
(ρV0)

2kρ−1, converge to zero. This upper bound only converge to zero if
ρV0 < 1.

SOLUTION 6.4

1. Let n = 1 and consider f(x) = x and xk = −k for each k ∈ N. Clearly,
(xk)k∈N is a descent sequence and f(xk) goes to −∞ as k → ∞. I.e. the
sequence of function values (f(xk))k∈N does not converge in R.

2. Solution 1: Note that the sequence (f(xk))k∈N is monotone, by construction.
Moreover, (f(xk))k∈N is bounded - from above by f(x0) and from below by
B. Then, by the monotone convergence theorem, the sequence (f(xk))k∈N
converges in R.

Solution 2: First, note that the non-empty set {f(xk) : k ∈ N} in R is
bounded from below by B or equivalently, {−f(xk) : k ∈ N} is bounded
from above by −B. By the least-upper-bound property of R, there exists a
real number, say b̃ ∈ R, such that sup{−f(xk) : k ∈ N} = b̃, or equivalently,
inf{f(xk) : k ∈ N} = b, where b = −b̃. The least-upper-bound property
of R can be taken as a completeness axoim of R, or, proven as a theorem
from some other completeness axoim, e.g., the convergence of every Cauchy
sequence.

Second, recall that the definition of the infimum of a set is the greates
lower bound of that set. In particular, for any c ∈ R that is a lower bound
of {f(xk) : k ∈ N}, i.e. c ≤ f(xk) for each k ∈ N, it holds that c ≤ b.

Third, we claim that (f(xk))k∈N converges to b, or written differently, f(xk) →
b as k → ∞. This, by definition, means that for any ϵ > 0, there exists an
N ∈ N such that

|f(xk)− b| < ϵ, for each k > N,
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or equivalently,

b− ϵ < f(xk) < b+ ϵ, for each k > N.

Indeed, let ϵ > 0 be arbitrary. Since b is the greates lower bound of {f(xk) :
k ∈ N}, we get that

b− ϵ < b ≤ f(xk), ∀k ∈ N.

Moreover, there exists an N ∈ N such that

f(xN ) < b+ ϵ.

Why does such an N exist? If there did not exists any such N , b+ ϵ would
be a lower bound of the set {f(xk) : k ∈ N}. But this would contradict the
fact that b is the greates lower bound of {f(xk) : k ∈ N}, since b < b + ϵ.
Finally, note that

f(xk) ≤ f(xN ) < b+ ϵ, for each k > N,

by construction of the sequence (xk)k∈N. I.e. we established that

b− ϵ < f(xk) < b+ ϵ, for each k > N,

as desired.

3. The most basic example would be to consider any function f that is bounded
from below and let xk = x for each k ∈ N, where x ∈ Rn is not the minimum.
A slightly more interesting example would be f(x, y) = x2 + y2 and the
sequence

(xk, yk) =
(
sin(k)(1 + 1

k ), cos(k)(1 + 1
k )
)
, ∀k ∈ N,

for which f(xk, yk) = (1 + 1
k )

2 is decreasing but does not converge to the
optimum f(0, 0) = 0. There are plenty more examples. Function value
decrease is a very weak (read: useless) condition for a minimization algo-
rithm.

SOLUTION 6.5
Below you see an expanded table with the asked for ratios. We see that the
linear ratio is steadily decreasing while the quadratic ratio is more stable (up
until machine precision is achieved). Clearly the sequence appear to converge
Q-quadratically. The parameter is given by the worst case ratio, i.e., ρ ≈ 0.24.

k xk |xk − x⋆| = dk dk+1/dk dk+1/d
2
k

0 5.000000000000000 4.685076942154594 0.77804204 0.16606815
1 3.960109873126804 3.645186815281398 0.70591922 0.19365790
2 2.888130487596392 2.573207429750986 0.57679574 0.22415439
3 1.799138129515975 1.484215071670569 0.35988932 0.24247788
4 0.849076217909656 0.534153160064250 0.12138864 0.22725437
5 0.379763183818023 0.064840125972617 0.01339947 0.20665396
6 0.315791881094192 0.000868823248786 0.00017665 0.20332357
7 0.314923211324986 0.000000153479580 0.00000003 0.21226031
8 0.314923057845411 0.000000000000005 0.00000000 0.00000000
9 0.314923057845406 0.000000000000000 NA NA
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For the interested: The gradient and Hessian are
∇f(x) = ex − 2 + 2x

∇2f(x) = ex + 2,

which shows that f is strictly convex and thus has a unique minimizer. The
Newton iteration is then explicitly written as

xk+1 = xk −
exk − 2 + 2xk

exk + 2
.

SOLUTION 6.6

1. Note that

0 ≤ Qk ≤ V

ψ1(k)
+

D

ψ2(k)
→ 0 as k → ∞.

Therefore, Qk → 0 as k → ∞, by the squeeze theorem.

2. Since we have two terms (both converging to zero as k → ∞) on the r.h.s.
of the inequality, the slower term is the bottleneck and decides the rate of
convergence, that is, the smaller between ψ1 and ψ2 determines the rate
of convergence. When comparing we can ignore the constant terms. With
that in mind, the rates are as the following

(a) O(log(k)/
√
k) sublinear rate of convergence.

(b) We should compare O(1/k1−α) and O( 1
k1−α/k1−2α ) = O(1/kα). Since

α ∈ (0, 0.5), O(1/kα) is the rate of convergence.

(c) We should compare O(1/k1−α) and O( 1
k1−α/k1−2α ) = O(1/kα). Since

α ∈ (0.5, 1), O(1/k1−α) is the rate of convergence.

3. The cases in (b) and (c) are similar. We just need to compare them with
case (a). Let α ∈ (0, 0.5) and note that

log(k)/
√
k

1/kα
=

log(k)
k0.5−α

→ 0 as k → ∞.

We conclude that case (a) gives the faster rate.

SOLUTION 6.7

1. We get that

0 ≤ f(xk)− f(x⋆) ≤
V +D

∑k
i=0 γ

2
i

b
∑k

i=0 γi
≤
V +D

∑∞
i=0 γ

2
i

b
∑k

i=0 γi
→ 0 as k → ∞.

By the squeeze theorem, we have that f(xk) − f(x⋆) → 0 as k → ∞, and
therefore, f(xk) → f(x⋆) as k → ∞.
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2. In each case, the function ϕ : R+ → R+, where ϕ(i) = γi, is non-negative
and decreasing. Therefore, we obtain the following bound:

0 ≤
∫ k

0
ϕ(t)dt ≤

k∑
i=0

ϕ(i) =

k∑
i=0

γi, ∀k ∈ N.

Similarly, we also get the bound
k∑

i=0

γ2i =

k∑
i=0

ϕ(k)2 ≤
∫ k

0
ϕ2(t)dt+ ϕ2(0) ≤

∫ ∞

0
ϕ2(t)dt+ ϕ2(0), ∀k ∈ N.

Combining these bounds with the inequality given by the convergence anal-
ysis, we get the new inequality

f(xk)− f(x⋆) ≤
V +D

∑k
i=0 γ

2
i

b
∑k

i=0 γi
≤
V +D

(∫∞
0 ϕ2(t)dt+ ϕ2(0)

)
b
∫ k
0 ϕ(t)dt

, ∀k ∈ N.

(a) Now let ϕ(i) = γi = c/(i+ 1). Note that∫ ∞

0
ϕ2(t)dt+ ϕ2(0) = c2

(∫ ∞

0

1

(1 + t)2
dt+ 1

)
= c2

([
−1

1 + t

]∞
t=0

+ 1

)
= 2c2,

and ∫ k

0
ϕ(t)dt = c

∫ k

0

1

t+ 1
dt

= c [log(t+ 1)]kt=0

= c log(k + 1).

We conclude that

f(xk)− f(x⋆) ≤ V + 2Dc2

bc log(k + 1)
, ∀k ∈ N,

which shows a O(1/ log(k)) sublinear rate of convergence.

(b) Next, let ϕ(i) = γi = c/(i+ 1)α with α ∈ (0.5, 1). Note that∫ ∞

0
ϕ2(t)dt+ ϕ2(0) = c2

(∫ ∞

0

1

(1 + t)2α
dt+ 1

)
= c2

([
1

(1− 2α)(1 + t)2α−1

]∞
t=0

+ 1

)
=

2αc2

2α− 1
,

and ∫ k

0
ϕ(t)dt = c

∫ k

0

1

(t+ 1)α
dt

= c

[
1

(1− α)(t+ 1)α−1

]k
t=0

=
c

1− α

(
(k + 1)1−α − 1

)
.
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We conclude that

f(xk)− f(x⋆) ≤
V +D 2αc2

2α−1
bc

1−α ((k + 1)1−α − 1)
, ∀k ∈ N,

which shows a O(1/k1−α) sublinear rate of convergence.

3. α ∈ (0.5, 1) implies that 1− α ∈ (0, 0.5). Note that

1/k1−α

1/ log(k) =
log(k)
k1−α

→ 0 as k → ∞.

Thus, step-size (b) gives the fastest convergence rate.

SOLUTION 6.8
Let Vk = ∥xk−x⋆∥22 for each k ∈ N. The Lyapunov inequality can then be written
as

Vk ≤ Vk−1 − 2γ(f(xk)− f(x⋆)), ∀k ∈ N \ {0}.

Recursively applying the inequality gives

Vk ≤ V0 − 2γ

k∑
i=1

(f(xi)− f(x⋆)), ∀k ∈ N \ {0},

and therefore
k∑

i=1

(f(xi)− f(x⋆)) ≤ V0 − Vk
2γ

≤ V0
2γ
, ∀k ∈ N \ {0},

since Vk ≥ 0 for each k ∈ N. Then

k(f(xk)− f(x⋆)) ≤
k∑

i=1

(f(xi)− f(x⋆)) ≤ V0
2γ
, ∀k ∈ N \ {0},

since (xk)k∈N is a descent sequence for f . Finally, note that

0 ≤ f(xk)− f(x⋆) ≤ V0
2γk

→ 0 as k → ∞.

By the squeeze theorem, we have that f(xk)−f(x⋆) → 0 as k → ∞, and therefore,
f(xk) → f(x⋆) as k → ∞. Moreover, we identify a O(1/k) sublinear rate of
convergence.

SOLUTION 6.9
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1. We start from the inequality

E
[
∥xk+1 − x⋆∥22 | xk

]
≤ ∥xk − x⋆∥22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2, ∀k ∈ N.

By monotonicity and linearity of expectation, we get that

E
[
E
[
∥xk+1 − x⋆∥22 | xk

]]
≤ E

[
∥xk − x⋆∥22 − 2γk(f(xk)− f(x⋆)) + γ2kG

2
]

= E
[
∥xk − x⋆∥22

]
− E [2γk(f(xk)− f(x⋆))] + E

[
γ2kG

2
]

= E
[
∥xk − x⋆∥22

]
− 2γk E [f(xk)− f(x⋆)] + γ2kG

2,

holds for each k ∈ N. The law of total expectation yields

E
[
∥xk+1 − x⋆∥22

]
≤ E

[
∥xk − x⋆∥22

]
− 2γk E [f(xk)− f(x⋆)] + γ2kG

2, ∀k ∈ N.

This is the Lyapunov inequality we pick.

2. Recursively applying the Lyapunov inequality above gives

E
[
∥xk+1 − x⋆∥22

]
≤ E

[
∥x0 − x⋆∥22

]
− 2

k∑
i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i

= ∥x0 − x⋆∥22 − 2
k∑

i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i , ∀k ∈ N,

since ∥x0−x⋆∥22 is deterministic. Again, by monotonicity of expectation, we
know that

0 ≤ E
[
∥xk+1 − x⋆∥22

]
, ∀k ∈ N,

since

0 ≤ ∥xk+1 − x⋆∥22, ∀k ∈ N.

We conclude that

0 ≤ ∥x0 − x⋆∥22 − 2

k∑
i=0

γi E [f(xi)− f(x⋆)] +G2
k∑

i=0

γ2i , ∀k ∈ N,

or by rearranging

2

k∑
i=0

γi E[f(xi)− f(x⋆)] ≤ ∥x0 − x⋆∥22 +G2
k∑

i=0

γ2i , ∀k ∈ N,

as desired.

SOLUTION 6.10
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1. First, we prove the claim provided in the hint, i.e.

λk ≥ 1 + 0.5k, ∀k ∈ N. (7.17)

Clearly, (7.17) holds for k = 0. Note that λk = 0.5+
√

0.25 + λ2k−1 ≥ 0.5+λk−1

holds for each k ∈ N \ {0}. Recursively applying this gives

λk ≥ 0.5k + λ0 = 1 + 0.5k, ∀k ∈ N \ {0}.

This establishes (7.17).

Next, rearranging (6.1) and recursive application gives
2λ2

k+1

β (f(xk+1)− f(x⋆)) ≤ Vk − Vk+1 +
2λ2

k
β (f(xk)− f(x⋆))

≤ V1 − Vk+1 +
2λ2

0
β (f(x1)− f(x⋆))

= V1 − Vk+1 +
2
β (f(x1)− f(x⋆))

≤ V1 +
2
β (f(x1)− f(x⋆)), ∀k ∈ N \ {0},

since Vk ≥ 0 for each k ∈ N \ {0}. Using (7.17), we get that

f(xk+1)− f(x⋆) ≤
V1 +

2
β (f(x1)− f(x⋆))

2λ2
k+1

β

≤ βV1 + 2(f(x1)− f(x⋆))

2(1 + 0.5(k + 1))2
, ∀k ∈ N \ {0},

or equivalently

f(xk)− f(x⋆) ≤ 2βV1 + 4(f(x1)− f(x⋆))

(k + 2)2
, ∀k ∈ N \ {0, 1}. (7.18)

Note that

0 ≤ f(xk)− f(x⋆) ≤ 2βV1 + 4(f(x1)− f(x⋆))

(k + 2)2
→ 0 as k → ∞.

By the squeeze theorem, we have that f(xk) − f(x⋆) → 0 as k → ∞, and
therefore, f(xk) → f(x⋆) as k → ∞. Moreover, we identify a O(1/k2) sub-
linear rate of convergence.

2. From (7.18), if k ≥ 2, we know that

f(xk)− f(x⋆) ≤ 2βV1 + 4(f(x1)− f(x⋆))

(k + 2)2
.

Therefore, if the integer k ≥ 2 is so large such that
2βV1 + 4(f(x1)− f(x⋆))

(k + 2)2
≤ ϵ,

we obtain an ϵ-accurate objective value. This is equivalently to

k ≥

⌈√
2βV1 + 4(f(x1)− f(x⋆))

ϵ
− 2

⌉
and k ≥ 2,

or simply

k ≥ max
(⌈√

2βV1 + 4(f(x1)− f(x⋆))

ϵ
− 2

⌉
, 2

)
.
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Solutions to Chapter 7

SOLUTION 7.1

1. Since f is smooth use the descent lemma at xk and xk+1,

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β
2 ∥xk+1 − xk∥22.

Inserting xk+1 − xk = −γ∇f(xk)

f(xk+1) ≤ f(xk) +∇f(xk)T (−γ∇f(xk)) + β
2 ∥ − γ∇f(xk)∥22

= f(xk)− γ(1− β
2γ)∥∇f(xk)∥

2
2.

Now subtracting f(x⋆) from both sides yields

f(xk+1)− f(x⋆) ≤ f(xk)− f(x⋆)− γ(1− β
2γ)∥∇f(xk)∥

2
2.

2. We see that the Lyapunov inequality has a telescoping term in Vk. Sum
over the inequalities for indices i = 0, . . . , k,

V 1 ≤ V0 − γ(1− β
2γ)∥∇f(x0)∥

2
2

V 2 ≤ V 1 − γ(1− β
2γ)∥∇f(x1)∥

2
2

...
Vk+1 ≤ Vk − γ(1− β

2γ)∥∇f(xk)∥
2
2,

gives

γ(1− β
2γ)

k∑
i=0

∥∇f(xi)∥22 ≤ V0 − Vk+1.

Since x⋆ is a minimizer of f , Vk ≥ 0 for all k. Furthermore, if 0 < γ < 2
β

then γ(1− β
2γ) > 0, this gives

V0 ≥ V0 − Vk+1

≥ γ(1− β
2γ)

k∑
i=0

∥∇f(xi)∥22

≥ γ(1− β
2γ)(k + 1) min

i∈{0,...,k}
∥∇f(xi)∥22

≥ 0
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Dividing both sides with γ(1− β
2γ)(k + 1) yield

0 ≤ min
i∈{0,...,k}

∥∇f(xi)∥22 = qk ≤ 2V2
γ(1−βγ)(k+1) .

The sequence {qk}k∈N then clearly converge to zero as the upper bound
converge to zero. The rate is easily identified as O(1/k) and is sublinear.

SOLUTION 7.2

1. We start by expanding the square

∥xk+1 − x⋆∥22 = ∥xk − γ∇f(xk)− x⋆∥22
= ∥xk − x⋆∥22 − 2γ(∇f(xk))T (xk − x⋆) + γ2∥∇f(xk)∥22.

Using the first order condition for convexity we can bound the inner product
as

f(x⋆) ≥ f(xk) + (∇f(xk))T (x⋆ − xk)

⇐⇒ −2γ(f(xk)− f(x⋆)) ≥ −2γ(∇f(xk))T (xk − x⋆)

which yields

∥xk+1 − x⋆∥22 ≤ ∥xk − x⋆∥22 − 2γ(f(xk)− f(x⋆)) + γ2∥∇f(xk)∥22.

From Exercise 7.1 we know

f(xk+1)− f(x⋆) ≤ f(xk)− f(x⋆)− γ(1− β
2γ)∥∇f(xk)∥

2
2.

Adding f(x⋆) to both sides, multiplying by 2γ and rearranging gives

−2γf(xk) ≤ −2γf(xk+1)− γ2(2− βγ)∥∇f(xk)∥22.

Inserting this back into the original inequality gives

∥xk+1 − x⋆∥22
≤ ∥xk − x⋆∥22 − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1)∥∇f(xk)∥22

2. With Vk = ∥xk − x⋆∥22, sum over the Lyapunov inequalities for i = 0, . . . , k,

V1 ≤ V0 − 2γ(f(x1)− f(x⋆)) + γ2(βγ − 1)∥∇f(x0)∥22
V2 ≤ V1 − 2γ(f(x2)− f(x⋆)) + γ2(βγ − 1)∥∇f(x1)∥22

...
Vk+1 ≤ Vk − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1)∥∇f(xk)∥22,

which gives

Vk+1 ≤ V0 − 2γ

k∑
i=0

(f(xi+1)− f(x⋆)) + γ2(βγ − 1)

k∑
i=1

∥∇f(xi)∥22
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Rearranging and using γ < 2
β and Vk ≥ 0 gives

2γ

k∑
i=0

(f(xi+1)− f(x⋆)) ≤ V0 − Vk+1 + γ2(βγ − 1)

k∑
i=1

∥∇f(xi)∥22

≤ V0 + γ2
k∑

i=1

∥∇f(xi)∥22

From Exercise 7.1 we know that γ2
∑k

i=1 ∥∇f(xi)∥22 is bounded, way by W ,
and that f(xk) is decreasing,

V0 +W ≥ V0 + γ2
k∑

i=1

∥∇f(xi)∥22

≥ 2γ
k∑

i=0

(f(xi+1)− f(x⋆))

≥ 2γ(k + 1)(f(xk+1)− f(x⋆))

≥ 0

Dividing by 2γ(k + 1) yield

0 ≤ f(xk+1)− f(x⋆) ≤ V0 +W

2γ(k + 1)
.

This shows that f(xk) → f(x⋆) with O(1/k) sublinear rate.

SOLUTION 7.3

1. We start by expanding the square

∥xk+1 − x⋆∥22 = ∥xk − γ∇f(xk)− x⋆∥22
= ∥xk − x⋆∥22 − 2γ(∇f(xk))T (xk − x⋆) + γ2∥∇f(xk)∥22.

Using the first order condition for strong convexity we can bound the inner
product

f(x⋆) ≥ f(xk) + (∇f(xk))T (x⋆ − xk) +
µ
2∥x

⋆ − xk∥22
⇐⇒ −2γ(f(xk)− f(x⋆))− µγ∥xk − x⋆∥22 ≥ −2γ(∇f(xk))T (xk − x⋆)

which yields

∥xk+1 − x⋆∥22 ≤ (1− µγ)∥xk − x⋆∥22 − 2γ(f(xk)− f(x⋆)) + γ2∥∇f(xk)∥22.

From Exercise 7.2 we know

−2γf(xk) ≤ −2γf(xk+1)− γ2(2− βγ)∥∇f(xk)∥22.
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Inserting this back into the original inequality gives

∥xk+1 − x⋆∥22
≤ (1− µγ)∥xk − x⋆∥22 − 2γ(f(xk+1)− f(x⋆)) + γ2(βγ − 1)∥∇f(xk)∥22.

Since γ ≤ 1
β the last term is non-positive. The second to last term also

non-positive since γ > 0 and f(xk+1) ≥ f(x⋆) since x⋆ is optimal. This yield
the desired inequality,

∥xk+1 − x⋆∥22 ≤ (1− µγ)∥xk − x⋆∥22.

The rate is maximized when 1−µγ is minimized, i.e., when γ is maximized.
The best step-size is therefore γ = 1

β .

2. The best step-size minimize h(γ) = max(1 − µγ, βγ − 1). Since h is the
maximum of two affine functions it is closed and convex. Fermat’s rule
then give that the best step-size γ satisfies

0 ∈ ∂g(γ) =


−µ if 1− µγ > βγ − 1

β if 1− µγ < βγ − 1

[−µ, β] if 1− µγ = βγ − 1

This can clearly only hold when 1− µγ = βγ − 1, i.e., when γ = 2
β+µ .

From the analysis earlier in this exercise we got that the best rate conver-
gence was given by

∥xk+1 − x⋆∥22 ≤ (1− µ
β )∥xk − x⋆∥22.

From the analysis in the lectures we get that the best rate is given by

∥xk+1 − x⋆∥22 ≤ (1− 2µ
β+µ)

2∥xk − x⋆∥22.

Since 0 < µ ≤ β we have

(1− 2µ
β+µ)

2 < 1− 2µ
β+µ ≤ 1− 2µ

β+β = 1− µ
β

and hence does the convergence analysis in the lecture yields a faster rate.

SOLUTION 7.4

1. We have

xk+1 = xk − γ∇f(xk) = xk − γQxk − γq = (I − γQ)xk − γq.

If x∗ is a solution, then 0 = ∇f(x∗) i.e.

x∗ = x∗ − γ∇f(x∗) = x∗ − γQx∗ − γq = (I − γQ)x∗ − γq

so
xk+1 − x∗ = (I − γQ)xk − (I − γQ)x∗ = (I − γQ)(xk − x∗)

we therefore get ∥xk+1−x∗∥ = ∥(I−γQ)(xk −x∗)∥ ≤ ∥I−γQ∥∥xk −x∗∥ Let
λ(M) be the set of eigenvalues for a matrix M . Then 0 < λ(Q) ≤ λmax(Q),
and since L = λmax(Q) we get γ ∈ (0, 2/L) = (0, 2/λmax(Q)), which means
that λ(γQ) ∈ (0, 2), and lastly λ(I − γQ) ∈ (−1, 1). Hence, 0 ≤ ∥I − γQ∥ < 1
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2. With γ = 1/Lwe get λ(γQ) ∈ (0, 1) and λ(I−γQ) ∈ (0, 1). The eigenvalue of
I−γQwith the largest absolute value therefore corresponds to the smallest
eigenvalue of γQ, i.e. λmin(Q)/L, where L = λmax(Q). The convergence
rate therefore becomes r = 1 − λmin(Q)/λmax(Q), where λmin(Q)/λmax(Q)
is known as the condition number.

3. The eigenvalues are 1 and ϵ. L = 1, so the eigenvalues of I − γQ are 0 and
1 − ϵ with the rate set by r = 1 − ϵ. When q = 0 then x∗ = 0. If we let
x0 = [1 0]T then xk = [(1− ϵ)k 0]T and the rate is achieved.

4. Let V =

[
1/
√
ϵ 0

0 1

]
, we then get V TQV =

[
1 0.01

0.01 1

]
which has eigen-

values 0.99 and 1.01. The convergence will therefore be very fast. With
γ = 1/L = 1/1.01 we get r ≈ 0.02.

5. The prox if often computed on some function g(x) that is separable. With a
change of variables to x = V y, we need to prox on the function g(V y) which
is no longer separable, and computing the prox on this term generally be-
comes computationally expensive.

SOLUTION 7.5

1. Let x+ = proxγf (x) = argminz(f(z) +
1
2γ ∥x − z∥22). Therefore, for all z, it

holds that

f(x+) + 1
2γ ∥x

+ − x∥22 ≤ f(z) + 1
2γ ∥z − x∥22.

Set in particular z = x to get

f(x+) + 1
2γ ∥x+ − x∥22 ≤ f(x).

2. We have
1
2γ ∥x

k+1 − xk∥22 ≤ f(xk)− f(xk+1).

Summing this inequality gives for all n ∈ N:

1
2γ

n∑
k=0

∥xk+1 − xk∥22 ≤ f(x0)− f(xn+1) ≤ f(x0)−B.

Letting n→ ∞ means that 1
2γ

∑∞
k=0 ∥xk+1 − xk∥22 <∞ and ∥xk+1 − xk∥ → 0

as k → ∞.

3. From convexity of f and Fermat’s rule we have that x+ = proxγf (x) =

argminz(f(z) +
1
2γ ∥x− z∥22) is equivalent to

0 ∈ ∂f(x+) + 1
γ (x

+ − x) ⇐⇒ 1
γ (x− x+) ∈ ∂f(x+).

This means that 1
γ (x

k−1 − xk) = sk is a subgradient, sk ∈ ∂f(xk). Then

0 ≤ dist∂f(xk)(0) ≤ ∥sk − 0∥ = 1
γ ∥x

k−1 − xk∥ → 0
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4. Strong convexity means that

f(y) ≥ f(x) + sT (y − x) + µ
2∥y − x∥2

for all x, y and all s ∈ ∂f(x). In particular we can take xk with 1
γ (x

k−1 −
xk) = sk ∈ ∂f(xk) and x⋆ with 0 ∈ ∂f(x⋆).

f(xk) ≥ f(x⋆) + µ
2∥x

k − x⋆∥2

f(x⋆) ≥ f(xk) + (sk)T (x⋆ − xk) + µ
2∥x

⋆ − xk∥2.

Adding these two together and using Cauchy-Schwarz yields

∥ 1
γ (x

k−1 − xk)∥ = ∥sk∥ ≥ µ∥xk − x⋆∥

which implies xk → x⋆.

SOLUTION 7.6
The complete procedure is given below.

1. The goal is to get an inequality on the form

Vk+1 ≤ Vk −Qk

where Qk is some non-negative convergence measure. Here we choose
Vk = ∥xk − x⋆∥22 as the Lyapunov function. We further define the resid-
ual mapping as Rxk = xk − proxγg(xk − γ∇f(xk)). The proximal gradient
update can then be written as

xk+1 = xk −Rxk (7.19)

and we can use this to relate Vk+1 to Vk by expanding the square,

Vk+1 = ∥xk+1 − x⋆∥22
= ∥xk − x⋆∥22 − 2(xk − x⋆)T (Rxk) + ∥Rxk∥22
= Vk − 2(xk − x⋆)T (Rxk) + ∥Rxk∥22.

(7.20)

2. The quantity −2(xk − x⋆)T (Rxk) + ∥Rxk∥22 now needs to be bounded. We
start by using (7.19) to re-write it as

− 2(xk − x⋆)T (Rxk) + ∥Rxk∥22
= −2(xk − x⋆)T (Rxk) + (Rxk)T (Rxk)
= −2(xk − x⋆)T (Rxk) + 2(Rxk)T (Rxk)− (Rxk)T (Rxk)
= −2(xk −Rxk − x⋆)T (Rxk)− (Rxk)T (Rxk)
= −2(xk+1 − x⋆)T (Rxk)− ∥Rxk∥22.

(7.21)

3. We now turn to bounding−2(xk+1−x⋆)T (Rxk). From the proximal gradient
update we have

xk − γ∇f(xk)− xk +Rxk ∈ γ∂g(xk+1)

=⇒ γ−1Rxk −∇f(xk) ∈ ∂g(xk+1).
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The definition of a subgradient then gives

g(x⋆) ≥ g(xk+1) + (γ−1Rxk −∇f(xk))T (x⋆ − xk+1)

=⇒ −2(xk+1 − x⋆)T (Rxk) ≤ −2γ(g(xk+1)− g(x⋆))− 2γ∇f(xk)T (xk+1 − x⋆).
(7.22)

4. We continue to bound −2γ∇f(xk)T (xk+1 − x⋆). Using β-smoothness of f
and definition of convexity of f gives the two following inequalities

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
β
2 ∥xk+1 − xk∥22

= f(xk) +∇f(xk)T (xk+1 − xk) +
β
2 ∥Rxk∥

2
2

f(xk) ≤ f(x⋆) +∇f(xk)T (xk − x⋆).

Adding these two together and rearranging yield

f(xk+1) ≤ f(x⋆) +∇f(xk)T (xk+1 − x⋆) + β
2 ∥Rxk∥

2
2

=⇒ −2γ∇f(xk)T (xk+1 − x⋆) ≤ −2γ(f(xk+1)− f(x⋆)) + γβ∥Rxk∥22.
(7.23)

5. Inserting (7.23) into (7.22), (7.22) into (7.21), and finally (7.21) into (7.20)
yield

Vk+1 = Vk − 2(xk − x⋆)T (Rxk) + ∥Rxk∥22
= Vk − ∥Rxk∥22 − 2(xk+1 − x⋆)T (Rxk)
≤ Vk − ∥Rxk∥22 − 2γ(g(xk+1)− g(x⋆))− 2γ∇f(xk)T (xk+1 − x⋆)

≤ Vk − ∥Rxk∥22 − 2γ(g(xk+1)− g(x⋆))− 2γ(f(xk+1)− f(x⋆)) + γβ∥Rxk∥22
≤ Vk − (1− γβ)∥Rxk∥22 − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆)).

6. Using the assumption γ < β−1 gives

Vk+1 ≤ Vk − (1− γβ)∥Rxk∥22 − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

≤ Vk − 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

= Vk −Qk

and where

Qk = 2γ(g(xk+1) + f(xk+1)− g(x⋆)− f(x⋆))

which is non-negative since γ > 0 and g(xk+1) + f(xk+1) ≥ g(x⋆) + f(x⋆)
since x⋆ is a minimum.

7. Since Vk ≥ 0 and Qk ≥ 0 we have that Qk → 0 which implies that

f(xk) + g(xk) → f(x⋆) + g(x⋆)

as k → ∞.

SOLUTION 7.7
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1. Following the steps yield

∥xk+1 − x⋆∥22 = ∥proxγg(xk − γ∇f(xk))− x⋆∥22
= ∥proxγg(xk − γ∇f(xk))− proxγg(x

⋆ − γ∇f(x⋆))∥22
≤ 1

1+µgγ
∥xk − γ∇f(xk)− x⋆ + γ∇f(x⋆)∥22

= 1
1+µgγ

(
∥xk − x⋆∥22

− 2γ(∇f(xk)−∇f(x⋆))T (xk − x⋆) + γ2∥∇f(xk)−∇f(x⋆)∥22
)

≤ 1
1+µgγ

(
(1− 2βµfγ

β+µf
)∥xk − x⋆∥22 − γ( 2

β+µf
− γ)∥∇f(xk)−∇f(x⋆)∥22

)
.

If 0 < γ ≤ 2
β+µf

, then the last term is negative and we can use

∥∇f(xk)−∇f(x⋆)∥2 ≥ µf∥xk − x⋆∥2

to get

∥xk+1 − x⋆∥22 ≤ 1
1+µgγ

(
(1− 2βµfγ

β+µf
)∥xk − x⋆∥22 − γ( 2

β+µf
− γ)µ2f∥xk − x⋆∥22

)
= 1

1+µgγ
(1− 2βµfγ

β+µf
− 2µ2

fγ

β+µf
+ γ2µ2f )∥xk − x⋆∥22

= 1
1+µgγ

(1− 2βµfγ+2µ2
fγ

β+µf
+ γ2µ2f )∥xk − x⋆∥22

= 1
1+µgγ

(1− 2µfγ + γ2µ2f )∥xk − x⋆∥22

=
(1−µfγ)

2

1+µgγ
∥xk − x⋆∥22.

If γ ≥ 2
β+µf

, the last term is positive and we can use Lipschitz continuity
of ∇f to get

∥xk+1 − x⋆∥22 ≤ 1
1+µgγ

(
(1− 2βµfγ

β+µf
)∥xk − x⋆∥22 − γ( 2

β+µf
− γ)β2∥xk − x⋆∥22

)
≤ 1

1+µgγ
(1− 2βµfγ

β+µf
− 2β2γ

β+µf
+ β2γ2)∥xk − x⋆∥22

≤ 1
1+µgγ

(1− 2βµfγ+2β2γ
β+µf

+ β2γ2)∥xk − x⋆∥22
≤ 1

1+µgγ
(1− 2βγ + β2γ2)∥xk − x⋆∥22

≤ (βγ−1)2

1+µgγ
∥xk − x⋆∥22.

To write these on one common form we use the fact that

max(1− µfγ, βγ − 1) =

{
1− µfγ if γ ∈ [0, 2

β+µf
]

βγ − 1 if γ ∈ [ 2
β+µf

,∞)

which gives the searched for inequality,

∥xk+1 − x⋆∥22 ≤
max(1−µfγ,βγ−1)2

1+µgγ
∥xk − x⋆∥22.

2. The algorithm converge, ∥xk − x⋆∥ → 0, if max(1−µfγ,βγ−1)2

1+µgγ
< 1. First we

assume µf > 0, this can be verified to hold if 0 < γ < 2
β+µf

so we only look
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at the case when γ ≥ 2
β+µf

. This results in

(βγ−1)2

1+µgγ
< 1 ⇐⇒ (βγ − 1)2 < 1 + µgγ

⇐⇒ 1 + β2γ2 − 2βγ < 1 + µgγ

⇐⇒ β2γ2 − γβ(2 +
µg

β ) < 0

⇐⇒ βγ < 2 +
µg

β

⇐⇒ γ < 2
β +

µg

β2 .

If µf > 0, the algorithm converge if 0 < γ < 2
β +

µg

β2 .

Assume µf = 0, this means max(1,βγ−1)2

1+µgγ
< 1 which can’t hold if µg = 0.

Hence, the algorithm can’t converge linearly if µf = µg = 0.

Assume µf = 0 and µg > 0, if 0 < γ ≤ 2
β then max(1−µfγ,βγ−1)2

1+µgγ
< 1 is

guaranteed to hold. If γ > 2
β the condition once again reads

(βγ−1)2

1+µgγ
< 1 ⇐⇒ γ < 2

β +
µg

β2 .

To summarize, the algorithm converge if 0 < γ < 2
β +

µg

β2 and at least one
of µf > 0 and µg > 0 hold.

3. We first consider δ = 1, this means β = L + µ, µf = µ and µg = 0. The
linear rate of ∥xk − x⋆∥22 is then given by

max(1− µγ, (L+ µ)γ − 1)2.

In Exercise 7.3 we have already shown that this is minimized by γ = 2
L+2µ ,

resulting in the rate (
1− 2µ

L+ 2µ

)2

=

(
L

L+ 2µ

)2

.

Let’s now consider δ = 0 which give β = L, µf = 0 and µg = µ. The rate is
then given by

max(1, Lγ − 1)2

1 + µγ
.

We consider two cases, if γ ≤ 2
L , the rate is 1

1+µγ and hence should γ be
chosen as large as possible, γ = 2

L .

If 2
L ≤ γ < 2

L + µ
L2 with the rate (Lγ−1)2

1+µγ . Taking the derivative of the rate
gives

d

dγ

(Lγ − 1)2

1 + µγ
=

2L(Lγ − 1)

1 + µγ
− µ(Lγ−1)2

(1+µγ)2

=
Lγ − 1

(1 + µγ)2
(2L(1 + µγ)− µ(Lγ − 1))

=
Lγ − 1

(1 + µγ)2
(2L+ Lµγ + µ)

≥ 0.
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Hence is the rate increasing in γ and the step-size should be chosen as
small as possible γ = 2

L .

The rate for when δ = 0 is then

L

L+ 2µ
>

(
L

L+ 2µ

)2

since L > 0 and µ > 0. It is therefore advantageous two put the strong
convexity in the gradient step.

SOLUTION 7.8

1. L-smoothness gives

f(xk+1) = f(xk − γ∇fi(xk))
≤ f(xk) +∇F (xk)T (xk − γ∇fi(xk)− xk) + L

2 ∥x
k − γ∇fi(xk)− xk∥2

≤ f(xk)− γ∇F (xk)T∇fi(xk) + L
2 γ

2∥∇fi(xk)∥2.

Taking expectation conditioned on xk over both sides and using linearity
yield

E[f(xk+1)|xk] ≤ f(xk)− γ∇F (xk)TE[∇fi(xk)|xk] + L
2 γ

2E[∥∇fi(xk)∥2|xk]
= f(xk)− γ∇F (xk)T∇F (xk) + L

2 γ
2E[∥∇fi(xk)∥2|xk]

= f(xk)− γ∥∇F (xk)∥2 + L
2 γ

2E[∥∇fi(xk)∥2|xk].

Using the hint gives

E[∥∇fi(xk)∥2|xk] = ∥E[∇fi(xk)|xk]∥2 + E[∥∇fi(xk)−∇F (xk)∥2|xk]
≤ ∥∇F (xk)∥2 + σ2.

Inserting this into the first inequality gives the desired result.

2. Rearranging the first result

γk(1− L
2 γ

k)∥∇F (xk)∥2 − (γk)2Lσ
2

2 ≤ E[F (xk)− F (xk+1)|xk].

Taking total expectation yields

γk(1− L
2 γ

k)E[∥∇F (xk)∥2]− (γk)2Lσ
2

2 ≤ E[F (xk)− F (xk+1)].

Summing from k = 0 to k = n yields∑n

k=0
γk(1− L

2 γ
k)E[∥∇F (xk)∥2]− (γk)2Lσ

2

2 ≤ E[F (x0)− F (xk+1)]

≤ EF (x0)−B

since F (x) ≥ B. Letting n→ ∞ gives∑∞

k=0
γk(1− L

2 γ
k)E[∥∇F (xk)∥2]− (γk)2Lσ

2

2 <∞. (7.24)

130



Inserting γk gives ∑∞

k=0

1
2LE[∥∇F (x

k)∥2 − σ2] <∞.

i.e. E∥∇F (xk)∥2−σ2 must be summable and therefore must E∥∇F (xk)∥2−
σ2 → 0. As a result we can not ensure that the gradient converge to 0 for
a fixed step-size stochastic gradient descent. We only converge to a noise
ball of size σ.

3. Inserting γk into (7.24) yield∑∞

k=0
( 1k − L

2
1
k2
)E[∥∇F (xk)∥2]− 1

k2
Lσ2

2 <∞.

The 1
k2

Lσ2

2 term will be summable there fore must the ( 1k−
L
2

1
k2
)E∥∇F (xk)∥2

terms be summable to. For some finite C the following then hold

C >
T∑

k=K

( 1k − L
2

1
k2
)E∥∇F (xk)∥2 ≥ [min

k≤T
E∥∇F (xk)∥2]

T∑
k=K

( 1k − L
2

1
k2
)

for all T ≥ K where K is such that 1
k − L

2
1
k2
> 0 for all k ≥ K. This give

0 ≤ min
k≤T

E∥∇F (xk)∥2 ≤ C∑T
k=K( 1k − L

2
1
k2
)
→ 0 as T → ∞

since 1
k not is summable.

4. Inserting γk into (7.24) yield∑∞

k=0
( 1
k2

− L
2

1
k4
)E[∥∇F (xk)∥2]− 1

k4
Lσ2

2 <∞.

Once again is 1
k4

Lσ2

2 summable, forcing ( 1
k2
−L

2
1
k4
)E[∥∇F (xk)∥2] to be summable

to. But ( 1
k2
−L

2
1
k4

is here also summable, making it possible forE[∥∇F (xk)∥2 →
c2 > 0 without destroying summability. Clearly, having to fast decaying
step-size could also hinder the convergence of the gradient.

SOLUTION 7.9

• All methods were applicable. The gradients of the primal functions are
Qx+ b and x. With g(x) = ∥x∥22 we have (proxγg(z))i = zi/(1 + γ).

– One iteration of gradient descent therefore requires vector operations
(O(n)) as well as one matrix multiplications (O(n2)). Gradient descent
therefore has complexity O(n2) per iteration.

– The gradient can be computed for each coordinate using only multi-
plication of one row in Q with x (O(n)). Per iteration complexity of
coordinate gradient descent is therefore O(n).

– The prox on g is separable, and the complexity for each coordinate
is O(1), so the complexity of the full prox is O(n). The complexity
of proximal gradient is therefore O(n2) and for coordinate proximal
gradient it is O(n).
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• The following solution assumes a straight-forward implementation of the
algorithms. It is possible to do some tricks to reduce the complexity of the
coordiante-wise implementations, see Excercise 7.10. The gradient of the
first term f(x) = log(1 + e−wT x) is ∇f(x) = −w e−wT x

1+e−wT x
and for the second

term g(x) = 1
2

∑
imax(0, xi)

2 we get (∇g(x))i = max(0, xi), with the prox
(proxγg(x))i = max(0, xi/(1 + γ)).

– Both gradient descent and proximal gradient will therefore have vec-
tor operations as the most costly operations, and the complexity is
O(n).

– The coordinates of the gradient to f is given by (∇f(x))i = −wi
e−wT x

1+e−wT x
.

The main cost here is the scalar product wTx which is O(n). The
coordinate-wise versions of the algorithms will therefore have a per
iteration complexity of O(n), which is the same as the full (proximal)
gradient method. Iteration over all coordinates will therefore have a
cost of O(n2) which means that the coordinate-wise methods are not
competitive compared to the full algorithms.

SOLUTION 7.10
At each iteration the algorithms update only one coordinate, i.e xk+1 = xk +
δjk where δjk is zero for all indices except jk. Assume that ck−1 := wTxk−1 is
already computed at iteration k. We can then calculate ck := wTxk = wT (xk−1 +
δjk−1

) = wTxk−1 + wjk−1
δjk−1

= ck−1 + wjk−1
δjk−1

using only scalar operations.
The gradient of the term f(x) = log(1 + e−wT x) at some index i can therefore be
computed as

(∇f(xk))i = −wi
e−wT xk

1 + e−wT xk = −wi
e−ck

1 + e−ck

using only scalar operations. Since g(x) =
∑

i gi(xi) = max(0, xi)2 is separable,
so is the prox, i.e

(proxγg(z))i = proxγgi(zi)

hence

xk+1
i = (proxγg(x

k − γ∇f(xk)))i = proxγgi((x
k − γ∇f(xk)))i) =

proxγgi(x
k
i − γ(∇f(xk))i) = max(0, (xki − γ(∇f(xk))i)/(1 + γ)).

This means that if we start by computing wTx0, we are then able to do each of
the following coordinate-wise updates using only scalar operations.

SOLUTION 7.11

• We have

f(x) =
1

2
(Ax− b)T (Ax− b) =

1

2
xTATAx− bTAx+

1

2
bT b
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so

fi,x(α) =
1

2
(x+ αei)

TATA(x+ αei)− bTA(x+ αei) +
1

2
bT b (7.25)

=
1

2
α2eTi A

TAei − αbTAxei + . . . (7.26)

where the rest does not depend on α. We therefore get

∇fi,x(α) = αeTi A
TAei − bTAxei

and
∇2fi,x(α) = eTi A

TAei = (ATA)i,i

where Li = (ATA)i,i is the i:th diagonal element of ATA.

• The Lipschitz constant of f is ∥ATA∥2 and

∥ATA∥2 = sup
x

∥ATAx∥2
∥x∥2

≥ ∥ATAei∥2
∥ei∥2

= ∥ATAei∥2

=
(∑

j

(ATA)2j,i

) 1
2 ≥

(
(ATA)2i,i

) 1
2 = (ATA)i,i.

SOLUTION 7.12
The proximal update of the i:th coordinate is equivalent to

x+i = argmin
z

gi(z) +
1
2γ ∥z − (xi − γ∇if(x))∥2

Due to convexity is this equivalent to

0 ∈ ∂gi(x
+
i ) +∇if(x) +

1
γ (x

+
i − xi) ⇐⇒ −(∇if(x) +

1
γ (x

+
i − xi)) ∈ ∂gi(x

+).

From the definition of a subgradient we get

gi(x
+
i ) ≤ gi(xi)−∇if(x)

T (x+i − xi) +
1
γ ∥x

+
i − xi∥2.

Since x+ and x only differ in the i:th coordinate we have that gj(x+j ) = gj(xj) for
all j ̸= i. This yields

G(x+) ≤ G(x)−∇if(x)
T (x+i − xi) +

1
γ ∥x

+
i − xi∥2.

whereG(x) =
∑n

i=1 gi(xi). Furthermore, ∥x+i −xi∥2 = ∥x+−x∥2 and∇if(x)
T (x+i −

xi) = ∇f(x)T (x+ − x) which yields

G(x+) ≤ G(x)−∇f(x)T (x+ − x) + 1
γ ∥x

+ − x∥2.

Using L-smoothness of f yields

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + L
2 ∥x

+ − x∥2.

Adding these together yields

f(x+) +G(x+) ≤ f(x) +G(x)− ( 1γ − L
2 )∥x

+ − x∥2.
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which proves descent if γ < 2
L .

SOLUTION 7.13
The exact same reasoning as Exercise 7.12 yields

G(x+) ≤ G(x)−∇f(x)T (x+ − x) + 1
γi
∥x+ − x∥2.

The smoothness condition

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + 1
2(x

+ − x)TM(x+ − x)

= f(x) +∇f(x)T (x+ − x) + Mii
2 |x+i − xi|2

= f(x) +∇f(x)T (x+ − x) + Mii
2 ∥x+ − x∥2

where Mii is the i:th diagonal element of M and the equalities hold since x+ and
x only differ in one coordinate. Adding the two inequalties together yields

f(x+) +G(x+) ≤ f(x) +G(x)− ( 1
γi

− Mii
2 )∥x+ − x∥2.

and γi < 2
Mii

yields descent.

SOLUTION 7.14
For implementations, see appendix. The function values are show in Figure 7.1.

We see that coordinate descent and gradient descent converge at approximately
the same speed for the same amount of computations. However, by selecting a
step length for each coordinate according to the individual smoothness constants
as γi = 1/(ATA)i,i, we get considerably faster convergence.

SOLUTION 7.15
For implementations, see appendix. The function values are show in Figure 7.2.

• We see that a larger step size will result in a quicker initial decrease of the
function value. However, the error doesn’t converge towards 0, and with a
larger step-size the iterates will stay further away from the optimal point.

• The error keeps decreasing with this approach and we seem to get the
benefit of both a large step size when we are far away, and a smaller step
size when we are close to the solution. However, the convergence rate is
still very slow compared to gradient descent.

• The error quickly converges (to something greater than 0) and the variance
goes to 0. This is because the sequence 1/k2 is summable, i.e.

∑
k ∥xk+1 −

xk∥ < c is bounded by some constant c, so the step lengths are not long
enough to allow the iterates to go to the optimal point.
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Figure 7.1: Function value for each iteration over full data with Gradient De-
scent, Coordinate Descent and Coordinate Descent with Diagonal scaling.
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Figure 7.2: Stochastic gradient for different step lengths from Excercise 7.2,
where g = λmax.
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Julia Code
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Implementation of Excercise 7.14

function grad_descent(A, b, x0, γ, kmax, xsol)
x = copy(x0)
res = zeros(kmax)
err = zeros(kmax)
AtA = A'A
Atb = A'b
for i = 1:kmax

x = x .- γ.*(AtA*x .- Atb)
res[i] = norm(A*x-b)^2

end
return x, res

end

coord_descent(A, b, x0, γ::Number, kmax, xsol) =
coord_descent_efficient(A, b, x0, fill(γ, size(A,2)), kmax, xsol)

"""
stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)
γs[i] should be γ a for index i

"""
function coord_descent(A, b, x0, γs::AbstractArray, kmax, xsol)

n = size(A,2)

x = copy(x0)
res = zeros(kmax)
err = zeros(kmax)
# Store A*Aᵀ to avoid recomputing
AAt = A'A
Atb = A'b

for i = 1:(kmax*n)
# Random index
j = rand(1:n)
∇j = view(AAt,:,j)'x - Atb[j]
x[j] = x[j] - γs[j]*∇j
if i%n == 0 # Every n iterations, compute error

res[i÷n] = norm(A*x-b)^2
end

end
return x, res

end
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Implementation of Excercise 7.15

stochastic_gradient(A, b, x0, γ::Number, kmax, xsol) =
stochastic_gradient(A, b, x0, fill(γ, kmax*size(A,1)), kmax, xsol)

"""
stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)
γs[i] should be γ at batch i

"""
function stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)

n = size(A,1)

x = copy(x0)
# Only store every n iterations
res = zeros(kmax)
err = zeros(kmax)
# Store Aᵀ since extracting rows is cheaper than columns
At = copy(A')

for i = 1:(kmax*n)
j = rand(1:n) # Random index
Atj = view(At,:,j) # For efficency, use views instead of direct index
x .= x .- γs[(i-1)÷n+1].*Atj.*(Atj'*x - b[j])
if i%n == 0 # Every n iterations, compute error

res[i÷n] = norm(A*x-b)^2
end

end
return x, res

end
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