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Introduction

The exercises are divided into problem areas that roughly match the lecture
schedule.

Exercises marked with (H) have hints available, listed in the end of each chapter.
Not as fundamental or challenging exercises are marked with (x). Even more
challenging exercises are marked with (x*).



Chapter 1

Convex Sets and Convex
Functions

Exercisk 1.1
Given the following sets.

C. d.

1. Which of the sets are convex. Motivate.
2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

Exercise 1.2 (H)

Which of the following sets are convex? If convex, prove it using the definition
of convex sets, if not convex, disprove it. You may assume that the data defining
the sets generate nonempty sets.

1. S={x e R": Az = b} with A € R"™*" and b € R™
2. §={zreR": Ax < b} with A € R™" and b € R™
3. S={zeR":2>0}



S={reR": I <z<u}withl,be R"suchthat! <u

§={a e R : ol < 1}

§={z eR": —|zfs < -1}

§={weR": —|afz < 1}

§={(x.1) eR" xR: a2 < 1}

S={X e R"™": X » 0} (i.e. X is restricted to be positive semidefinite)
10. S={z €eR":x =a} witha € R"

11. S={z €eR":z =aor x =b} with a,b € R" such that a # b

© ® N e 0w

Exercise 1.3

Which of the following sets are affine?
1. V={x € R": x = a} for some a € R"

2.V={reR":z=aa+ (1l —a)bac[0,1]} for some a,b € R" such that
a#b
3. V={zeR":2=aa+ (1 —a)b,a € R} for some a,b € R" such that a # b

ExErcise 1.4

A set K isaconeifforall x € K also ax € K for all « > 0. Which of the following
figures represent cones? Which of them are convex?




Exercise 1.5

Which of the following sets are convex cones? Prove or disprove. You can assume
that the data defining the sets generate nonempty sets.

1. S={z e R": Az =0} with A € R™*"

2. S={zx eR": Az = b} with A € R™*" and b € R™ such that b # 0

3. S={zeR": Az <0} with 4 € R™*"

4. S ={zr € R": Az < b} with A € R™*" and b € R™ such that A # 0 and
b#0

S={zxeR":z >0}

6. S={(z,t) e R" xR : ||z|]2 < t}

7. S = {X e R : X » 0}

<

ExErcise 1.6

Suppose that C; and C, are convex sets.

1. Istheset C = {z € R": x € C} and x € Cy} the union or intersection of C
and C5? Is it convex? Prove or provide counter example

2. Istheset C = {z € R" : x € C} or x € Cy} the union or intersection of C}
and C5? Is it convex? Prove or provide counter example

Exercise 1.7

Let {C}}cs be an indexed family of convex sets in R”, with index set J (J can be
finite, countable or uncountable). Show that

N
JjeJ

is convex.

Exgrcise 1.8
Prove convexity for each of the following sets.

1. Affine hyperplanes. Recall that affine hyperplanes are written as h;, =
{x € R": sTx = r} for some s € R" and r € R

2. Halfspaces. Recall that halfspaces are written as H; . = {z € R" : sT2 <1}
for some s € R” and r € R



3. Polytopes. Recall that a polytope C can be represented as
C={zcR":slx<riforic{l,...,m}andslaz=rforic{m+1,...,p}},

where s; € R" and r; € Rforeach i € {1,...,p}

Exercise 1.9 (H)

Prove, without explicitly using the definition of convex sets, that each of the
following sets are convex set. You may assume that the data defining the sets
generate nonempty sets.

1. S ={z € R": Az = b} with A € R™*" and b € R™

2. S={zeR": Az < b} with A € R™*" and b € R™

3. S={reR":z>0}

4. S={zreR": 1 <z <u}withl,bc R"” such that! <u
5, S={reR":2=a} witha eR"

Exercise 1.10 (%)

Let f : R®" — R™ be a function, and let C € R™ and D C R™ be two sets. The
image of C under f is denote by f(C) and is defined by

f(@)={f(@):z€C}.
The inverse image of D under f is denote by f~!(D) and is defined by
f7HD) = {x: f(z) € D}.

Now suppose that f is an affine function (or map), i.e. f(x) = Ax + b for some
A € R™" and b € R™, and let both sets C and D be convex. Show that

1. f(C) is convex

2. f~1(D) is convex

Exgrcise 1.11 (%)
Let f : R® — RU{oc} be convex, i.e., let f satisfy
f0x+(1—0)y) <0f(z)+(1-0)f(y)

for all 0 = [0, 1] and let X be (effective) domain of f,i.e. X = domf = {z € R":
f(z) < co}. Show that X is convex.



Exercise 1.12

Prove or disprove that the following functions f : R — R U {oo} are convex.
1. Indicator function of convex set C"

0 ifzeC

oo else

f(@) = we(r) = {

2. f(z) = [l

3. f(x) = —l=|

4. f(z,y) =

5. f(z) =a Tz +b

6. f(z) = 327 Qx with @ € R"™" such that Q = 0

7. f(z) =distc(z) = infycc ||z — y|| where C is a convex set

Exercise 1.13

Draw the epigraph of the following functions.

* f(z) = x|
* f(x) =122
e f(z) = |z| + 2?

°
~

Exercise 1.14

Let f : R” — R be an affine function defined by f(x) = a”2 + b. Show that epif
is a halfspace in R"+1,

Exercise 1.15

Let f : R™ — R U {oo} be a function. Recall that the epigraph of f is given by
epif = {(z,7) € R" xR : f(z) < r}. Show that f is convex if and only if epif is
convex.

Exercise 1.16 (H)



For each i € {1,...,m}, assume that the function f; : R — R U {oo} is a con-
vex. Prove the following explicitly, without resorting to convexity preserving
operations on functions.

1. Show that f(z) = >, «; fi(z) is convex, where o; > Oforeachi € {1,...,m}

2. Show that f(r) = max;c(y, . fi(z) is convex

Exercise 1.17

Show that the following functions f : R” — R U {oc} are convex. You may use
convexity preserving operations.

L f(x) = |z with p > 1
2. f(z) = | Az = I3 + [lz]x

3. f(z) = max(||z| l=[*, |=]*)

4. f(z) =3, max(0, 1 + ;) + [|=13

5. f(x) = supy(:JcTy — g(y)) (these will be called conjugate functions)

Exercise 1.18 (H)

Let g : R" - RU {cc} and define C,, = {z € R" : g(x) < a} for some o € R.

1. Suppose that g is a convex function for which z € R" exists with ¢(z) < a.
Show that C, is a nonempty convex set.

2. For n = 1, construct a nonconvex function g such that Cy is convex.

3. For n = 1, construct a nonconvex function g such that Cy is nonconvex.

Exgrcise 1.19

Let f : R™ — RU{oo} be a convex function and define a function g : R x R"2 —
R U {oo} such that g(z,y) = f(z). Show that g is a convex function.

Exercise 1.20 (H)

Prove, without explicitly using the definition of convex sets, that each of the
following sets are convex.



1. S={zeR":|z|2 <1}
2. S={(z,t) e R" xR : ||z|]2 < t}

Exercise 1.21 (H)

Suppose that f : R” — R U {oco} is a convex function and assume that z* € R”
is locally optimal. That is, for all z € R” such that ||z — 2*|| < §, we get that
f(z*) < f(x), for some § > 0. Show that z* is a global minimum.

Exgercise 1.22
Suppose that f : R" — R U {oo} is a strictly convex function.

1. Suppose that a point z* exists such that f(z*) < f(x) for all x € R™. Show
that x* is the unique minimizer of f.

2. Provide a strictly convex f whose minimum is not attained by any point z*.

For strongly convex functions (which are also strictly convex) the minimum al-
ways exists.

Exercise 1.23

Show for each of the following convex functions if it is smooth, strongly convex,
strictly convex, or none of the above. Draw/plot the functions and decide from
the drawings.

. f($)_{—1og(x) if >0

00 ifz <0
% ife >0
2 f(m):{oo if 2 < 0
3. f(x)==
4. f(z) = a2
5. f(x) = ||
1,2 :
5T if |[z] <1
6. f@) = 2| — 5 else
7 flx)=¢€"
8. f(x) =2*

Exercise 1.24 (H)



Given some unknown function f where we know f(1) = 1, f(—1) = 0. For x €
[—1,1], draw the known bounds on f given the following assumptions::

* fis convex.
* fis convex and 2-smooth.
* fis 2-smooth and %-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.25

Given some unknown differentiable function f : R — R where we know f(1) = 1,
/(1) = 1. Draw the known bounds on f given the following assumptions:

* [ is strictly convex.
* fis strictly convex and 2-smooth.
* fis 2-smooth and 1-strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.26 (H) (%)

A differentiable function f : R” — R is convex if and only if
fy) = (@) + V(@) (y —2) (1.1
holds for all z,y € R™.

1. Provide a nonconvex differentiable function f and a point y for which (1.1)
does not hold.

2. Prove the result.

ExErcise 1.27 (%)
The indicator function of a set C is defined as

0 ifzxzeC
tolw) = oo else

Show the following.

1. Let K € R™*" be a matrix, b € R™ be a vector and define the convex set
C:={x eR": Kz —b=0}. Show that

vo(x) = sup u” (Kz —b)
m

where € R™,



2. Let g : R — R™ be a function and define the set C' := {z : g(z) < 0}. Show
that

te(z) = sup '’ g(x)
n=>0

where p € R™.

ExErcisg 1.28 (%)

Let f : R” — R U {oo} be convex function. We get that

f <Z 91'%') <> 0if (a)
i=1 i=1

holds for for all integers n > 2, where z; € R", §; > 0, and >_"" , ¢; = 1. This
inequality is called Jensen’s inequality. Prove Jensen’s inequality.

Exercise 1.29 (%)

Let L(u,y) be convex in u for every fixed y.

1. Let m(z;0) = 6z, where z € R™ is fixed and § € R"*"™. Is the function
L(m(x;0),y) convex in 0 for all fixed = and y? Prove or provide counterex-
ample.

2. Let 0 = (01, 02) € R > x R"2*™2 gnd m(x; 0) = O30(61x), where o : R™ —
R™2 is differentiable and = € R™ is fixed. Is L(m(z;6),y) convex in 6 for
all fixed x and y and differentiable o? Prove or provide counterexample.

Exercise 1.30 (%)

Let f : R* — R U {oc}. Show that f(z) — $||z|3 is convex (i.e., f is o-strongly
convex) if and only if

FOz + (1 =0)y) < O0f(z) + (1= 0)f(y) — §6(1 = )]z -yl
for all x,y € R™ and all 6 € [0, 1].

ExErcise 1.31 (x%)

Let f : R™ — R be a differentiable function and let 5 > 0. Consider the following
properties

10



D ||Vf(z) = V()2 < Bllx —yll2, for all z,y € R", i.e., f is f-smooth
II) For each z,y € R™
{f(y) < f(@) + V@) (v —2) + Gl —yl3,
> f(2) + V()" (y — z) = Gllz — yl3
I 5z(3 — f(z) and f(z) + 5|||3 are convex
IV) For each z,y € R" and 6 € [0, 1]

{fwx +(1—0)y) <Of(x)+(1—0)f(y)+ 2001 —0)||lz — y|3,
FOx+ (1 —0)y) > 0f(z)+ (1 —0)f(y) — 50(1 - 0)||lz — ylI3

Show that these properties are equivalent.

Exercisk 1.32 (H)(%)

Let f : R" — R be a twice differentiable function and let 5 > 0. Show that the
following properties are equivalent

D ||Vf(z) = V()2 < Bllx —yl2, for all z,y € R", i.e., f is f-smooth
) —BI < V2f(x) < I, for all z € R"

Hints

HiNT TO EXERCISE 1.2

A matrix Q € R™ " is positive semidefinite if and only if Q is symmetric (Q = Q)
and 27Qz > 0 for all 2 € R™. This second condition is equivalent to that all
eigenvalues are nonnegative.

HinT TO EXERCISE 1.9
Use the results from Exercise 1.8.

HinT TO EXERCISE 1.16

For the second subproblem, use the fact that a function is convex if and only if
its epigraph is convex.

HinT TO EXERCISE 1.18

11



A function g : R” — R U {oo} is convex if

g0z + (1 —0)y) < Og(z)+ (1 —0)g(y)

for all x,y € R™ and 6 € [0, 1].

Hint TO EXERCISE 1.20
Use the results from Exercise 1.18 and 1.19.

HinT TO EXERCISE 1.21

Use a proof by contradiction.

HinT TO EXERCISE 1.24

See Exercises 1.30 and 1.31(IV) for the smoothness and strong-convexity bounds.

HinT TO EXERCISE 1.26
The directional derivative at x € R" in direction d € R" satisfies

lim f(z+0d) — f(z)

0—0 0 - Vf(x)Td.

(This is given by the chain-rule.)

HinT TO EXERCISE 1.32

Use Exercise 1.31 and the second order condition for convex functions.

12



Chapter 2

Subdifferentials and Proximal
Operators

Exercise 2.1

Compute the subdifferentials for the following convex functions.

L f(z) = 3llzl3

z) = 12T Hz + "z with H positive semidefinite

||

()

x maX(O 1+ z) (hinge loss)

) =
2. f(z)
3. flx) =
4. f(z)
5. f(x)
6. f(x)

max(0,1 — x)

X

ExErcisg 2.2

Consider the following even nonconvex function f.

o« N
VARV

1. Compute (approximate) gradient and subdifferential at z1, z2, and 3.

2. As which points x1, 79, and x3 do Fermat’s rule hold?

13



ExErcise 2.3

Figure (a) depicts 0f(z) and Figure (b) depicts dg(y).

i W
<

(a) (b)

Is  a minimum to f?
Is y a minimum to ¢?
Is f differentiable at x
Is g differentiable at y

A

Draw/explain examples of functions f and g that comply with the figure.

Exercise 2.4
Suppose that f : R — R satisfies f(—1) = 1, 9f(—1) = {-1}, f(1) = 1 and
af(1) ={1}.

1. Draw a function that lower bounds f.

2. Compute a lower bound to the optimal value of f.

3. Draw a function f that complies with the requirements.

ExErcise 2.5

Consider the following set-valued operators A : R — 2R,
* Which are monotone?

e Which can be subdifferentials of closed convex functions?

14



T x
a b.
A A
c d.

ExErcise 2.6

Let A : R* — 2R" be an operator and ¢ > 0. Show that A is o-strongly mono-
tone if and only if A — o/ is monotone. In particular, note that df is o-strongly
monotone if and only if 0f — oI is monotone.

ExErcise 2.7 (%)

Provide a monotone operator A : R® — 28" that is monotone but not the subdif-
ferential of a function.

Exercise 2.8 (H)(%)

Let f : R™ — R be a differentiable function. Then the following properties are
equivalent

D f(y) > f(z) +Vf(2)'(y — z) for all z,y € R", i.e. f is convex
I (Vf(y) —Vf(x)(y—x)>0forall z,y € R, i.e. Vf is monotone
1. Show that I) implies IT)

2. Show that II) implies I)

ExErcise 2.9

15



The subdifferentials 0f of two functions f : R — R are drawn below.

of of
/

a. b.

1. Are the correspoding functions f convex?
2. Can you find the z* that minimizes f. If so, where is it?
3. Can you compute the optimal value f(z*)?

4. Draw examples of corresponding f.

Exgrcisk 2.10
Assume that f : R" — R U {oo} is o-strongly convex. Show that

f) = fl@)+s"(y—a)+ Sz —yl3

forall z € domof = {z e R": 0f(z) # 0}, y € R" and s € Of(z).

Exercise 2.11

The subdifferentials of four convex functions f are drawn below. State for each if
f is differentiable, V f is Lipschitz continuous, f strongly convex. Also, estimate
Lipschitz and strong convexity constants (given the axes are equal).

(a) (b)

() (d)

16



Exercise 2.12 (%)

Suppose that g(z) = >, gi(z;), where = (x1,...,zy,). Show that s € dg(x) if
and only if s; € 0g;(x;), where s = (s1,...,sp).

Exercise 2.13 (x)

Assume that f : R" — R U {co} is convex and that there exists y € R” with
f(y) < co. Show that 0f(x) is empty for = ¢ domf, i.e., for z such that f(z) = oc.

ExErcise 2.14 (%)

Show that the subdifferential of the indicator function of a nonempty set C' is
the normal cone to C.

Exercise 2.15

Compute the proximal mapping for the following convex functions.

L f(z) = 3ll=l3

) =
2. f(z) = 32T Hz + hTz with H positive semidefinite
3. fz) = |z|
4. f(z) = L-1 1( )
5. f(z) = max(0,1+ z)
6. f(z)

X

ExErcise 2.16

Suppose that g(z) = >""" | gi(x;), where z = (z1,...,z,). Show that

prox., (z1)
prox. (z) = :
prox., (zn)

17



Hints

HinT TO EXERCISE 2.8

1. Add I) and I) with = and y swapped.
2. Note that for z,y € R" and ¢t € R,
0
5if @ty =) = Vi@ +ty - 2)"(y - 2),

by the chain-rule. This gives that

1
fly) — f(z) = /O Vi +tly—2)(y—2)dt, (2.1)

for all z,y € R". Subtracting Vf(z)"(y — x) from the expression above
yields

) — F(2) - Vi) (g — )
1
- / (Vf(x +t(y - 2)) — V(@) (y — x)dt

0
1

- /0 EN V(@ 4ty — 2)) — V@) (@ + ty — ) — 2)dt.

18



Chapter 3

Conjugate Functions and
Duality

Exercise 3.1

Compute the conjugates for the following convex functions.

L f(=) = 3ll«l3

) =
2. f(z) = 32T Hz + hTx with H € R™" positive definite
3. f(z)= L-1 1( )
4. f(z) = |z|
5. f(z) = max(0,1+ z)
6. f(z) =max(0,1 — z)

ExErciske 3.2

Let f,g: R" — R U {oo} be two functions. Show that
1. f < g implies that f* > ¢*
2. f < g implies that f** < g**
3. f=frifandonlyif f = 3| - |3

Exercise 3.3 (H)
Let p € (1,00) and ¢ = p/(p — 1). Show that
(5 -2)
p q

19



Exercise 3.4

Let f,g: R" - RU{oo} and a € (0,1). Show that

(af + (1 —a)g)" <af +(1-a)g”

ExErciske 3.5

Assume that g(z) = > | gi(x;), i.e, gis separable. Show that g*(s) = > 1" ; 97 (si),
where g/ is the conjugate of g;.

Exercise 3.6 (H)

Compute the conjugates of the following functions f : R” — R U {oco}.

L f(z) = |zl
2. f(z) = t—1,1)(v), where 1 = (1,...,1)

ExErciske 3.7

Let f be the nonconvex function in the following figure. It satisfies f(—1) = 0,
f(0)=1, f(1) = -1, f(2) =0, f(x) = oo for all z € R\{-1,0,1,2}.

f()

(0,1)

(-1,0) (2,0)
xT

(1,-1)
X

1. Draw the conjugate f* of f
2. Draw the bi-conjugate f** of f

Exercise 3.8 (H) (%)

Let f: R™ - RU {oo} such that f(x) = ||z]|2.

20



1. Compute the conjugate f* via the following steps
(a) Show that f*(s) > 0 for all s
(b) Show that f*(s) < 0 for all s with |[s]|z <1
(c) Show that f*(s) = oo for all s with ||s][2 > 1
(d) Combine there results to state f*(s)
2. Use the conjugate to compute the subdifferential of f

ExErcisk 3.9 (x)
Let A be the probability simplex

A={z:xz;>0and inzl},

and let D be the similar set

D:{xzxiZOandZ$i§1}.

)

1. Let f = ta, where ¢ is the indicator function, show that f*(s) = max;(s;),
i.e., the element-wise max

2. Provide the conjugate of the max;(s;)

3. Let f = .p, where ¢ is the indicator function, show that f*(s) = max(0, max;(s;)),
where max;(s;) is the element-wise max

4. Provide the conjugate of max(0, max;(s;))

Exercise 3.10

Consider the following set-valued operators A : R — 2K,
1. Draw the inverses A~! : R — 2F
2. Which operators A are functions f : R — R?

3. Which operator inverses A~! are functions f : R — R?

21



Exercise 3.11

Consider the following four subdifferentials 0f of convex functions. Decide 9 f*,
i.e., the subdifferential of the conjugate.

of (x) = ox af(x) =0
a b.
0f (z) of (z)

ExErcise 3.12

22



Assume that f : R" — R U {oo} is convex and 7 > 0. Show that prox. ,(z) =
(I +~0f)~1(2), where the inverse means the operator inverse.

Exercise 3.13 (H)

Compute the proximal mapping for the following convex functions on R. Use
graphical arguments and that prox, ((z) = ({ +~9f )~ H(2).

L f(z) = |z|

2. f(z)= L-1,1] (z)

3. f(z) =max(0,1+ z)
4. f(zr) =max(0,1 —z)

Exgrcisk 3.14 (H)
Let f : R” - RU{oo} and v > 0. Show that

1. prox;(z) + proxs.(z) = z

2. () (s) =f*(v7's)

3. Prox )« (z) = yprox, -1 (v '2)
4. prox. ;(z) + Yprox, -1 (v 'z) = z

Exercise 3.15

Compute the prox., ;. for the following f.

1. f(z) = 32T Hx + hTz with H positive definite
2. f(z) =max(0,1+ z)
3. f(z) = max(0,1 — z)
Exgrcisk 3.16
Show the following.
1. That

inf /() = —*(0)
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2. That the set of minimizers, Argmin,, f(z), for a convex function f satisfies

Argmin f(z) = 9f*(0)

Exgrcise 3.17

Consider a primal problem of the form
minimize f(x) + g(z),

where f : R" - RU{co} and g : R" — RU{c0} are (closed) convex functions and
relint dom f N relint dom g # 0.

1. Show that this problem is equivalent to finding z,y € R™ such that

{x € Af*(y),
z € 0g*(—vy)

2. Show that this inclusion problem is equivalent to the following dual opti-
mality condition
0 € df*(y) — 99" (~v), (3.1)
that solves the dual problem
minimize f*(y) + ¢*(—y)
3. Given a solution y* to the dual condition (3.1) and a subgradient selector

function, s¢(y) : R” — R”™ such that s«(y) € 0f*(y). Can you recover a
primal solution 2*? What if f* is differentiable?

Exercise 3.18 (H)

Consider primal problems of the form
minimize f(Lx) + g(z),

where f : R"™ — RU {oco} and g : R — R U {co} are (closed) convex functions,
L € R™*" and relintdom (f o L) Nrelint dom g # (. Derive the dual problem

minimize f*(y) + g*(— L y).
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Exercise 3.19

Consider primal problems of the form
minimize f(Lx) + g(x),

where f : R™ — RU {0}, g : R - RU {0}, and L € R™*". State the dual
problem and show how to recover a primal solution from a dual solution for the
following particular cases.

1. fly) = %HyH% where A > 0 and g(x) = Y7/ i + t[—1,0(%;). Assume m =n
and L is invertible

2. f(y) = -1, (y) and g(z) = %HxH% — bTx where A > 0

Exercise 3.20 (x)

Let f : R™ — RU {oo}. Prove Fenchel-Young’s equality,
f*(x) =sTe — f(s) ifandonlyif se df(x),

via the following steps.
1. Prove Fenchel-Young’s inequality, i.e. f*(s) > s'x — f(x)

(
2. Suppose that s € 9f(z). Show that f*(s) < sz — f(x). We may conclude
that s € 9f(z) implies f*(s) = sTx — f(z)

3. Suppose that f*(s) = s — f(x). Show that s € 9f(x)

Exercise 3.21 (%)

Let f : R" - RU {oco}. Show that
1. s € 0f(z) implies z € 0f*(s)
2. x € 0f*(s) implies s € f**(x)
3. Suppose f closed and convex, then
s€edf(x) e xedf(s)

i.e. (0f)~t = Of* (the inverse of the subdifferential is the subdifferential
of the conjugate)

Exercise 3.22 (%)
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Let g(x) = f(Lx+c) where f : R™ — RU{oo} is closed convex, L € R™*", ¢ € R™
and relint dom g # (). Show that

g'(s) = inf (f*(u)—cp).
pis=L"p

Exercise 3.23 (x)

In this exercise we study a type of duality in a nonconvex setting called Toland
duality. Let f,g : R” — R U {oco} be two functions, where f is closed convex and
dom g C dom f. Show that

sup (f(z) — g(x)),

zeR?

is equal to
sup (¢*(s) — f*(s))-
seR™

Hints

HinT TO EXERCISE 3.3
Note that

) <Hp> (z) = {x\ﬂflp2 if 2 # 0,

P 0 ifx =0.

HiNT TO EXERCISE 3.6
Use the results from Exercise 3.1 and 3.5.

HinT TO EXERCISE 3.8

Cauchy-Schwarz inequality s’z < ||z||2|/s||2 holds for all z, s.

HinT TO EXERCISE 3.13
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The subgradients for all functions have already been computed in previous ex-
ercises.

HinT TO EXERCISE 3.14

For the first subproblem, let z = prox(z), introduce u = z — = and show that
u = proxy.(z). To prove this, use Fermat’s rule on the definition of the prox.

HinT TO EXERCISE 3.18

A very similar approach to Exercise 3.17 can be used.
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Chapter 4

Proximal Gradient Method -
Basics

ExErcisk 4.1
Suppose that f : R® — R is convex and differentiable. Consider the gradient
descent algorithm

Try1 = o — YV f(2p)

where v > 0. Let 2* be a fixed point of this algorithm. Show that z* minimizes

f.

ExERcIsE 4.2

Suppose that f : R" — RU{oo} is closed convex and z is such that z = prox, ;(z)
for some v > 0. Show that x minimizes f.

ExErcise 4.3

Suppose that f,g: R” — R U {co} are closed convex, f is differentiable, and z is
such that « = prox_ (z — vV f(x)) for v > 0. Show that x minimizes f + g.

ExERcisk 4.4
Which of the algorithms

* gradient method

¢ proximal gradient method
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are applicable to the minimization problem minimize,cg» h(x) where h(x) is
1. 1||Az —b||3, where A € R™",m <n

227Qx + bTx + ||z||1, where @ = 0

1Az — b||3 + ||||3, where A € R™*" m < n

$IlAz — b||3 + ||z||2, where A € R™*" m < n

LAz=b(T) 4 tj—1 1] (%)

ellz=vls 4 (1 (@)

127Qx + || Dz||1, where @ - 0, D diagonal

%xTQx + tj—1,1)(Lx), where Q >~ 0, L € R™*"

© ® N e oA w N

- log(1 +e ") + L 50 max(0, ;)2

ExErcise 4.5

For each of the algorithms and functions in Excercise 4.4, which of the algo-
rithms are applicable to some dual formulation of each of the problems?

ExErcisk 4.6
Consider the problem

minimize ||z||; + 127 Qx
x

where Q € R™*" and @ > 0. The goal of this exercise is to state a dual problem
and state the proximal gradient method for this dual problem. Let

f@)=|zli and g(z) = 2" Qu.
The problem can be written as
minimize f(x) + g(z).
Compute f*

Compute g*

State a dual problem using general f* and g¢*

L A e

State a proximal gradient method step for this general dual problem. Specif-
ically, assume that f is closed, convex and proximable, and g is closed and
strongly convex (which in fact is true in our particular case). Construct
a proximal gradient method that is computationally reasonable based on
this information.

5. Specify the proximal gradient method step for the dual problem with our
particular choice of f and ¢
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ExERrcise 4.7 (%)

Consider a primal problem of the form
minimize f(Lx) + g(x),
x
where f : R™ — R U {co} is closed convex and proximable, g : R" — R U {o0} is

closed and strongly convex, L. € R™*" and relintdom (f o L) Nrelintdom g # (.
We know that a dual problem can be written as

minimize f*(u) + g* (=L p).
o

We also know that f* is closed convex and proximable and that ¢* is closed convex
and smooth. If v, > 0, a proximal gradient step can be written as
per1 = Prox, o (e — V(9" o —L") (1)) -
Show that this equivalently can be written as
y = argmin, (g(z) + uf L),
v = ug + yeLag, (4.1)
Hi+1 = Vg — ’Ykprox»ylzlf(ﬁ)/]g_lvk)'

I.e. we can perform the proximal gradient method step for the dual problem
using only primal information (f and g).

ExERcISE 4.8

Consider the dual problem obtained in Exercise 4.6. For these particular choices
of f and g, explicitly evaluate the dual proximal gradient method step and show
that the resulting step is the same as the implicit step (4.1) obtained in Exercise
4.6.

Exercise 4.9 (H) (%)

Let f : R™ — R be a -smooth function for some 5 > 0. Consider the gradient
method step

T = — VeV f(Tr),

for some v, in (0, 1/3). Show that the gradient method is a majorization-minimization
algorithm. A majorization-minimization algorithm is an algorithm on the form

Tp+1 = argmin g(y)
Yy

for some function g : R® — R such that / < g, i.e. ¢ is a majorizer of f. Thus,
the goal is to find such a g.
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Hints

HinT TO EXERCISE 4.9
Start from the decent lemma, i.e.

fy) < f(@) + V@) (y— o)+ 5y — 2], Va,y eR",

and use that v, < 1/6.
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Chapter 5

Learning

Exercise 5.1

Consider the logistic regression problem
N
; log(1 —yi(z] w+b)
Ig};l; og(l+e ),

with data points z; € R" and class labels y; € {—1,1}, for each i € {1,...,N}.
Show that this problem is equivalent to

N
min 3~ (o1 + 77— (el ).

if the classes are labeled with y; € {0,1} instead of y; € {—1,1}.

ExErcisk 5.2
Consider the logistic regression problem

N
: T
I?UTZI (log(l + €% Ty — (2w + b)) ,
1=
with data points z; € R" and class labels y; € {0,1}, for each i € {1,...,N}.
Assume that there exists (w,b) € R” x R such that 2w +b < 0if y; = 0 and

zlw+b>0ify; =1, for each i € {1,...,n}. Show that the infimal value of the
cost is 0, and that no (w, b) exists that attains the value.

ExErcisk 5.3
Consider the univariate Lasso problem

1 2
min = —b A
xelR QHCWC ”2 + ‘JS‘ )
where a € R™, b € R™” and A > 0 are given.
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Assume that a # 0 and b # 0 (since otherwise the optimal solution of this prob-
lem is simply = = 0). Prove that the optimal solution of this problem is

0 if A > |a”b],
v T)g — W sgn (z5) if A< |aTb )
2
where
aTh
s = Yal3

corresponds to the solution of the problem for A = 0, i.e. the corresponding
univariate least squares problem.

ExErcise 5.4

Consider the Lasso problem

01 2
min 44z - bl3 + Al

with A € R™™ b€ R" and A\ > ||ATb||o. Show z = 0 is a solution.

Exgrcisk 5.5 (H)(xx)

Consider the following bivariate Lasso problem
1 2
min 34z b + Al
where A € R™2 b € R*, n > 2, and A > 0. Assume that the columns of A

are normalized, |la;1||2 = ||laz2|l2 = 1, and A has full column rank (in particular,
lat'az| < 1). For each of the four possible sparsity patterns,

Xo,0 = {(0,0) € R?}, X117 = {(v1,22) € R? : 21 # 0,22 # 0},
X1 = {(z,0) € R* : z # 0}, Xo1 = {(0,z) € R* : z # 0},
find the set A; ; s.t. if 2* € X; ; then A € A; ; where x* is a solution to the problem.

Verify that for a given problem the four ranges A; ; are disjoint and the number
of zeros in the solution increase with \.

Exgercisk 5.6
Consider the following SVM problem with an affine model

min max (0,1 — y; (2] w + b)) + 3|jw|3,

with for each i € {1,...,n}, data points z; € R™, class labels y;, = {—1,1} and a
regularization parameter \ > 0.
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1. Consider the unregularized problem, A = 0, where examples for both classes
exists. Assume the data is fully separable, i.e. there exists a non-zero
pair of parameters (w,b) € R™ x R such that 27w +b < 0ify; = —1 and
rFw+b>0ify; = 1, foreach i € {1,...,n}. Show the optimal cost is 0 and
that the that the set of optimal (w, b) is unbounded.

2. Consider again the unregularized problem, A\ = 0, but assume the data
only consists of one class, e.g., there arenoi € {1,...,n} such that y; = —1.
Show that arbitrary w is optimal and the set of optimal (w, b) is unbounded.

3. Consider the regularized problem, A > 0. Assume the data only consists
of one class, e.g., there are no i € {1,...,n} such that y; = —1. Show that
w = 0 is optimal and the set of optimal (w, b) is unbounded.

ExErcise 5.7

Find X € R™*™ and ¢ € R" such that the SVM problem in 5.6 can be reformu-
lated as

. T . T A 2
we%l”gze]}@l max (0,1 — (X" w +bg)) + 5[ wl3,

where the max function is applied element-wise and 1 € R™ is a vector of all
ones.

ExErcisk 5.8
Consider the reformulated SVM problem in Exercise 5.7

in 17 0,1— (XTw+b 2|wl|3
e . max(0, 1 — (X" w + b¢)) + 5lwlz,

S(L(w,b)) g(w,b)

where L = [ X7, ¢].
1. Derive the dual problem min,, f*(x) + g*(— LT ).
2. Show how to recover a primal solution from a dual solution.

3. A support vector for this kind of soft-margin SVM is defined as any data
point z of class y that lies on the wrong side of the margin, 1 > y(z”w +b),
for amodel given by (w, b). It is easy to see that only the support vectors con-
tribute to the cost of the objective (see objective in Exercise 5.6). Show that
the non-zero elements of the optimal dual variable ;* correspond to sup-
port vectors of the optimal model (w*, b*). Show that the optimal model can
be recovered from the dual solution by only considering support vectors.

ExErcise 5.9
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Consider the typical supervised learning problem

mui,nz L(muy (1), yi)
i=1

where z; € R? is data, y; € R! the response variable, m,, : R — R* the param-
eterized model we wish to train, and L : R¥ x Rl — R the loss comparing the
model output m,, (z;) with the known correct output y;.

Assume L(y,y) is convex in g. Prove or disprove the following statements.

1. 7% L(m(xi), yi) is convex if a feature mapped model is used. I.e. m,,(z) =
wT¢(z) where ¢ : R — RS for some w € R ¥,

2. S°% | L(mu(z;),y;) is convex if a DNN model is used. Le. my,(z) = o1 (w oa(wd ...op(whz)...))

where o; are some activation functions.

Hints

HiNT TO EXERCISE 5.5

For 2* € X, first find the optimal z}. Use this together with the optimality
condition for 2 = 0 to find the bounds on A. For z* € X i, first find the ordinary
least squares solution and show the coordinates of the Lasso solution have the
same signs. Use this, the optimality condition and xz* # 0 to find the bound on
\. Useful identities are sgn(x) = sgn(x)~!, |x| = sgn(z)r and sgn(z)sgn(y) =
sgn(zy)
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Chapter 6

Algorithm Convergence

Exercise 6.1

For a given optimization problem, we used two algorithms to solve it up to a
desired precision.

1. The first algorithm, performed 5000 floating point operations in each iter-
ation and we ran it for 10° iterations

2. The second algorithm, performed 50 floating point operations in each iter-
ation and we ran it for 2 x 10° iterations

which algorithm had better performance?

ExERCISE 6.2

Match the following rates with the corresponding curve given in figure below.
For each rate, specify if it is linear, sublinear or superlinear.

1. O(p}), with 0 < p; < 1
2. O(ph), with py < pa < 1
3. O(1/1og(k))

4. O(1/k)

5. O(1/k?)
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ExERrcISE 6.3

Let (Vi)rey be a non-negative convergence measure. Show that

1. Q-linear rate
Vg1 < pVi, VE €N,
for some p € [0,1), implies an R-linear rate
Vi < pFCp, VkeN,

for some C;, > 0 and find C},

2. @-quadratic rate
Vi1 < pVi2, Vk €N,
for some p € [0,1), implies a local R-quadratic rate
Vi < phCq, VkeEN,

for some pg € [0,1) and Cgp > 0. We say that the rate is local since R-
quadratic convergences depends on the initial value V5. Find pg and Cg
and for which p and V| this R-quadratic rate imply that V;, — 0 as & — oc.

ExErciske 6.4

Let f : R™ — R be a function and consider the problem

inf f(z).

TER™?
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Suppose that some iterative descent algorithm generates a sequence (zx)ken in
R"™ i.e.

flrpi1) < f(zr), VkeN.

We call such a sequence (z)ren @ descent sequence (for f).

1. Give an example of a function f and descent sequence (zj)rcny Where this
does not imply convergence of the sequence of function values (f(zx))ken

2. In addition, assume that the function f is bounded from below, i.e. there
exists a B € R such that f(z) > B for all z € R". Prove that the sequence
of function values (f(x1))ren converges

3. Give an example of a function f that is bounded from below and descent
sequence (zj)ren such that (f(zx))ren does not converge to inf,cgn f(x)

ExErcise 6.5

Let f(x) = e — 22 + 22 and = € R. Consider finding the minimizer of f using
the standard Newton’s method without line search

Ti1 = 2k — (V2 f () 'V f ().

Below you find the 10 first iterations for when xy = 5.

k Tk |z — |

0 5.000000000000000 4.685076942154594
1 3.960109873126804 3.645186815281398
2 2.888130487596392 2.573207429750986
3 1.799138129515975 1.484215071670569
4 0.849076217909656 0.534153160064250
5 0.379763183818023 0.064840125972617
6 0.315791881094192 0.000868823248786
7 0.314923211324986 0.000000153479580
8 0.314923057845411 0.000000000000005
9 0.314923057845406 0.000000000000000

Calculate the ratios |z, 1 —2*|/|z) —2*| and |z}, 1 —2*| /|2, —2*|>. Based on these
ratios, estimate whether the sequence {|z; — *|}ren is @Q-linear or Q-quadratic

convergent and find the corresponding rate parameter.

ExERcCISE 6.6

A sequence {Q}ren in R is generated by some iterative algorithm and is found

to satisfy the following inequality

;
0SS

L P
Ya(k)’

where D and V' are positive constants. The functions ¢); : R - Rand ¢ : R — R

Vk € N,

are parameters of the algorithm that generated {Qy }ren.
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1. Show that Q;, — 0 as k — oo if

(k) > 00 as  k— oo,
Pa(k) 00 as k— oo

2. Let ¢ > 0 and decide the rate of convergence for the following cases

(a) When
1 ifk <0 1 ifk<1
k) = - d k) = -
vilk) {20¢E k>0, va(k) {Qﬂc if k> 1
clog(k)
(b) When
(k) = 1 ifk <1,
BT 2D e s,
and

i 1 ifk <1,
- —2a l—a_ )
; c((1lfi)()1§]f—2a721()1) ifk>1,

where « € (0,0.5)
(c) When

ik = 1! if k<1,
I U VYA

-«

and

o) 1 ifk <1,
2 == —2a l—a__ .
céi—i)()igfﬂa—gi) ifk>1,

where o € (0.5,1)

3. Which case above gives the fastest convergence rate?

ExErcIsE 6.7

An iterative algorithm for minimizing a function f : R” — R produces a sequence
{zk}ren in R™. A convergence analysis results in the following inequality

o VEDYLo7
Flew) - flat) < 62520%97

where V', D and b are positive constants, z* is a minimizer of f and +; > 0, for
each i € N, are step-size parameters.

, VkeN,

1. Show f(xy) converges to f(z*) if {7?}ien is summable and {v;};cy is not,
ie, > 72 <ooand > 2 v = o0

39



2. Let ¢ > 0 and estimate the convergence rates for the following step-sizes
@ v =c/(i+1)
(b) vi=c¢/(i+1)* with a € (0.5,1)

3. Which step-size 7; above gives the fastest convergence rate?

ExErcISE 6.8

Let f : R™ — R be a -smooth convex function, for some 8 > 0 and z* € R" a
minimizer of f. Consider finding a minimizer of f, not necessarily z*, using the
gradient descent method

Tpr1 =z — YV f(zr), VkeEN,

where zy € R" is given and the step-size v € (0,1/f] is constant. In this case,
the gradient descent method can be shown to be a descent algorithm

f(xry1) < f(zr), VEEN,

i.e. (xp)ken is a descent sequence for f. Moreover, the following Lyapunov in-
equality

lz = 213 < lleg—1 — 2*[13 = 29(f(zx) = f(2¥)), VEk € N\ {0},

can be shown to hold. Show that f(zx) — f(z*) as k — oo and find the conver-
gence rate.

ExERcISE 6.9

Consider minimizing a function f : R® — R, with minimizer z* € R", using a
stochastic optimization algorithm, starting at some predetermined (determinis-
tic) point xp € R™. Analysis of the algorithm resulted in the following inequality

E [kt — 2*)15 | 2] < ok — 2*)13 — 29k (f(zx) — f(2*) + % G*, Vk €N,

where G is a positive constant and the +,’s are positive step-sizes of the algorithm
satisfying Y 2, vk = oo and Y e ;77 < oo. In particular, (xx)key is a stochastic
process.

1. Apply an expectation to the above inequality to derive a Lyapunov inequal-
ity for the algorithm

2. Use the obtained Lyapunov inequality to show that

k

k
23 E[f(z) - f(=*)] < |zo— 2|3+ G Y 7, VkeN
i=0 i=0
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Exercisk 6.10 (H) (%)

Let f : R™ — R be a $-smooth convex function, for some 5 > 0. Consider finding
a minimizer of f using Nesterov’s accelerated gradient descent method, i.e.

Vk € N,
Tr1 = (1 — ) Ykt1 + VYo

{yk;—i-l = xy, — gV f(zp),
for some initial points zo = yg € R, where
1— g if k =0,

1
= , VkeN and X, =
T Akt1 F {0.5 +4/0.25 + )‘%—1 otherwise.

Suppose that the function f has a minimum at z* € R". Nesterov’s accelerated
gradient descent method can be shown to satisfy

Vier = Vi < 2E(f(ex) — £*) = 252 (flapn) - (o), Yk €N\{0}, (6.)

where Vi, = ||(A\x — 1)(zx_1 — xx) — 2 + 2*||? for each k € N\ {0}.
1. Show that f(z;) — f(z*) as k — oo and find the rate of convergence

2. Show that if the number of iterations % is as large or greater than

max( ,2) ,

where C = 28V + 4(f(z1) — f(x*)), the methods achieves an e-accurate
objective value, i.e., f(zg) — f(z*) <€

€y
€

Hints

HiINT TO EXERCISE 6.10
For the first part, show that \; > 1 + 0.5k for each k£ € N.
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Chapter 7

Proximal Gradient Based
Algorithms

ExErcisE 7.1
Let f : R™ — R be a 8-smooth function. Consider the gradient descent algorithm
with a fixed step-size v > 0 applied to this problem,

Tp1 =z — YV f(Tk)
where 1y € R" is given.
1. Find the Lyapunov inequality
Vi1 < Vi — (1= )|V f(an)3
where Vi, = f(zx) — f(2z*) and z* is a minimizer of f, assuming it exists.

2. Show that ||V f(z)|[|3 — 0if 0 < v < 2. Find the convergence rate of
g = mingegy ey [V (23)]]3.

|

Exgrcisk 7.2
Let f : R" — R be a /3-smooth convex function. Consider minimizing f(x) using
the gradient descent algorithm and with fixed step-size v € (0, g),

Th1 = Tk — YV [ (k)
where r( € R" is given.
1. With 2* being a minimizer of f, show that the iterates satisfy
2541 — 2713
< lax = 213 = 29(f(rr1) = F(@) + 72 (By = DIV F ()3

by, in order, expand the square ||z, 1 — z*||3, use the first order condition
for convexity, and use the Lyapunov inequality from Exercise 7.1.

2. Show that f(z;) — f(z*) as k — oo, by summing all inequalities for
i=0,...,k and using the results in Exercise 7.1 to bound Z?:o IV £ (z)]I3-
What is the convergence rate?
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Exercise 7.3

Assume that f : R” — R is S-smooth and p-strongly convex. Consider minimiz-
ing f(x) using the gradient descent algorithm and with fixed step-size v > 0,

Tpp1 = T — YV f(2k)
where xg € R" is given.

1. Show that the iterates satisfy the inequality
41 — 23 < (1 — py)l|l — 27|13

for v € (0,1/0] by using the same technique as in Exercise 7.2 but replac-
ing the first order condition for convexity with the first order condition for
strong convexity. Which step-size ¥ maximize the convergence rate?

2. A different approach is used to analyze the convergence in the lectures.
There they get the following convergence inequality,

[k 1 — 27[l2 < max(l — py, By — Df|lzg — 272

which hold for v € (0,2/5). What is the best step-size v according to this
inequality? Which approach gives the fastest possible rate?

ExERcIsE 7.4
Consider the problem

minimize z’ Qz + ¢z, where Q > 0
x

with the gradient descent algorithm ¢! = 2¥ — 4V f(2*) where v € (0,2/L) and
L=Q].

1. Show that ||zFT! — 2*|| < ||(I —~Q)||||=* — *|| and that ||I —vQ|| < 1, where
z* is the solution to the problem.

2. Lety = 1/L and find an expression of || (I —Q)|| in terms of the eigenvalues
of Q.
Let the (geometric) convergence rate r be defined as the smallest r so that ||z* —
z*|| < r¥||z° — 2*|| holds.
3. Let Q = [8 (1)] where 0 < ¢ <« 1. What is the worst case convergence rate

r we can expect given the result above? Let ¢ = 0, can you find a point z°
where this is the practical rate.

e ¢€/10

4. LetQ:L/10 1 }

and e. Gradient descent will therefore be slow also on this problem. To

improve the convergence rate, we want to find a variable change z = V7,

where V is invertible, so that the equivalent problem minimize, y’ VI QVy+

q"Vy has better properties. This is often called preconditioning. Find a di-
agonal matrix V so that the diagonal elements in V' QV are 1.

. The eigenvalues of this matrix is approximately 1
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5. What are (rougly) the eigenvalues of the new matrix V7'QV? What can we
expect in terms of convergence rate of ||y — y*||?

6. When we have a problem where the proximal gradient method is needed
instead of just gradient descent, why do we usually have to limit ourselves
to diagonal scalings V'?

ExErcise 7.5
Consider the proximal point algorithm, i.e. select zo € R™ and for all £ € N
2Ft = prox. (a*)
where v > 0.
1. Show that (f(2"))ren is a decreasing sequence according to
Fa™h) < fa?) = g5 lla™H =283,
for all v > 0.

2. Assume that f is lower bounded by B (i.e., B is such that f(z) > B for all
x). Show that ||z**! — 2| — 0 as k — oc.

3. Assume (closed) convexity of f. Show that ||z**! — z*|| — 0 implies that
disty;(z#)(0) — 0 where distyf(,)(0) = inficpy(r) |s — 0|, i.e. the distance
between the subdifferential and zero becomes arbitrary small.

4. Assume strong convexity of f, show that z¥ — 2* where f(z*) = min f(x).

Note about the last point. There exist weaker conditions than strong convexity
for the sequence to converge but strong convexity is arguably the simplest.

ExERcCISE 7.6

Let f : R™ — R be convex and S-smooth and g : R™ — RUoc be closed, convex and
proper. We consider minimizing f(x) 4+ g(x) using proximal gradient algorithm
given a x( € R", with fixed step-size v € (0,1/0]

Li+1 = prOX,yg(.ka - ’}/Vf(l'k))

A procedure of proving convergence of the algorithm is given below, however,
some of the steps are missing. Fill in the gaps marked by ... to complete the
procedure.

1. The goal is to get an inequality on the form

Vierr < Vi — Qg
where ), is some non-negative convergence measure. Here we choose
Vi = |lzx — 2*||3 as the Lyapunov function. We further define the resid-

ual mapping as Ry, = xp, — prox, (vx — vV f(zx)). The proximal gradient
update can then be written as

Tyl = Tk — Rag (7.1)
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and we can use this to relate V},,; to V}, by expanding the square,

Vk—i—l =Vi+... (7.2)

. The quantity —2(z; — 2*)T (Rx1) + ||R21||3 now needs to be bounded. We
start by using (7.1) to re-write it as

—2(xp, — 2) T (Ray) + |Rapl|3 = —2(zpp1 — )T (Rag) + ... (7.3)

. We now turn to bounding —2(z; —2*)” (Rzy). From the proximal gradient
update we have

zp — YV f(xr) — 2 + Ray € v0g9(wp41)
— Rz — Vf(xg) € 0g(xp41)-

The definition of a subgradient then gives

—2(zpp1 — 2) T (Ray) < ... (7.4)

. We continue to bound —27V f(z1)T (zx+1 — 2*). Using 3-smoothness of f
and definition of convexity of f gives the two following inequalities

Fargr) < flag) + V)T (@ — x) + 5llog — 23
= f(z) + Vf(xr) " (@re1 — 1) + 5| R 3
flae) < f(@*) + V()T (z — 2).

Adding these two together and rearranging yield

— 29V f () (g1 — %) < ... (7.5)

. Inserting (7.5) into (7.4), (7.4) into (7.3), and finally (7.3) into (7.2) yield

Vi1 S Ve +...

. Using the assumption v < 7! finally gives
Virr < Vi — Qg
where

Qr="...
which is non-negative since vy > 0 and ... > ... since z* is a minimum.

. Since V;, > 0 and Q) > 0 we have that Q; — 0 which implies that
R

as k — oo.
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Exercise 7.7

Consider the problem

min f(z) + g(z) (7.6)
TER™

where f : R" — R and g : R" — R U oo are closed functions that are y /-, and
g-strongly convex respectively. We further assume f is 3-smooth and g is prox-
imable. The problem can then be solved with the proximal gradient method,

Tt1 = Prox (zr — YV f(2k)).
where v > 0 and z( € R™ are given.

1. Show that the proximal gradient method satisfy

*12  max(l—psy,8y—1)3
3 <

kaﬂ -

by inserting the definition of x;,; in ||z, 1 = 2*||3 and then use the follow-
ing in order. A minimum z* is a fixed point to the proximal gradient step.
The proximal operator of a u-strongly convex function is ﬁ-Lipschitz
continuous. The gradient of a 5-smooth and u-strongly convex function h
satisfies

(Vh(z) = Vh(y) (x = y) = 5lIVA(x) = VAW + 724 e — yl3

for all z,y. Then, in two different cases, use g-Lipschitz continuity of V f
or the fact that the gradient of a u-smooth function h satisfies

IVh(z) = VA(y)|2 = pllz -yl
for all z,y.

2. For which step-sizes v and combinations of iy > 0 and py > 0 does the
algoritm converge linearly?

3. It is sometimes possible to move the strong convexity between f and g. For
instance, consider the following problem,

min h(e) + ¢(x) + 4 /3

where h is L-smooth closed convex and ¢ is closed convex and proximable.
This can be written as a problem of the form (7.6) by choosing any ¢ € [0, 1]
and forming

fl@) = h(z) +05lz]3,  g(z) = d(z) + (1 - 8)5]l=3.

The objective f + g will always be the same and will always be u-strongly
convex regardless of the choice of §. However, the individual strong con-
vexity of f and g will depend on ¢§ and hence so will the convergence rate
of the proximal gradient method !.

Compare the convergence rates for the best choice of step-size v when all
strong convexity is put in the gradient step, § = 1, and when it is put in
the proximal operator, 6 = 0.

We assume the function g is proximable here. In general is it not easy to prox on the sum of
two functions, even if both are proximable. However, since we add a square norm term which and
the proximal operator already solves a square norm regularized problem, this is not too strong of
an assumption.
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Exercise 7.8 (H)
Consider the problem of minimizing the function F'(z) where

N
Fa)= 43" filw).
The stochastic gradient method is

Sample i uniformly from {1,..., N}
o =2k — MV fi(ah).
Note that E[V f;(x)|z] = VF(x) given that x is known. Further assume that the

variance is bounded, E[|V fi(x) — VF(x)|?|x] < o2 for all z, and that F is lower
bounded and L-smooth.

1. Show that stochastic gradient descent satisfies

E[F ("2 < F(a®) — 4*(1 = §95)[VF(ER)|? + ()2 45

2. Show that it is possible for E||VF(2¥)|| — o if /¥ = 1.
3. Show that minkST EHVF(.’IJk>|| —0asT — 1f'yk - %

4. Show that it is possible for E[|VF(2"*)|| — ¢ > 0if y* = ; for some constant
C.

ExErcise 7.9

For the two problems below, estimate the per-iteration computational complex-
ity for gradient descent, proximal gradient descent and their coordinate-wise
variants. For the proximal algorithms, apply the prox to the term for which it is
cheapest to compute.

o 127Qx +bTx + ||z||3, where Q > 0.

e log(1+4 e ") + 3, max(0, z;)2

Exercise 7.10 (%)

Show that it is possible to implement coordinate gradient (and coordinate proxi-
mal gradient) for the function log(14e~*"#)+3" ;max(0, z;)? with a per-iteration
cost that doesn’t grow with the number of elements in z.

Exgrcise 7.11

One interpretation of coordinate descent is that you restrict the function to a
line and take a gradient step of the function along this line. Let the direction we
want to take a gradient step along be coordinate i, i.e. the direction ¢;, where
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index i of e; is 1 and the others are 0. Let f;.(a) := f(z + e;a), we can then
formulate the problem as taking a gradient step of f; , from ap =0, i.e

a=ag—%Vfiz()

If f; » is L;-smooth, then we know that f; (@) < f; »(a) as long as v; € (0,2/L;).
With oy = 0 we therefore get a non-increasing sequence

fa™h) = f@* + @) = f;0(@) < figr(a0) = f(a")

when zFt! = 2F 4 ¢,a.

* Consider the function f(z) = 3||Az — b||*>. Find the smoothness constants

L;, i.e the bounds on ~;.

¢ Show that L; < L for all i, where L is the smoothness constant for f, i.e, we
are able to take longer steps with the coordinate gradient algorithm than
with regular gradient descent.

Exercise 7.12

Consider the minimization problem
. n
o f(z)+ Zi:l gi(xi)
and the proximal coordinate descent algorithm

Choose i from {1,...,n}
:E"L'H_l = prox,, (.Q?f - ’)/vlf(wk))

k+1 _ k . .
r; =) Vi #i

where V,f(x) is the i:th coordinate of the gradient and v > 0. Assume L-
smoothness of f, (closed) convexity of g; and that each i € {1,...,n} is chosen
an infinite number of times.

Show that this is an descent method for sufficiently small v. Find the upper
bound on ~.

ExErcisk 7.13
Consider the problem and the proximal coordinate descent algorithm from Ex-
ercise 7.12 but allow for coordinate-wise step-sizes,

gt = prox., . (2F — Vi f(2%))

E+1 _ Kk S
;T =af Vj#

where v; > 0. Find better upper bounds for each ~; that still ensures descent
under the following refined smoothness assumption on f.
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For all z,y is
fly) < f@) + V@) (y—2) + 5y — )" M(y — )

satisfied for some positive definite M. Since (y—2)T M (y—=z) < /\m%(M) |y —||?
this implies regular smoothness. Ordinary L-smoothness can also be written on
this form with M = LI where I is the identity matrix. However, allowing for
arbitrary quadratic upper bound on f means it can be made tighter.

Exercise 7.14 (%)

In this exercise we want to study the convergence of gradient descent and coor-
dinate gradient descent. Consider the simple problem

1
p* = min —||Ax — bHQ,
z 2

where we assume that A € R™*", Let m = 40,n = 20 and generate a random
matrix A and random vector b. The optimal point z* can in this case can be
found directly using the least squares solution in Julia: xsol=A\b.

* Implement gradient descent, and plot the cost || Az*—b||>—p* as a function
of the iteration k. Note that you can compute and save the matrix A7 A
and the vector A”b to reduce the number of computations needed at each
iteration.

* Implement coordinate gradient descent and compare the cost § || Az*—b||* —
p* to that of the full gradient descent. Take make the comparison fair, use
the same initial point z° and same step-length, let the number of iterations
be n times as many and plot the cost for every n iterations.

* Implement coordinate gradient descent with the step-lengths computed in
Excercise 7.11 and make the same comparison.

Exercise 7.15 (%)

In this exercise we want to study the convergence of stochastic gradient descent.
Consider the same problem as in Exercise 7.14, where we can write the cost as
$|Azk —b||2 = L 37, (A;z® —b;)?, where A; is row i in A. Implement the stochastic
gradient algorithm for this problem. Note that you may need significantly more
iterations with this algorithm compared to Exercise 7.14.

* Run the algorithm with a few different constant step sizes ~, for example
Amax> Amax/ 10, Amax /100, where )\, is the largest eigenvalue of AT A. What
happens with the error }||Az* — b||? — p* after many iterations?

* Run the algorithm with a decreasing step size, for example ~/k or 10v/k.
How does the behavior differ?

e What happens if we let gamma decrease faster, e.g. 107/k??
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Hints

HinT TO EXERCISE 7.8

E|X — EX|? = E||X|]? - |[EX]?
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Solutions to Chapter 1

SoruTtion 1.1

1. Figures b. and d. represent convex sets since the straight line connecting
any two points with the sets are contained within the sets.

Figures a. and c. represent nonconvex sets since the lines drawn below
between two points in the respective sets are partially outside the sets.

C. d.

2. Figures b. and d. are convex so there exist supporting hyperplanes at the
entire boundary.
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3. Figures b. and d. are convex so the convex hull is the set itself.

SoruTtioN 1.2

1. Takex € S,y € 5,0 € [0,1], and let z = x + (1 — 0)y. Then Ax = b, Ay = b,
and

Az = Az + (1 — 0)y) = OAz + (1 — ) Ay = b+ (1 — )b = b.

Hence z € S and the set is convex. (This is an affine subspace/intersection
of hyperplanes.)

2. Takex € S,y € 5,0 € [0,1],and let z = Oz + (1 — 0)y. Then Az < b, Ay <b,
and

Az =A0z+ (1 -0)y) =0Az+ (1 —0)Ay < 0b+ (1 — )b =b.

Hence z € S and the set is convex. (This is a polytope /intersection of
halfspaces.)

3. Takez € S,y € S,0 € [0,1],and let 2 = 6z + (1 — 0)y. Thenz >0,y > 0,
and

z=0zx+(1—-0)y >0.
Hence z € S and the set is convex. (This is the non-negative orthant.)

4. Takez € S,y € 5,0 € [0,1], and let z = 0z + (1 — 0)y. Then, since 6 and
(1 — @) are positive,

z=0x4+(1-0)y<u+(1—0Ou=u
and
z=0z+(1-0)y>0l+(1-0)l=1

Hence x € S and the set is convex. (The constraints that defines the set
are called box-constraints.)
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5. Takexz € S,y € S, 6 € [0,1], and let z = 0z + (1 — 0)y. Then [jz|2 < 1,
lyll2 <1, and

Izll2 = [0z + (1 = O)yll2 < bl|z[]2 + (1 = O)[lyll2 < 1.
Hence z € S and the set is convex. (This is the unit 2-norm ball, i.e. all
points with distance to the origin less than one.)

6. Consider n = 1,ie., z € R. Letz = -1,y = 1, and z = %(az +y) = 0.
Then —||z||2 = —1 and = € S. Similarly —|y||]2 = —1 and y € S. However,
—||z]]2 = 0 and 2z ¢ S. Hence the set is not convex.

7. The condition —||z|2 < 1 holds for all z € R”. Hence S = R", which is
convex.

8. Take (z,t;) € S, (y,ty) € S,0 € [0,1], and let (2,t,) = 8(z,t,) + (1 —0)(y,ty).
Then ||z|j2 < t., ||y||2 < ty, and
12ll2 = [0 + (1 = O)yll2 < Ollzfla + (1 = O)[lyll2 < Otz + (1 = O)t, = L.

Hence 2z € S and the set is convex. (This set is called a second order cone
and is shaped like an ice cream cone.)

9. Take X € S,Y € 5,0 € [0,1],and let Z = 6X + (1 — 0)Y. Then 27 Xz > 0
and 27 Yz > 0 for all z € R?, and for arbitrary = € R":

e Zr =27 (0X + (1 -0)Y)r =02" Xz + (1 - 0)z" Yz >0.
In addition, Z is symmetric since X and Y are. Hence z € S and the set is

convex.

10. Takez € S,y € S,0 € [0,1], and let z = 0z + (1 — 0)y. Thenx = a, y = a,
and

z=0z+ (1—-0)y =a.

Hence z € S and the set is convex.

11. Considern = 1,i.e.,z € R. Letz =a:= -1,y=b:=1,and z = %(x—i—y) =0.
Then z # a and z # b, hence z ¢ S and the set is not convex.

SoruTioN 1.3

1. Affine. Letz ¢ Vandy € V. Thenz=y=caand azx+ (1 —a)y =a € V for
all « € R and z,y € V. Hence the set is affine.

2. Not affine. Affine means that gz + (1 — )y € V for all choices of 5 € R and
z,y € V. But, for instance the choice of + = a, y = b and g = 2 is quite
obvious not in V.

For a numerical example we can taken = 1,a = —1,b=1. Then V = [-1, 1]
while Sz + (1 —B)y =,2x (1) + (-1)x1=-3¢ V.
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3. Affine. Take z,y € V. This means 351, 52 € R such that

x=pra+ (1—p51)b
y = faa+ (1 B2)b

Then for all « € R,

ar+ (1 —a)y
=(af1+ (1 —a)Br)a+ (a(l —f1) + (1 —a)(1 — B2))b
=(afi+ (1 —a)fr)a+ (1—(afy+ (1 —a)b2))b
=oca+ (1—o0)b

where 0 = af; + (1 — a)B2 € R. Hence az + (1 — o)y € V and the set is
affine.

SoruTioN 1.4

Figures (a), (b), and (d) are cones. Figures (a), (b) and (c) are convex.

SoruTioN 1.5

All sets are in Exercise 1.2 shown to be convex. It is left to decide which sets
that are cones.

1. Letz € S,i.e., Az = 0. Then A(ax) = aAz =0 for all « > 0. Hence, ax € S
for all « > 0 and S is a cone.

2. Let x € S,ie., Ax = b # 0. Then A(ax) = adx = ab # bforall a # 1
(unless b = 0), and therefore ax ¢ S. Hence S is not a cone.

3. Let z € S, i.e., Ax <0. Then A(azx) = aAz <0 for all « > 0. Hence ax € S
for all &« > 0 and S is a cone.

4. The inequality Az < b consists of m scalar inqualities a!z < b; that all
must hold. Let z € S and j € {1,...,m} be such that a] =z = b; and b; # 0

(such z always exists since A # 0 and since b # 0). Now, a] (ax) = aa] = =
ab; for all a > 0.

Ifb; > 0 and a > 1, then a?(ax) =abj >bjand ax &€ S.

Ifb; <0and a € [0,1), then af(a:c) =ab; >bjand ax ¢ S.

Hence S is not a cone.

5. Letx € S,i.e.,z > 0. Then ax > 0 for all « > 0. Hence, ax € Sforall « > 0
and S is a cone.

6. Let (z,t) € S, i.e., ||z||2 < t. Then |az|2s = ofz|2 < at for all « > 0. Hence
(ax,at) € S for all a« > 0 and S is a cone.
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7. Let X € S, i.e., X is symmetric and 7 Xz > 0 holds for all z € R". Scaling
X by a does not destroy symmetry. Also 27 (aX)z = axz” Xz > 0 for all
a > 0and all z € R". Hence, aX € S for all @ > 0 and S is a cone.

SoruTIiOoN 1.6

1. Intersection. Take z,y € C. Then z,y € C; and z,y € C5. Therefore, by
convexity of C1 and Cs, we have for all § € [0, 1] that 6z + (1 — 0)y € C; and
Oz + (1 —0)y € Cy. Hence 6z + (1 — 6)y € C which shows that it is convex.

2. Union. Take C; = {0} and Cy = {1}. Then C = {0, 1}. This is not convex
since, e.g., 0.5 ¢ C.

SoruTtion 1.7

Note that for any z,y € ()., C; and any 6 € [0, 1], we get that

jeJ
Oz + (1 -0)y € Cj,
for each j € J. Therefore,

0z +(1—0)ye )Gy
jeJ

We conclude that the set (), ; C; is convex.

SoruTioN 1.8

1. Consider any z,y € h,, and any 6 € [0, 1]. Note that
sT(0z+(1-0)y) =0sTe+(1—-0)sTy=0r+(1—0)r=r
Therefore, 0z + (1 — )y € hs,. We conclude that A, is convex.
2. Consider any z,y € H, and any 6 € [0, 1]. Note that
sT 0z +(1-0)y)=0sTx+(1—0)sTy <Or+(1—0)r=r.
Therefore, 0x + (1 — §)y € H,,. We conclude that H; , is convex.

3. Note that the set C' can be written as an intersection of affine hyperplanes
and halfspaces;

In particular, we see that the set C is given by an intersection of convex
sets, and therefore itself convex.
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SoruTtioN 1.9

All of the sets are polytopes and therefore convex.

Sorution 1.10
1. Consider any yi1,y2 € f(C) = {Az+b: 2 € C} and any 0 € [0,1]. Then
there exists z1, zo € C such that
y1=Ax1+b and 1y, = Axy +b.
We get that 0x1 + (1 — §)z2 € C since C is convex. Note that
Oy1 + (1 — 0)ys = A(fz1 + (1 — 0)x2) + b € f(C).

We conclude that f(C) is convex.

2. Consider any xq,22 € f~1(D) = {x : Az +b € D} and any 0 € [0,1]. We
know that

Ari+be D and Axy+be D.
By convexity of D we get that
9(A:L‘1 + b) + (1 — 9)(ASL‘2 + b) = A(9:E1 + (1 — 9)1‘2) +be D.

In particular, we note that 0z; 4+ (1 — §)zo € f~1(D). We conclude that
f~1(D) is convex.

Sorution 1.11

Let x,y € domf. Then, by definition of convexity, f(6z + (1 —0)y) < 0f(z) + (1 —
0)f(y) < oo for all § € [0,1]. That is (0z + (1 — 0)y) € domf if x,y € domf and
dom/ is convex.

SoruTioN 1.12

1. Convex. We should prove that
oz + (1—0)y) < Oo(x) + (1 —0)e(y) (7.7)

forall z,y € R"and all § € [0, 1]. If z,y € C, then the lefthand side and the
righthand side are 0 by convexity of C, hence (7.7) holds. If z £ Cor y & C,
the RHS is co which means that (7.7) is satisfied.
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2. Convex. By the tringle inequality and positive homogenity of norms, we
have for all 6 € [0, 1]:

102 + (1 = O)yll < Ollz[| + (1 = O)[lyll-

3. Not convex. By the tringle inequality and positive homogenity of norms,
we have for all 6 € [0, 1]:

=0z + (1 = 0)yll = 6(=[lx[) + (1 = O)(=lyl)-

Hence f(z) = —||z| is only convex if we have equality for all =,y and 6 €
[0,1]. Now, let y = —2 # 0 and 6 = 1, which gives 0 > —||z|. This holds
with strict inequality for all x # 0. Hence [ is not convex. (Another way
to prove the second fact is that the convexity definition holds with equality
everywhere if and only if f is affine.)

4. Not convex. The function is twice continuously differentiable. The gradient
Vf(z,y) = (y,x) and the Hessian

) fo 1
This is not positive semidefinite (Ssymmetric but eigenvalues -1,1). Hence

f is not convex.

5. Convex. We have
al(@z+(1—0)y)+b=0(alz+b) +(1—0)(a’y+0)
and the convexity definition holds with equality.

6. Convex. The Hessian is V2f(z) = Q > 0, so f is convex.

7. Convex. Let y; and y, be arbitrary. Let x1 € C be the closest point in C
from y; and let z2 be the closed poitn in C from y. Further, let 6 € [0, 1]
and define z = 0z + (1 — 0)xy € C due to convexity of C. Then

bdistc(y1) + (1 — O)diste(y2) = 0lyr — 1]l + (1 — )[Jy2 — 22|
= [[0(y1 — z1)|| + [I(1 = 0)(y2 — z2)||
> |0y + (1 — O)y2 — (0z1 + (1 — O)x2)||
= [|0y1 + (1 — O)y2 — ||
> distc(0yr + (1 — 0)y2).

Sorution 1.13
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fz) = |o| + 22 f(z) = max(|z|, 2%)

f(z) = min(|z|, 2%)

Sorution 1.14

The epigraph of f is
epif = {(z,7): f(z) <r} ={(x,r): alz+b< r}

R T E)

r

which is a halfspace in R"+1.

SoruTtioN 1.15

Suppose that f is convex. Let (z1,71), (z2,72) € epif and 6 € [0, 1]. By convexity
of f, we get that

f(Oz1 + (1 —0)x) < Of(21) + (1 = 0)f(x2)
<Ory+ (1 —0)rs.

We conclude that,

9(%‘1, 7‘1) + (1 — 9)($2,T2) = (91‘1 + (1 — 9)1’2, 97‘1 =+ (1 — 9)7‘2) S epif,
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for all (x1,71), (z2,72) € epif and all § € [0, 1]. Thus, epif is convex.
Conversely, suppose that epif is convex. Consider the relationship
f(O0zy + (1= 0)xg) < 0f(21) + (1 —0) f(x2), (7.8)

for 1,20 € R"and 6 € [0,1]. If ;1 ¢ domf or z; ¢ domf, relationship (7.8) clearly
holds for all § € [0,1]. Thus, consider the case when z, 25, € domf. Note that
(1, f(x1)), (x2, f(x2)) € epif. By convexity of epif, we get that

0(xy, f(21)) + (1= 0) (22, f(22)) = (021 + (1 = O)az, 0 (21) + (1 — 0) f(22)) € epif,
for all 6 € [0,1]. In particular,

f(Oz1 + (1= 0)x2) < Of(21) + (1 - 0)f(2),
for all x1,x2 € domf and all 6 € [0, 1]. Thus, f is convex.

SorutioN 1.16

1. Consider any z,y € R" and any 6 € [0, 1]. We get that

f0z+ (1—0)y) = Zaifi(% +(1-0)y)

=1

< Zai [0fi(z) + (1 —0)fi(y)]
i—1

=0 aifile) + (1 -0 aifiy)
i=1 =1
=0f(x)+ (1—0)f(y).

Hence f is convex.

2. Recall that a function is convex if and only if the epigraph is convex. Note
that

epif = {(z,7) e R" xR : f(z) <r}

= {(m,r) eR"xR: max fi(z)< r}
1€{1,....m}

={(z,r) e R" xR: fi(z) <rand fo(z) <r... and fp,(z) <r}
= ﬂ {(z,r) e R" xR : fi(z) <r}

ie{l,...,m}
= ﬂ epif;.
ie{1,...,m}

We conclude that epif is convex since it is the intersection of convex sets.

SorutioN 1.17
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1. We know that ||z|| is convex. Define

y? ify >0
h(y) = .
0 otherwise

Since h is a non-decreasing and convex, the composition i(||z]|) = ||z||P is
convex.

2. First term: | z||3 is convex and || Az — b||3 is convex since composition with
affine mapping. ||z||; convex since norm. Finally, sums of convex functions
are convex.

3. All norms in the max expression are convex. The max operation preserves
convexity.

4. max (0, 1+z;) max of convex functions, hence convex. Sum over these convex
functions is convex. Second term is increasing function of (convex) norm,
hence convex. Nonnegative sum is convex.

5. Index all y using j from the uncountable index set J to get y;. Further
define r; = g(y;). Then a;(z) = 2Ty; — r; are affine functions of = and
f(z) =sup;(a;(z) : j € J). Since f is the supremum over a family of convex
(affine) functions, it is convex.

SoruTtioN 1.18

1. It is nonempty since obviously z € C,. Now, let z; € C, and z2 € C, be
arbitrary. Then, g(z;) < a and g(z2) < a. Now, by convexity of g, we have
forall§ € [0, 1] that x = 01+ (1—0)xq satisfies g(z) < 0g(z1)+(1—60)g(z2) <
«o. Hence z € C,, and C,, is convex.

2. Let g be as follows:

3. Let g be as follows:

60



SoruTtion 1.19

Consider any (x1,¥1), (z2,y2) € R™ x R™ and any 6 € [0, 1]. Note that

g(0x1 4+ (1 — 0)xo,0y1 + (1 — 0)y2) = f(Ox1 + (1 — 0)x9)
<Of(x1)+ (1 —0)f(x2)
= eg(‘rlvyl) + (1 - 9)9(.@2,1}2)

due to convexity of f. We conclude that g is convex.

SoruTion 1.20

1. The set is a sublevel set of a norm and norms are convex. We conclude that
the set is convex.

2. The norm ||z||2 is convex in (x,y) and —t is convex in (z, t). Therefore, their
sum ||x||2 — t is convex in (z,t). But the set in nothing but a sublevel set of
the convex function ||z||2 — t, and therefore a convex set.

SoruTioN 1.21

Assume on the contrary that z* is a local minimum, but not a global minimum,
i.e., that there exists z € R" such that f(z) < f(z*) but that f(z*) < f(z) for all
x such that ||z — z*|| < §. Then, by convexity, for all § € (0, 1] we have

F((1= 00" +607) < (1— 0)f (") + 0F(F) < (1— )£ (") + 0 (z%) = F(&).
Now, let z = (1 — 0)z* + 0z and for small enough 6 € (0, 1] (for instance 6 =

min(1, —*—)) we have ||z — 2*|| = |(1 — 0)z* + 0% — 2*| = 0||]z* — &|| < & but

 lar—2]]
f(z) < f(z*),i.e., z* is not a local minimum and we have reached a contradition.
More specifically, we have shown that if z* is not a global minimum, it is not a
local minimum. Hence, if 2* is a local minimum, it must be a global minimum.

SorLuTioN 1.22

1. Assume on the contrary that two minimizers exist, i.e., that x # x* exists
that satisfies f(x) = f(z*). Then, by strict convexity of f:

f(ga+ 52%) < 5(f(2) + f(a¥)) = f(a")
which is a contradition. Hence, at most one minimizer can exist.

2. The function f(x) = % with domain = > 0 is strictly convex with infimum
0. But no x exists such that f(z) = 0. See figure.
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SoruTioN 1.23

See figure below.

/( )

1. Not full domain, hence not smooth, strictly convex since no flat regions, not
strongly convex since no quadratic lower bound.

2. Not full domain, hence not smooth, strictly convex since no flat regions, not
strongly convex since no quadratic lower bound.

3. Smooth, not strictly convex since flat regions, not strongly convex.

4. Smooth, strictly convex, strongly convex.
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5. Not smooth (no quadratic upper bound at 0), not strictly convex, not strongly
convex.

6. Smooth since quadratic upper bounds everywhere, not strictly convex since
flat regions, not strongly convex.

7. Not smooth since no uniform quadratic upper bound, stricly convex (since
no flat regions), not strongly convex since no quadratic lower bound.

8. Not smooth since not uniform quadratic upper bound, strictly convex (since
no flat regions), not strongly convex since no quadratic lower bound.

SoruTion 1.24

1. See the following figure. The graph a valid function must lie within the
dark shaded areas. The dashed lines are examples of valid functions f.
Note that smoothness implies differentiability. The example in the convex
case can therefore not be used in the smooth case even though it lies within
the shaded region.

Convex Convex and Smooth Strongly Convex and Smooth

SoruTioN 1.25

1. See the following figure. The graph a valid function must lie within the
shaded areas. The dashed lines is are possible functions f.

' 1 i 1 1
Strictly Convex Strictly Convex and Smooth Strongly Convex and Smooth

SoruTioN 1.26

1. Consider the following function f and point z:
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\/\ /

2. Assume first that f is convex and z,y € R"™. By convexity of f

fla+0(y—=) <(1-0)f(z)+0f(y)

for all 6 € [0, 1]. If we divide both sides by 0 and take the limit as 6 \, 0, we
obtain

fly) > f(=) +})1\1‘1% fla+6(y —03«")) — f(x)

= f(z) + Vf(2)"(y — 2),

where the equality follows from the hint. That is, if [ is convex, then (1.1)
holds.

Now, assume instead that (1.1) holds. Choose any x # y, and 6 € [0, 1], and
let z =0z + (1 — 0)y. Then

(2) + V() (= 2) = f(z) + (1= O)Vf(2) (x — ),
(2) + V) (y—2) = f(2) =0V f(2) (x — )

Multiplying the first inequality by 6, the second by 1 — 6, and adding them
gives (since 6 € [0,1])

0f(x)+ (1 =0)f(y) = f(2) = f(0z + (1 —0)y).

That is, f is convex.

> f
> f

SoruTtioN 1.27

1. Let f(z) := sup, u' (Kz —b) and let € C, i.e.,, Kz — b = 0. Then f(z) =
sup, 170 = 0. That s, f(z) = 0forallz € C.

If instead x ¢ C, i.e., Kz — b # 0, then select u = t(Kx — b) to get
f(z) =supp? (Kz —b) = supt|Kz —b||*> = o0
W t

ast — oo. Thatis, f(z) =ocoforall x ¢ C.

2. Let f(z) := sup,5ou’ g(z) and let z € C, i.e., g(x) < 0. Then for all 1 > 0,
we have p”g(z) < 0. In particular, for 4 = 0, we get u”g(z) = 0. Hence
f(x) =sup, u"g(z) = 0. That is, f(z) = 0 for all = € C.
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If instead = ¢ C, i.e., g(x) > 0, then select ;. = tg(x) (which is nonnegative

for all ¢t > 0) to get
[&

() = sup " g(x) = supg(x)* = oo

ast — oo. Thatis, f(z) =occforall x ¢ C.

SoruTtioN 1.28

We proceed by induction on n. The base case n = 2 is simply the definition of
a convex function, and thus true. For the inductive step, assume that Jensen’s
inequality holds for n = k, were k is an integer greater than or equal to 2. We
need to prove that Jensen’s inequality holds for n = k+1. The case when 0,1 = 1
holds trivially, thus, we assume that 6, < 1. We get that

kt1 k
f <Z 0i$i> =f <Z Oix; + ¢9k+1$k+1>
=1

=1

k
=f ((1 — Ory1) (Z Qiﬂﬂi) + 9k+1$k+1>

1 =0k
convexity of f k 91‘
(1—0pi1)f (Z 1_9%) + Ok 1 f(Tr11)
i—1 k+1
inductive assumption k 0;
< (1 — Hk:-i-l) Z mf(-fz) + 9k+1f($k+1)

i=1
k+1

= 0if(x).

i=1
That is, the Jensen’s inequality holds true for n = k + 1, establishing the induc-
tive step. Thus, by mathematical induction, Jensen’s inequality holds true for
all integers n > 2.

SoruTtioN 1.29

Since 6 only affects the first argument of L, convexity w.r.t. the second is direct.

1. The function reads L(0x,y) where x fixed. This is convex in the first argu-
ment w.r.t. 6 since L is convex and it is a composition with an affine (linear)
mapping 6.

2. Let, e.g., o(u) = u, L(u,y) = u, x = 1 and y € R. Then L(m(x;0),y) =
m(x;6) = 0201, which is nonconvex. Hence, this formulation is nonconvex
in general.

SoruTtioN 1.30

65



f(z)—%||z||3 is convex, by definition, means that for all z,y € R" and all § € [0, 1]
f(2) = 52113 < 0(f(x) = §llel3) + (1 = ) (f(y) — §llyl3),

where z = 0z + (1 — 6)y. This is equivalent to

F(2) <Of () + (1= 0)f(y) + 5(I=13 = Ollz3 — (1L = O)][yl3)- (7.9)

Note that

12113 = 0ll«ll3 — (1 = 0)llyl3

=02+ (1 —0)yl3 - 0lz3 - (1 -0)llyl3

= (6% = O)l|=[I3 + (1 — 6)> — (1 = 0))[|y[13 +26(1 — )z y

= (01— 0))(~ll=[I3 — [lylI3 + 22"y)

=—(0(1 = 0))(llz — yl3)- (7.10)
Inserting (7.10) into (7.9) gives the desired result.

SoruTtion 1.31

We first prove the equivalence in the simple case when 5 = 0. Property I) is
equivalent to f being affine. Moreover, property II)-IV) simply give that f is
convex and concave. But this holds if and only if f is affine. Therefore, I)-IV) are
equivalent.

Next, we consider the case when 5 > 0.

I) = II): Assume that I) holds. Note that for x,y € R" and ¢t € R,

& fla iy — ) = Vo + 1y~ ) (o~ ),
by the chain-rule. This gives that
1
Fo) = 1@ = [ Vie+tly =)y =)t (7.11)

for all =, y € R™. Subtracting V f(x)? (y—=x) from the expression above and taking
absolute value yields

|fy) — f(x) = V() (y — )|
1
/0 (Vf (@ 4ty — ) — V(@) (y — z)dt

1
< /0 (Vf(x 4ty — ) — V@) (y — )| dt
Cauchy-Schwartz 1

< /0 IV + by — 2)) — V@) l2lly — 2l|2dt
¢ 18y — ol

By
= Ly — 2l
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I.e. II) holds.
II) = I): Assume that II) holds. Consider any z,y,z € R™. In II), insert z for y
in the first inequality, and insert y for = and z for y in the second inequality. I.e.

{f(Z) < f(@) + V)T (2 —2) + 5z - 23,
> f(y) + VI (2 —y) — 5lly — 213,

or

{f(z) < f(@) + V)T (2 —x) + 5z - 23,
< f(2) = VI (= —y) + Slly — 2II3.

Adding this pair of inequalities yields
F(w) < J() + V1@~ 2) = V1) ) + S — 213+ Dy — =13
= (@) = V@) 2+ V@) y+ Dl + Dl + 8121 + (V@) — V() ~ Bo — By)
= (@) = V@) T2+ V1) + D el3+ 3
4Bl + 55 (VH@) = Vi) = B = B - Bl (V7 (2) = Vi(w) ~ o — o)
We are free to choose z = —%(Vf(x) — Vf(y) — Bx — By). This gives
(6) < £(@) = V@) + T 1) Ty + el + S0l - 151950~ V1) = 5z~ ol
1
= @) = 5l (Vi@ = VW
203+ D103~ Dl + vl V@) Ta 4 V@)Y + (V) - Vi) @+ )

— 1(@) — 35191 @) = VIWIE + e — vl + 5 (V7() + VIW) - o)

We may insert z for y and y for x in the in inequality above. This yields the pair
of inequalities

{f(y) < f@) = HIVF@) = VI3 + e — gl + (VI @) + V@) (y - ),
1@) < F) — HIVIG) — V@I + Sy - 3+ 3(VI ) + V@) (@ — ).

/6 2

i.e. I) holds.

IT) « III): Note that the gradient of 2 |z[|3 — f(z) and f(z)+ 5| z|} are Bz —V f(z)
and V f(x) + Pz, respectively. By the first order condition for convexity, we get
that 2|z[j3 — f(z) and f(z) + 2|z[3 are convex if and only if

{‘éuyug — f(y) = Blzl3 - f(2) + (Bx — V()T (y - ),
F) + 21913 > f(2) + L2} + (Vf(2) + Be)T (y — ),
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or

{f(y) < f2) + V@) (y — ) + 5 —yl3,
> f(2) + V(@) (y — ) = Slle —yl3,

holds for all z,y € R™. But this is II).

ITI) < IV): Applying Exercise 1.30 to ngH% — f(z) and f(x) + ngH% gives the
result immediately.

SoruTioN 1.32

By Exercise 1.31 we get that I) is equivalent to that 2 ||z[|3— f (x) and f(z)+5 ||z|3
are convex function. However, by the second order condition for convex functions,
this is equivalent to

BI —V2f(z) = 0and V2f(z) + BI = 0, for all z € R",

respectively. This is simply II). This establishes the desired equivalence.
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Solutions to Chapter 2

SoruTtioN 2.1

1. Function is convex and differentiable with V f(z) = x. Hence 0f(z) = {x}.
2. Function is convex and differentiable with V f(z) = Hx+h. Hence 0f(x) =
{Hz + h}.

3. For z < 0, the function is —x and differentiable with gradient -1. For = > 0,
the function is = and differentiable with gradient 1. At x = 0, all elements
in [—1, 1] are subgradients (see figure).

-1 ifz <0
of(x) =< [-1,1] ifz=0
1 ifz >0

|z

of

(4\

(0,-1)

4. The function is convex. Whenever z € (—1, 1), the function is 0 with gradi-
ent 0, hence 0f(z) = 0. When z > 1 or z < —1, z is outside the domain and
df(x) = 0. When z = 1, all s > 0 are subgradients. When z = —1all s <0
are subgradient (see figure). Note that this subdifferential is the inverse
of the subdifferential of |z|.

[—00,0] ifz=-1

o ifz € (—1,1)
0f(w) = [0,00] ifz=1
U] else
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of

(=00, —1) (00, —1)

D0y .- &7V

5. The function is convex. For x < —1, the function is 0 and the gradient is 0,
hence 9f(x) = 0. For x > —1, the function is = + 1 and the gradient is 1,
hence 0f(z) = 1. For x = —1, all s € [0, 1] are subgradients (see figure).

0 ifx < —1
of(x) =14100,1 ifz=-1
1 ifx > —1

of

N x

(1,=1)
(0, —1) (0.5, —1)

6. The function is convex. For = > 1, the function is 0 and the gradient is 0,
hence 0f(x) = 0. For x < 1, the function is —z + 1 and the gradient is -1,
hence 0f(z) = —1. For x = 1, all s € [—1, 0] are subgradients (see figure).

-1 ifez <1
of(x) =14 [-1,0] ifx=1
0 ife>1
f(x) of

(-1,+1)
(0.5, 1) (0, _1)

SoruTioN 2.2
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1. See figure below.

x1: There is one affine minorizor to f at x; with slope —3. Hence 0f(z1) =
{—3}. f is also differentiable at 2y with gradient —3. Hence V f(z1)
-3

x9: There is no affine minorizor to f at z5. Hence 0f(z) = 0. However, f
is differentiable at x5 with V f(z2) = 0.

z3: There are several affine minorizors to f and x3. Their slopes range
from 0 to 3. Hence 0f(x3) = [0, 3]. However, f is not differentiable at
xrs3.

f(x)
) /
(=3,-1) «— o /x\ x
v
!

-1
2. Fermat’s rule 0 € 0f(x) holds for x3 but not for x; and x5. Therefore, x3 is
a global minimum to the nonconvex function f.

SoruTioN 2.3

Yes, since 0 € f(x).
No, since 0 & dg(y).
No, since subdifferential not singleton (unique) at .

No, since subdifferential not singleton (unique) at .

w A

A

See examples below.

SoruTioN 2.4

1. The following function (which is the absolute value |z|) is a lower bound to

f.
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(-1,-1) (1,-1)

(0,0

2. Since the function above is a lower bound to f, its minimum O is a lower
bound to the minimum of f.

3. An example of function f is given below. The function is f(z) = (22 + 1).

SoruTiOoN 2.5

* From the definition of monotonicity, we know that the minimum slope is 0
and maximum is co. Therefore a. and b. are monotone while ¢. and d. are
not.

* We rule out c. and d. since they are not monotone. Since operators A :
R — 2F for Figures a. and b. are monotone, there exist functions f such
that A = 0f. The subdifferential in a. is maximally monotone, hence the
subdifferential of a closed convex function. The subdifferential in b. is
not maximally monotone, hence not the subdifferential of a closed convex
function.

SoruTION 2.6

A — ol is monotone means that
(50 = 0x) = (s — o)) (x —y) 2 0,
for all z,y € domA, s, € Az and s, € Ay. The inequality is equivalent to
(52— 5y)" (x — y) > oz - y]3.

But this is the definition of A being o-strongly monotone.

SoruTION 2.7

We know that we need to consider n > 2 since for n = 1, all monotone operators
are subdifferentials of functions. Let n = 2 and set linear single-valued A : R —
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R? as A(x1,22) = (v2, —21), which can (with notation overloading) be represented
by the matrix
0 1
A= [_1 O} |

Then A = — AT (it is skew symmetric) and

(Az — Ay)'(z —y) = (z — )T AT (z — y) = —(z — y)T (Az — Ay)
= —(Az — Ay)"(z — y).

Hence (Ar — Ay)”(z — y) = 0 and monotonicity holds with equality.

It is not the gradient of a function since the matrix A would be the Hessian, but
it is not symmetric.

SoruTioN 2.8

1. Write I) and I) with = and y swapped,

{f(y) > f(z) + V()T (y - ),
> f(y) + VIy) Tz —y).

Adding these gives
(Vf(y) = V@) (y—=z) >0,
i.e. I0).
2. Using the hint we get that
fy) = f(x) =V @) (y—=)
= /01 tHVf(z+ ity —2) = V(@) (& + t(y — x)) — z)dt > 0.

But this is I).

SoruTIiOoN 2.9

1. a. Since df is maximally monotone, f is convex.
b. Since 9f is not maximally monotone, f is not convex.

2. The optimal point z* satisfies 0 € df(«*) (Fermat’s rule). Hence, the mini-
mizing x* are the = where the graph crosses the z-axis for both a and b.

3. No, since a constant offset of f is not visible in 9f.

4. Below are example plots of f.
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a. b.

It is linear to the left of the minimum and quadratic to the right.

SoruTtioN 2.10

Since f is o-strongly convex, g(z) := f(z) — §||z||3 is convex. By the subdiffer-
ential sum rule, dg(z) = 9f(z) — ox. Now, by convexity of g, we have for all
sq € 0g(x) that sy = sy — oz for some s; € Jf(x) and

f) =5yl = g(y) = g(x) + sk (y — 2) = f(2) = Gll2]3 + s (y — 2)
= f(z) = §llzl3 + (sy — o2)" (y — ).

Now, since ||y||2 — [|=||3 — 227 (y — ) = ||z — y||3, this is equivalent to

fy) = f@)+sily—=z)+ Sl -yl

SoruTtion 2.11

(a) f not differentiable (0f multivalued at 0), hence 9f not Lipschitz. 9 not
strongly monotone (minimum slope 0), hence f not strongly convex.

(b) f differentiable (not multivalued anywhere). Max slope 1 implies 0f 1-
Lipschitz. 9 f not strongly monotone (minimum slope 0), hence f not strongly
convex.

(c) f differentiable (not multivalued anywhere). Max slope 1 implies 0f 1-
Lipschitz. df not strongly monotone (minimum slope 0), hence f not strongly
convex.

(d) f differentiable (not multivalued anywhere). Max slope 1 implies 0f 1-

Lipschitz. 0f strongly monotone with minimum slope 1/2. Since 0f is also

. .1
maximal, f is 5-strongly convex.

SoruTioN 2.12
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Suppose that s; € dg;(z;). Then
9i(yi) = gi(zi) + si(yi — i)

Summing over i gives

n

9W) = g(@) + Y silyi — z:) = g(a) + " (y — x)
i=1

and s = (s1,...,S,) is a subgradient of g.

Now suppose instead that s € 9g(z). Then

D aiy) =9(y) = g(x) + s (@ —y) =D (gi(wi) + 5i(yi — w1)
=1

=1

holds for all z,y. Let j € {1,...,n} be arbitrary and set =; = y; for all i # j, then
this recues to

9i(y5) = gj(x;) + s5(y; — x5),

i.e., s; € Jg;. Since j is arbitrary, the result follows.

SoruTioN 2.13

For x ¢ domf, subgradients s € Jf(x) must satisfy
f(y) > f(z) +sT(y —x) forally e R™

Since there exists y € R” such that f(y) < oo and f(z) = oo, we see that Jf(z)
must by empty.

SoLuTioN 2.14

A vector s is in the subdifferential of the indicator function at x if

te(y) 2 w(x) + s (y — )

for all . Assume z € C, then 1o (y) > s’ (y — x) for all y, which is equivalent to
that s”(y —x) < 0forally € C. Assume z ¢ Cbuty € C. Then 0 > oo +s” (y—x)
for all y. No such s exists and 1 (x) = 0.

SoruTionN 2.15

Fermat’s rule says = = prox. ;(z) if and only if 0 € 0f(z) + v '(z — 2).
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1. We have 0f(z) = {z}, which gives 0 = vz + (v — 2) or & = (1 + ) !2.

2. Wehave 0f(x) = {Hz+h}, which gives 0 = y(Hz+h)+(z—2) or ([+~vH)x =
z—vhorx=(I+~H) (2 —~h).

3. Let z = prox. ;(z), which means 0 € 9f(x)+~ ' (z — z). The subdifferential
satisfies

-1 ifz <0
of(x) =q[-1,1] ifz=0
1 ifz >0

Let first x < 0 to have 0f(z) = {—1}. Then
0€df(x) +v 1z —2)

implies that z = z + 7. Now z < 0 if z < —~.
Let = > 0 to have 0f(z) = {1}. Then

0€df(x)+y Hz—2)
implies that z = z — 7. Now 2z > 0 if z > ~.
Let = 0 to have 0f(x) = [—1, 1] Then (since x = 0)
0€df(0)+~v10—2)

implies that z € [—7,~].

Hence, the prox becomes

2+ ifz<—y
prox, =<0 if z € [—7,7]
z—n ifz>y

4. The function is the indicator function of C' := [—1, 1], hence the prox re-

duces to the projection onto C. If 2 < —1, the projection is point is -1. If

€ [—1,1], the projection point is z since z € C. If z > 1, the projection
point is 1. Hence, the prox becomes

-1 ifz< -1
prox,,=qz ifze€[-1,1]
1 ifz>1

5. Let z = prox. ;(z), which means 0 € 9f(x)+~ ' (z — z). The subdifferential
satisfies

0 ifr < —1
Of(x)=410,1 ifx=-1
1 ifx > —1
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Let first x < —1 to have 0f(z) = {0}. Then
0€df(x)+y Hx—2)

implies that = z. Now z < —1if z < —1.
Let z > —1 to have 0f(z) = {1}. Then

0€df(x)+7 H(z—2)

impliesthat z =z — 7. Now z > —1if 2 > v — 1.

Let x = —1 to have df(z) = [0, 1] Then (since x = —1)
0€df(—=1)+7y1(~1-2)

implies that z € [-1,v — 1].

Hence, the prox becomes

z if 2 < -1
prox, ;= ¢ —1 ifze -1,y —1]
z—x ifz>y-1

. Let 2 = prox_;(z), which means 0 € f(x)+~~'(z— z). The subdifferential
satisfies

-1 ifz <1
Of(x)=q[-1,0] ifz=1
0 ifx>1

Let first © < 1 to have 0f(x) = {—1}. Then
0€df(z)+~y Hz—2)

impliesthat z =z 4+~v. Nowz < 1if 2 < 1 —~.
Let x > 1 to have d0f(z) = {0}. Then

0€df(z)+~y H(z—2)

implies that © = z. Now z > 1if z > 1.
Let z = 1 to have 0f(x) = [—1,0] Then (since x = 1)

0€af(1)+771(1—2)

implies that z € [1 — v, 1].

Hence, the prox becomes

z4+y ifz<l—x
prox, ;= (1 ifze[l—n,1]
z ifz>1
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SoruTioN 2.16

We have

prox,(2) = argmin(g(z) + 5 llz — 2[13)

n n
= argmin() _gi(zi) + 35 > ||z — zl3)
r i=1 i=1
n

= argmin(Z(gi(xi) + %sz - Zz”%))

z i=1

[argmin,, (g1(z1) + 55 [l21 — 21(3)

largmin, (gn(n) + %Hxn - an%)

[ prox., (z1)

| prox.,. (zn)
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Solutions to Chapter 3

SoruTtioN 3.1

Compute explicit expressions for the conjugates of the following convex func-
tions.

1. We have
f*(s) = sup(s’ = — 3||z[|3)

Now V f(z) = x. Fermat’s rule says z is a solution if and only if 0 = s — x.
Hence,

Fr(s) = s"s = gllzl3 = 3llsll3-

2. We have

f*(s) = sup(s’z — %ITHJ} — hlz)

Now Vf(z) = Hz + h. Fermat’s rule says z is a solution if and only if
0=s—Hx —h,ie. = H !(s— h) (since H invertible). Hence,

fr(s)=s"(H Y s—h)—i(s—hnTH'HH (s —h) —hTH (s — h)

= S 3
=3(s—h)TH (s —h).

3. We have

f*(s)= sup sz
z€[—1,1]

For s <0, an optimal 2 = —1 and f*(s) = —s.
For x > 0, an optimal 2 = 1 and f*(s) = s.

Therefore

F(s) {—s ifs<0

s ifs>0

ie., f*(s) = |s|.
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4. Since ([_y ) is (closed) convex, Lrjl 1 = Y=L In view of the above f* =
‘ ) |* = ("ELLH)* = Lrjl,l] = =11
It can also be proven explicitly. We have

() = sup(sz |z

For s < —1,let z =¢_ <0 with {_ — —o0o, which gives

f*(s) =sup(zs — |z|) > st —|t_| =(s+ 1)t = o0

since s < —1.
For s > 1,1let z = t; > 0 with ¢4 — oo, which gives

f*(s) = sup(ws — [al) > sty — [ty] = (s — 1)t} — 00

since s > 1.

For s € [-1,1], we have by Cauchy-Schwarz that sz < |z||s| < |z| for all
x. Therefore f*(s) = sup, s’z — |z| < sup, |z| — |z| = 0. Further, f*(s) =
sup, sz — |z| > s0 —|0| = 0. Hence f*(s) =0for all s € [-1,1].

The conjugate becomes

F(s) = {0 if s € [~1,1]

oo else
ie. f*(s) = v_1,1(8)

5. For all s € 9f(x), the conjugate satisfies f*(s) = sz — f(x) (Fenchel-Young).
The subdifferential is:

0 ifr <—1
of(x) =14100,1 ifz=-1
1 ife>—1
Let x < —1,then s =0 and f*(0) =0 — f(z) = 0 (since x < —1).

Let z > —1,then s = 1 and f*(1) = 2 — f(z) = z — (x + 1) = —1 (since
x> —1).

Let x = —1, then s € [0,1] and f*(s) = —s — f(—1) = —s (since z = —1).
The other s are not subgradients to f at any x. We verify that f*(s) = oc.
Fors<0,letz =t_ <0 witht_. — —co and

fr(s) > st_ — f(t-) = st— — .

For s > 1,let z =t; > 1 with ¢, — oo and

fr(s) > sty — f(ty) = (s — Dty +1) — oo,

Hence, the conjugate is

Fi(s) = {—s if s € [0,1]

oo else
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6. For all s € 9f(x), the conjugate satisfies f*(s) = sz — f(x) (Fenchel-Young).
The subdifferential is:

—1 ifex <1
Of(x) =14 [-1,0] ifx=1
0 ife>1

Let x < 1,then s = -1 and f*(—1) = —x — (1 — z) = —1 (since x < 1).

Let x > 1, then s = 0 and f*(0) = 0 — f(z) = 0 (since = > 1).

Let z =1, then s € [-1,0] and f*(s) = s — f(1) = s (since = = 1).

The other s are not subgradients to f at any z. We verify that f*(s) = cc.
Fors—1,letx =t_ < —1with{_ — —oc0 and

fr(s)>st_ — f(t_) = (s+1)t_ — 1 — o0.

For s > 0,let x =t, > 0 with ¢, — oo and
fH(s) = sty — f(ty) = sty = <.

Hence, the conjugate is

oo else

F(s) = {s if s € [-1,0]

SoruTioN 3.2

1. Assume that f < g, i.e.
flz) < g(2),
for all x € R™. Then
sTa — f() > sTe - g(),
for all s,z € R™. In particular,
f7(s) = sup (s"w — f(2)) 2 sup (s"z — g(x)) = 97(s),
for all s € R™. We conclude that f* > g*.
2. Assume that f < g. For the previous subproblem we get that f* > ¢*, i.e.
fr(s) = g% (s),
for all s € R". Then
zl's — f*(s) < zTs — g*(s),
for all s, 2 € R™. In particular,
7 (@) = sup (a''s = f*(s)) < sup (¢'s — g7(s)) = g7 (),

for all z € R™. We conclude that f** < ¢g**.
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3. Assume that f = 1|/ - [|3. From Exercise 3.1 we know that f* = ;|| -
Therefore, f = f*.

Now assume that f = f*. Note that
fl@)+ f(s) = f(2) + f*(s) 2 aTs,

for all s,z € R", by Fenchel-Young’s inequality. If we pick s = x, we get
that

13-

fla) > Sl

for all z € R", i.e. f > 1||-||3. However, we know from the first subproblem
above that this implies that f = f* < (|| - |3)* = 3| - ||3. We conclude that

f =3 -3 This completes the proof.

SoruTioN 3.3

By definition,

() (o 2).

Using Fermat’s rule, we get that z is a solution if and only if

veo()or o o cco()

By the hint we have that
9 (Hp> (z) = {x P2 %fiﬂ # 0,
p 0 ifz = 0.

Let 2 # 0, then s = z |2[P~2, and

(3) o=




Let z = 0, then s = 0, and

(£ oot

This covers all cases for s € R. We conclude that

(-5

as desired.

SoruTtioN 3.4

Note that, for every s € R", it holds that

(af +(1—a)g)*(s) = sup (s"z = (af (x) + (1 — a)g()))
= sup (a (s"z = f(2)) + (1 =) (s"x = g(2)))
< sup (a (s"e = f(2))) +sup (1 - ) (s"z - g(2)))
= asup (s'z = f(z)) + (1 - a)sup (s"z — g(v))

= af(s) + (1 - a)g"(s),

ie. (af+ (1 —a)g)" <af*+ (1 —a)g* holds, as desired.

SoruTIiOoN 3.5

We have

g (s) = SUP(fETS —g(x)) = SUP(Z ri8; — gi(wi))

z x °
i=1

= Z sup(z;s; — gi(x;))

" x;
i=1

=>4l
=1

SoruTioN 3.6
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1. The function f(z) = |lz|; = > ;-

n

Fr(s) = fi(si)

=1

1 |zi|. Therefore

n

= t1(si) = Yz (s)

=1

2. The function f(z) = ¢[_q,17(z) = D71 ¢{-1,1](%:). Therefore

n

n

Fs) =Y fils) =Y lsil = lslh.

i=1

SoruTioN 3.7

=1

1. Since f is only defined in in four points, the conjugate is

f*(s) =sup(sz — f(z)) = max(—s —0,—1,s+ 1,2s)

f(x)
(0,1)

(-1,0) (2,0
X

(1,-1)
X

f(s)  2s

s+1

/

2. The biconjugate f** is the convex envelope of f. See figure.

f(x)

f(z)
(0,1)

(-1,0) (2,0)
T

SoruTIiOoN 3.8

1. Conjugate f*(s) = sup,((s,x) —

[l]]2)
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(a) The conjugate satisfies f*(s) > 0 for all s since by selecting =z = 0, we
get f*(s) > (s,0) — [[0[]2 = 0.

(b) By Cauchy-Schwarz (s, z) < ||x||2|/s]|2, we have
F7(s) = sup((s, ) — [lll2) < sup(fls[l2llzl2 — [lzl2) = sup((fls]l2 = Dl[l2)-
Hence, if ||s||2 < 1, f*(s) < 0, which implies that f*(s) = 0.
(c) Set z = ts with ¢t > 0 to get
17 (s) = sup({s, z) — |l[}) = tlsl3 = tlsllz = tlsll2(llsll2 = 1).

Whenever ||s||2 > 1, we let ¢t — oo to conclude that f*(s) = oc.

(d) To summarize

F(s) {o if s> < 1

oo else

2. The subdifferential of f satisfies

of(z) = Arg;nax(sTx — f*(s)) = Argmax(s’ z).

l[sll2<1

If + = 0, then the objective is 0 and all feasible points are optimal, i.e.,
D(0) = B(0,1) i= {5 : ||sll> < 1}.

If instead = 75 0, then maXHSH2S1(ST$) < maX||S||2S1 HSH2||$H2 = ”.THQ NOW,
let s = -, to get max|s|,<1(s7z) > ||zla.
Therefore

x/||x|l2 else

Of (z) = {B(O, 1) ifz=0

SoruTioN 3.9

1. The claim says that

f*(s) = max(s) = sup 5"
g TEA

Suppose that i is any index where s; = max;(s;). First note that x =¢; € A
gives s'xz = s;. Now let « # ¢; but z € A. Then

n n
sy = E Tj8; = x;S; + E 855 < x;8; + 8 E Tj = 8 E xT; = 8.
Jj=1 J#i J#i Jj=1

Hence, all points € A\e; satisfy sT2 < s;. Therefore sup,.p s’z =
max;(s;).
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2. Since element-wise max is closed and convex, the conjugate is ¢a.
3. The claim says that

f*(s) = max(0, max(s;)) = sups’ z
g z€D

Suppose that i is any index where s; = max;(s;) and that s; > 0. First note
that z = e; € A gives s’ 2 = s;. Now let z # ¢; but 2 € D. Then

n n
sy = Za:jsj = x;8; + Zijj < x;8 + s ij = S; ij < s;,
Jj=1 J# J#i Jj=1
where the last step uses s; > 0. Hence, whenever s; > 0 all points z € D\e;

satisfy s’z < s;. Therefore sup,., s’ * = max;(s;) for all s with at least
one nonnegative element s; > 0.

Assume now all s; are negative. Then for all x € D:

T <0= sT0.
Hence x = 0 is optimal and f*(s) = 0 for s with all negative elements.
Combined, this gives f*(s) = max(0, max;(s;)).

4. Since max(0, max;(s;)) is closed and convex. The conjugate is ¢p.

SoruTioN 3.10

1. Since we are dealing with set valued mappings it is no problem if the in-
verses are set valued, i.e. we do not need to care about surjectivity and
injectivity. The axis of the graphs are simply flipped.

2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are set-
valued

—

/
\

\
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SoruTtion 3.11

Since 0f* = (0f)~!, we can flip the figures as follows.
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Of (x)

Of (x)
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af*(s)

af*(s)

af*(s)

af*(s)
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SoruTioN 3.12

By Fermat’s rule, » = prox. ;(z) if and only if

0€df(2) +~v 1z —ux)
& xe ([l +~0f)(2)
= (I +~0f) e = 2.

We have equality in the last step since we know that the prox is single-valued
for convex functions.

SoruTtioN 3.13

1. We will solve this graphically. Left plot shows I +~0f and the right shows
(I +~0f)~! = prox, ;.

r+vy ifr<—vy
prox. ¢(z) = 0 ifz € [—v,7]
x—r ifx>~y

/ (I+~0f)~!
Y1 /
T 7 x

i

2. We will solve this graphically. Left plot shows I +~0f and the right shows
(I+~0f)~ ! = prox, ;. The prox does not depend on + (since it is actually a

projection).
-1 ifz < -1
prox,s(z) =qz ifze[-1,1]
1 ifz>1
(I +~0])
(I+~0f)~*
1*
-1
x | 1 x
——1
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3. We will solve this graphically. Left plot shows I +~df and the right shows
(I4+~0f)~" = prox, .

x ifx < -1
prox.  (z) = ¢ —1 ifee[-1,7—1]
x—y fx>y-—1

(I +~0f)
(I +~0f)!

4. We will solve this graphically. Left plot shows I +~df and the right shows
(I+~0f)" 1= prox. .

r+y ife<l—xn
prox. ¢(z) = {1 ifexe[l—n,1]
x ifz>1

/

SoLuTionN 3.14

1. Let u = 2z — z. That = = prox(z) is equivalent to that

0edf(x)+x—2 & z—xe€df(x)
& zedf(z—ux)
& z—uedf(u)
& 0€df (u)+u—=z
& u=Pprox.(z).

Since u = z — x the result follows.
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2. We have

(7f5)(s) = Sl;}p(sT:L' —f(x) = vsgp((v_ls)% — f(@) =7 (v"9).

3. We have s = prox, 5 (2) if and only if
s = Argmin((7/)"(¥) + 3y —2[13)
= Arg;nin(fyf*(’fly) + Ly — =1I3)
= 'yArg;min(vf*(v) + 3lvv — z113)
= ryArg;min(vf*(v) + l;HU — v '2ll3)
_ fyArgUmin(ry*lf*(v) + 3llv—(12)3)
= yprox, 1. (y7'2)

4. Combine first and third subproblems.

SoruTioN 3.15

The Moreau decomposition says prox, s)«(z) = 2z — prox, s(z).
1. The prox of v f satisfies prox. ¢(2) = (I + vH)~'(z — vh) which implies that
Prox . p«(2) =z — (I + yH) Yz — ~h)

2. The prox of + f satisfies

z if z < -1
prox, (z) = ¢ —1 ifze[-1,v—1]
z—v ifz>y—1
which implies that
0 if 2 < -1
Prox(, «(z) = 2 —prox,;(2) = ¢ z+1 ifz e [-1,v—1]
~ ifz>y—-1

3. The prox of + f satisfies
z4+y ifz<l—x
prox, ;= (1 ifze[l—~,1]
z ifz>1
which implies that
-y ifz<1l—xn
Prox(, y+(2) = 2 —prox,;(2) =z —1 ifz € [1-~,1]

0 ifz>1
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SoruTtioN 3.16

1. We have

—f*(0) = = sup(0"w — f(x)) = —sup(~f(x)) = inf f ().

2. We have
9 (0) = Argmax(07z — f**(x)) = Argmax(—f(x)) = Argmin f(z)

where we have used that f** = f.

SoruTtion 3.17

1. The functions are closed convex and constraint qualification holds so the
primal problem is equivalent to

0€af(zx)+dglz) < {yeaf(f’“’) o {xeaf*(y)

—y € 0g(x) r € 0g9*(~y)

since 0f = (0g*)~! for (closed) convex functions.

2. Eliminating the x gives:

z € 0f*(y) N ]
{m corly) O 0€af (y) —dg"(-y)

3. In general no. Inspired by x € 9f*(y) you could use the subgradient selec-
tor to generate a candidate solution & = s« (y*). But

z € 0f*(y*)
z € 0g™(—y*)
need not hold for all = € 9f*(y*) so

& =sp(y") €0f(y") # & € 99" (—y).

If f* is differentiable 0f*(y) is a singleton (unique) for all y. This means
that for every y*, 2* is unique such that

{x* =V (y")
x* € g™ (—y*).

In this case, the subgradient selector is the gradient and & = s (y*) =
V f*(y*) = «* will recover the solution.
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SoruTtioN 3.18

Fermat’s rule gives

0 e LTof(Lx) + dg(x)
{ y € Of (Lx)
—LTy € dg(x)
{Lx € af*(y)
z € dg*(—L"y)
& 0€ f*(y) — Lag"(—L"y)
= 0€d(f*+g"o—L")(y)

which is Fermat’s rule (optimality conditions) for the dual problem

minimize(f*(y) + g"(=L"y)).

SoruTtioN 3.19

The general dual problem is
minimize f*(u) + g* (=L p).

1. Wehave f*(u) = 55| |p[|3 (Exercise 3.1-1 and 3.14-2) and g* (v) = Y"1 ; max(0, 1—
v;) (Exercise 3.1-6 and 3.5 and using ¢** = g). Therefore the dual problem
is

n
minimize 55 || ul|3 + Zmax(o, 1+ (LT p)).
i=1
Since the functions are convex and the primal and dual constraint quali-
fications hold, we can recover a primal solution from the primal-dual op-
timality condition Lz = 0f*(p) = fu = = = ;L™ 'y, which holds with
equality since f* is differentiable, i.e., 9f*(u) is a singleton.

2. We have f*(u) = ||u||1 (Exercise 3.6) and g*(v) = o |[v+b||3 (Exercise 3.1-2).
Therefore the dual problem is

minimize |[p]|; + 55| — LT p + 0|3

Since the functions are convex and the primal and dual constraint qualifi-
cations hold, we can recover a primal solution from the primal-dual opti-
mality condition x = dg*(— LT 1) = %(—LT,u +b), which holds with equality
since ¢* is differentiable, i.e., 9g*(—L” 1) is a singleton.

SoruTtIioN 3.20
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1. By definition, we have
£7(5) = sup(s”z = () = 5" — f (a),
as desired.
2. Suppose that s € 0f(z). We have that
s € df(x)
)= @)+ 5Ty —2) forallye R
sTe — f(x) > sty — f(y) forally € R"
— fz) 2 sgp(sTy —f()
sTw — f(z) > f*(s)
f(s) < 5w — f(a),

te ¢ 02
S

as desired.

3. Suppose that f*(s) = s”xz — f(z). In partial, f*(s) < s”x — f(z). However,
the above equivalences gives that s € 0f(z), as as desired.

SoruTtioN 3.21

1. Suppose that s € 9f(x). Fenchel-Young’s equality (see Exercise 3.20) gives
that

f7(s) = 5"z — f(o).
We know that f** < f (see Exercise 3.2). We get that
0=f*(s)+ f(z) —s"a > f*(s) + [*(x) — Tz >0,

where the last inequality follows from Fenchel Young’s inequality (see Ex-
ercise 3.2-1). Thus,

[ @) =s"ae = f*(s),
which is equivalent to x € 9f*(s) by Fenchel-Young’s equality.
2. Apply the previous result to f*.

3. Use above the results and that f** = f for closed convex f.

SoruTioN 3.22

Introduce h(y) = f(y + ¢). Then g(x) = h(Lz) and
g'(s) = Sl;p(STw — h(Lx))

= —inf(h(Lz) +Is(2)),
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where [,(z) = —s”z. The conjugates satisfy
h*(u) = sup(p’y — f(y +¢))
Yy

= sup(u’ (v —¢) — f(v))

v

= Sgp(uTv — f()) —pTe

=["(w) —n'c

I5(v) = sup(v’z + s'2)

— sup((v+ 5)"a)

T

= {0} (l/ + 5).

Fenchel strong duality holds (constraint qualification is satisfied since dom i, =
R™), and we get that

g (s) = —irxlf(h(Lx) + l5(x))

= —sup(=1"(u) - (=L )

= inf(h*(p) + L(—L" )

= inf (f*(p) —p'e).
wis=LTp

SoruTIioN 3.23

Since f is closed convex, we have that f(z) = f**(z) = sup,cgn(z?'s — f*(s)) for
each z € R". Therefore,

sup (f () — g(x)),

reR™

is equal to

sup sup (z"'s — f*(s) — g(x)).
z€R™ seR”

However, we may switch the supremums to get the equal problem

sup sup (¢ s — g(z) — f*(s)).
seR™ zeR”

But this is equal to
sup (g9°(s) — f*(s)),

seR”

since g*(s) = sup,epn (z7's — g(x)) for each s € R™. This completes the proof.
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Solutions to Chapter 4

SoruTiON 4.1
That x* is a fixed point means that

2 =a"—Vfx*) & 0=Vf(ar).

The first order condition for differentiable convex functions then gives that x*

minimizes f.

SoruTION 4.2

By definition,

2 = prox,;(x) = argmin(f(y) + o [ly — z[|3).
y

Fermat’s rule and subdifferential calculus rules gives that = satisfies
0€df(z) +v 1z — ).

If x = z = prox, ¢(), then this reduces to 0 € df(r), and z minimizes f.

SoruTIOoN 4.3
By definition,

v = prox, (v — YV f(x)) = argmin (4() + ||z ~ (z =7V (@)[3)

Fermat’s rule and subdifferential calculus rules gives that this is equivalent to

0 € dg(x) + 2(z — (x =4V f(x)))
= 0g(z) + V f(z)
= (g + f)().

This gives that z is a minimum of f + g.

SoruTiOoN 4.4
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1. The function is smooth so gradient descent works. No need to use prox.

2. First two parts are smooth, third is not smooth but separable and easy to
prox on, proximal gradient works but gradient-descent doesn’t.

3. Both functions are smooth, second is separable and easy to prox on. Gra-
dient descent and proximal gradient both work.

4. First function is smooth, second is easy to prox on but not smooth. Proximal
gradient is the only alternative.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first term is differentible, but not smooth (it grows too quick for large
x), and the second is proximable but not differentiable. So none of the
method works.

7. First term is smooth, second is proximable and seperable. Proximal gradi-
ent works.

8. The second term is neither smooth nor simple to prox on, nether of the
methods would be efficient.

9. The first part is smooth, and the second part is smooth and easy to prox
on. Both gradient descent and proximal gradient therefore works.

SoruTION 4.5

1. ||Az — b||3 is not strongly convex unless A7 A is invertible. Since 4 € R™*"
with m < n, AT A has at most rank m and is therefore not invertible, and
the primal is not stronly convex. The dual will therefore not be smooth,
thus neither of the methods work.

2. 327Qx +b"z is strongly convex since @ > 0 so its dual is smooth. The dual
of the last part is easy to prox on but not smooth. Proximal gradient works.

3. First function is not strongly convex so dual of this part is not smooth and
not proximable. However, if we let f(z) = 3|z — b||3 and g(z) = ||z|3,
the problem is min, f(Az)+ g(z) and the dual can be written min,, f*(u) +
g*(—ATp). f*(u)is convex, separable, smooth and proximable and g*(— A7 1)

is smooth and strongly convex. Hence, any of the methods work.

4. First function is not strongly convex so dual is not smooth and it is not easy
to prox on. Doing the same trick as for the previous problem doesn’t work
since || Az||2 is not smooth. Hence none of the methods works.

5. Neither is strongly convex so neither of the duals are smooth. None of the
methods works.

6. Neither is strongly convex (¢lI* ~ ||z4|| + 1 for small z) so neither of the
duals are smooth. None of the methods works.

7. First term is strongly convex so dual is smooth, second is proximable so the
same is true for the dual. Proximal gradient works.
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8. With f(z) = ¢_11)(z),9(z) = 327 Qu, the primal problem can written as
min, f(Lx) + g(z) so the dual is min, f*(n) + g*(—Lu), where g*(n) =
s27Q7 1z, i.e g*(—Lp) = 327 LT Q' Lz which is smooth. f* is proximable
so proximal gradient works.

9. Neither of the functions are strongly convex so the neither of the duals will
be smooth. Hence, none of the algorithms work.

SoruTioN 4.6

1. From Exercise 3.1 we know that h*(u;) = t—11)(p) if h(2i) = |2i|. Since
f(x) = |jz| = >_1 h(z;) is separable, we know that f*(u) = > 7" | h*(u;) =
Yoy tj—1,1)(#i) = t—1<u<1(p), where 1 is the vector of all ones.

2. From Exercise 3.1 we know that g*(1) = u7 Q4.
3. One possible dual problem is given by

minimize f*(u) + ¢*(—p).
o

E.g., let L = I in Exercise 3.18. Similarly, another dual problem is given
by

miniﬂmize I (=) + 9" ().

In the remainder of the exercise, we will only consider the first dual prob-
lem.

4. Under the assumptions on f and g, we know that f* is closed, convex and
proximable, and ¢* is closed convex and smooth. Therefore, for the dual
problem

minimize (1) + g" (~ ),
"
we get, for some appropriate v; > 0, that
prg1 = ProxX., s (e — V(9" 0 =I)(ur)),

is a computationally reasonable step for the proximal gradient method.

5. Consider our particular choice of f* and g*. Differentiation yields

V(g*o—I) () = —=Vg* (=) = Q k-

By definition, the proximal operator of f* is

Prox., - (#) = argmin <L—1§u§1(ﬂ) + ol — ZH%)

— argmin 1 — 2[3.
—1<p<1
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Note that both the constraint set and the objective function of this argmin-
problem are separable, yielding the following simple problem

1 ifz; > 1

(prox., . ()); = argmin | — %2 = { —1 ifz < 1.

wi€l—1,1 .
i€l L] z;  otherwise

Thus, the proximal gradient method step for the dual problem becomes

Op = fie — Q™
1 if (vg); > 1,

(ry1)i = =1 if (vp)s <=1, Vie{l,...,n}.
(vg); otherwise,

SoruTioN 4.7

We start with

HE+1 = ProOX., ¢« (,uk —%V(g*o —LT)(Mk)) :

Note that V(g* o —L7)(u) = —LVg*(—L" u1,). Therefore, the proximal gradient
method step can be rewritten as

xp = Vg (=L ),
Vg = pg + YLk,
Hk+1 = PTOX,, ¢~ (vk) -

Using Moreau decomposition, we have
prox,, s«(z) =z — %proka_lf**(%zlz) =z — Wkpmxy;lf(%;lz)'

The last equality holds since f = f**, by closed convexity of f. Using this, we
can write the proximal gradient method step as

ap = Vg* (=L ),
v = pg + e L,
HEk+1 = Vk — Vkproxwlzlf(v,;lvk).

Recall the subdifferential formula for ¢*, i.e.

99" (i) = Argmax (' z — g™ (x)) = Argmax (i — g(x)) .

The last equality holds since g = ¢**, by closed convexity of g. However, we know
that ¢* is smooth convex, and therefore, d¢* (1) = {Vg¢*(1)}. In particular,

Vg’ (n) = argmax (n"z—g(x)) = argmin (g(r) - ple).
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This lets us write the proximal gradient method step as

z = argmin,, (g(z) + pl Lz),
vk = p + YL,
P+l = Uk = YEPTOX_ -1 (7 k),

as desired.

SoruTioN 4.8

Recall that Exercise 4.6 gives the dual proximal gradient method step

o = i — Q™ ik
1 if ()i > 1,

(rs1)i =4 =1 if (vp)i < =1, Vi€ {l,...,n}.
(vr); otherwise,

(7.12)

We must verify that

x = argmin, (g(x) + ,u;{x) ,
Vg = P+ YTk, (7.13)

Hht1 = Vg — ’Ykprox»ykflf(’yk_lvk)y
gives the same step for
fx)=|z|1 and g(z)= %IL‘TQSL'.
To verify correctness, note that
argmin (g(z) + pi ) = argmin (327 Qz + 27 py,) = —Q .
P x

Thus, we can write (7.13) as

. -1
{Uk: He — Y@ ks (7.14)

Hik4+1 = Vg — ’Ykproka_lf(rykjlvk)'

Since f(z) = ||z[y = > i, x| is separable, so is prox. ;. From Exercise 2.15 we
then get

zi+y iz < -y,
(prox,;(z))i = {0 if —y<z<~, Vie{l,...,n}.
zi— ifz >,
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We can then calculate 11 in (7.14) as

(+1)i = (o) = y(Prox. 14 (v vr))i

Yo w4+ LAy (k) < =
= (k)i — k4 0 if — vt <y o) <z
Yot oe)i — vt i k)i >
(vg); + 1 if (vg); < —1,
= (vr)i— 10 if —1< ()i <1,
(k)i — 1 if (vg); > 1,

-1 if(vk)i < —1,
= (Uk)z if —1< (Uk)z <1, Vi € {1, e ,n}.
1 if(Uk)i > 1,

This establishes the desired equality.

SoruTIiOoN 4.9

Using the hint we get, with x = z;,, that

Fy) < F@x) + VW) (2r —y) + Sllax — vl
< flan) + V) (n —y) + o lew —yl3, Yy e R

The function
9(y) = fax) + V() (26 —y) + o law —yli3,
is then a majorizer to f, i.e., f < g. What remain to be shown is that

)11 = argmin g(y).
Yy

From Fermat’s rule we know this holds if and only if

Vg(zgs1) = 0.

Straight forward calculations show that this is equivalent to

Trp1 = 2 — WV f(Tr),

as desired.
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Solutions to Chapter 5

SoruTtioN 5.1

Rearranging the cost yield

N T

=1

= Y log(1+e = ) 4 3" log(l + e~ nth)

Viy;=—1 Viy;=1
T, 14 ew zitd
= D log(l+e" ™™+ > log <wT:r+b
Vi:yizfl Vly,L:l €
= Y log(1+e T ) 4 3 log(1+ e T — N log(e mth)
Viy;=—1 Viy;=1 Viy; =1
N T T
= log(1+e” ") — Y~ log(e” )
i=1 Viy;=1
N
T
= Zlog(l 4w Tithy _ Z wlz; + b.
=1 Viy; =1
From here we can go over to the new labels,y; =1 — ¢; = landy; = -1 — ¢; = 0.

N

= log(1+ ¢ =) — > wla+b
1=1 Vi:g; =1
N

N
Z log(1 + e“’T”J“b) — Z gi(wTz; + b)
; i=1

@
Il
—

|
&MZ

@
Il
—

(tog(1 +c*"*+) — g, (uT + ).

SoruTIOoN 5.2

We first note that all terms in the sum are positive for all finite (w,b). Let u; =
zl'w+ b, and each term reduces to log(1+¢“') — y;(u;). For y; = 0, log(1 +e") >0
since 1+ e% > 1. For y; = 1, log(1 + %) — u; = log(1£&™) > 0 since & > 1.

e%i et
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Now, take an ¢ with y; = 0. Let (w, b) = t(w, b), then

log(1 + ¢ “*¥) — yi(aTw + b) = log(1 + I 0D = log(1 + efe® )
<log(l+e") —0
as t — —oo, where % ®t0 ¢ (0,1) (since 27w + b < 0) has been used in the
inequality.

Instead, take ¢ with y; = 1. Then

log(1 + e ) — yi(aTw + b) = log(1 + '@ ™+0)) — (7 + b)
. 1 1+etez;-rw+l;
= Og( ete(llTﬁH—E) )
= log(1 + e te~ @ @+D))
<log(l+e ") —0

as t — oo, where e~(*1 70 ¢ (0,1) (since zl'w + b > 0) has been used in the
inequality.

Hence, the infimum is 0 which is not attained by any (w,b) since the cost is
positive for all (finite) (w, b).

SoLuTioN 5.3
First, consider the case when A\ = 0. The objective function is

3llaz — blI3.

By Fermat’s rule, we get that the solution in this case is

aTb
llall3"

0=al(azs —b) or x4=

Now, consider the case when A > 0. Using the subdifferential calculus rules (CQ
holds since both functions have full domain) and Fermat’s rule, the optimality
condition is given by

if 0
0 € |lal|3z —aTb+ A sgn(z) 1 z#0,
[—1,1] ifz=0.
Thus, z = 0 is optimal if and only if a”b € [-X, A] or equivalently A > |a”b|. It
remains to consider the case A < ‘aTb|. But then = # 0 by necessity, and = is
optimal if and only if
) A

0= |la|j3z —aTb+ Asgn(z) or z=25— 2 sgn(x).
lall3  llall3

However, since |a”b| > A by assumption, sgn(z) = sgn(a’b) = sgn(z5) must hold
by necessity. Therefore, the solution in this case is given by

_ A
T =X — 2 Sgn('rls)'
lall3

103



This concludes the proof.

SoruTIOoN 5.4

e Alternative 1:
Optimality conditions are

g(x1)
0cAT(Az —b)+ X | : |,
9(Tm)
where
-1 1f337, <0
g(z;) = ¢ [-1,1] ifz; =0
1 if:L'i >0

For x = 0, the optimality condition reads
0€ —ATb+ \[-1,1]™

which holds for all A > max;(|(A70);|) = || ATb| .

e Alternative 2:

Let f(z) = 3||Az — b||3 + A||z|1. Using Holder’s inequality, we get the

following lower bound.

f(a) > 3l Az = b]13 + A0l o [l4
> LAz — b||5 + b" Ax
= 3llAz3 + 31/blI3
> [bl3-

Furthermore f(0) = 1|/ so the lower bound is attained at = = 0, there-

fore z = 0 is optimal.

SoruTION 5.5

Both functions of the problem have full domain so CQ holds. Fermat’s rule then
give that x = (z1, x2) is a solution if

0e AT Az — ATb+ 20(|| - 1) ()

2
= 0€) alajw;—alb+ (|- [)(x:) Vie{1,2}
j=1
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where q; is the ith column of A. The equivalence hold since ||z|; = |z1| + |z2].
Inserting the subdifferential of | - | give

sgn(ml) if 1 7é 0
[—1,1]  ifz; =0
sgn(xe) ifzy #0
[—1, 1] if To = 0

0€x —i—ar{agxg —a1b+)\
(7.15)
0e agalwl + 9 — agb—i— A

where the fact that ||a;||2 = 1 was used. With the optimality conditions in place,
we can now look at the four cases.

* Assume z € Xy, then (7.15) is equivalent to

alb e \[-1,1]
alb e \[-1,1]
This in turn is equivalent to max;(|a b|) = || Ab[lec < A, i.€., Agp = {X: X >
|af b, A > |aZbl}.
* Assume z € X o, then (7.15) is equivalent to

0=z —alb+ Asgn(z;)
0 € alajry —alb+ A\[-1,1]

If a¥'b = 0 the first condition can’t be satisfied since = # 0 by assumption,
i.e., if alb=0then Ay o = 0.

From here on, we assume af b # 0. The first condition can be re-written to

0 = sgn(zy)|z1| — alb+ Asgn(z)) — — |zl = A

sgn(:rl
Since A > 0 this implies sgn(x;) = sgn(a!b) and
0 < A= lafb| - |21 < |a] D]

since by assumption is x1 # 0. Multiplying both rows in the original condi-

tion with sgn(z1) = sgn(afb) = la%? gives

21| = lafb| -
Oea2a1\$1|—|a1 ’ +A[-1,1]
T
— 0 ¢ |alb|(adar — %Z) - )\(agal +[-1,1)).

The last inclusion can be written as

Madar —1) <|atb|(adar - ) < Mada; +1)
Since A\ < |aTb| and |aZa;| < 1, this implies @ < 1, if # > 1 then
1 2 ajb aib

AlO:(b.

)
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We can re-formulate these conditions as

T
T asy b
1 < )\

‘a{b| T T aTb
aya + sgn(aza; — ﬁ)

Further simplification and including the A < |af'b| condition finally give

Ty
laf bl| %5 — af asl

- Py <A< |aTbl. (7.16)

1—ajas sgn(m — ar{ag)

To summarize, the set of possible ) is then given by

o ifafb=0or|alb| > |aTb]|
ho {\ s.t. (7.16) is satisfied.} otherwise

By symmetry is the set Ag; the same as A g but with the index swapped.

Assume z € X 1, then (7.15) is equivalent to

0=ATAz — ATh+ A [Sgn("“)}
sgn(zz)

where matrix A7 A and it’s inverse is given by the following

1 ata 1 —ata
T4 _ 142 T A\—1 _ 1 192
ATA= [ar{ag 1 ] (AT = 1—(af as)? [—ar{ag 1 } '

The inverse exists by assumption since |af as| < 1. Multiplying the condi-
tion by the inverse gives

w = (ATA)"1ATh — A(AT A)~ [zgg;ﬂ .

We define

[

and multiply with S from the left to get

|1]

0<[
|z2]

}:ﬂyq)m%—xﬂﬂﬁ>ﬂ§$2ﬂ'

The last term is

S(AT )—1 |:Sgn($1):|
sgn(z2)
B 1 sgn(x1) 0 1 —at'ay] [sgn(zy)
~ 1-(afap)? 0 sgn(xs)| |—afaz 1 sgn(zz)
. l—a?ag sgn(mlxg)l
o 1—(af a2)?
>0

106



since |alaz| < 1. In order for the condition to have a solution we need
S(ATA)~1ATb > 0. In other words, sgn(z;) = sgn(#;) where & = (AT A)~1ATp
is the leasts squares solution. Inserting this back into the condition yields

7 1—(ataz)?

0< |:‘i'1’:| _)\1 ay azSgﬂ(xll‘Q)l.
|2

To summarize

A= {:h < — 200" yin(ay], 29)), & = (AT A)~1ATb).

1— a1 az sgn(Z122)

To show that the A;; sets are disjoint we note there are three different cases
of interest regarding the data A and b. Either is |afb| > |alb], [alb] > |aT}]
or [al'b| = |alb|. At least one of A;o and A, is then empty since |a'b| > |alb|
and |aZb| > |aTb| can’t hold at the same time. From symmetry it is enough to
consider only one these cases, here we choose the case when |alb| > |alb| and
A1 is non-empty. We will later cover the remaining case where |afb| = |alb|
and both A; o and Ao ; are empty.

Assume /\0,0 S A070, )\170 S Al,O and )\171 € A171, if we show
A1 < Ao < Aoy
the three set are disjoint and sparsity increase with \. Since \1o < |alb| and

|a{b| < )\070 we have )\170 < )\070. For )\1’1 and )\170 we have

T
1— (atay)? o R la 1b|| — aj as|
T (a1a2) min(|21], [£2), <A10

~ T
1 02 gN(142) 1—alay sgn( Z alas)

A1 <

)

1—a

and we wish to show that these bounds are the same. We start by showing that
min(|Z1], |Z2]) = |#2], i-e., |Z2| < |#1]|. Using the definition of z

. a’b — alasal’d
[E:(ATA) 1ATb_ (T )2 |:%“b 1 2 %b:|

aj az —afasa
means that this is equivalent to
T T T T ajb T, a3b
la2b — ataxald| < |aTh — aTapalb| —= o A Tag| <11 —alay Tb

This can be equivalently written as

T T
ayb T b
Tt a1a2<1—a1a2 %b
T alb T b
alag—%b_l—alag b
alb b alb
0§1+a1a2—ar{a2%b—fb (1+ar{a2)(1—ﬁ)

b b b
0<1—alay—ala® QTb + %b =(1—afa)(1+ Zsz)
1 1

T

This hold since |al az| < 1 and ZQTI; < 1 by assumption. The upper bound on \; ;
1

then reads

1-— (ar{a2)2 ‘al b” CLTCQ‘

332| =

)\1,1 <

1-— ar{ag sgn(ilzi"g) 1-— al ag sgn(:%lig) )
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This is the same as the lower bound on \; o since
sgn(i121) = sgn((al'd — alazalb)(alb — a¥ azal b))
alby alb T
gn((1 —af ay i) (57 — a1 02))
= sgn(ﬁ — a1 a2
1

|a3 b]
lay b|

since |afaz| < 1 and < 1. This concludes the proof for when |afb| > |ald|.

When |a]b| = |alb], both A1 =0 and Ag; = () and we want to show

1—(af a2)?
1—afas sgn(d122)

A1 < min (|21, |£2]) = o] b = |ag b| < Ao

We know that

1
1—a{a2 sgn(ilig)

A Tp T
1] = e Slgn(MQ) a3 b\l% — aj az|

T
arb o
sgn(—r; —aj a2)
= e laF bl - aTag)
l—a{az sg‘n(iqig) 2 1
_ 1 T
= 5 ’ as ‘( —ay az)
a1 T T
sgn(aTb—a1 az)—aj az
2

T T
where it was used that sgn(@42) = sgn(alTb — al'ay). We now note that ZlTZ =
2

T
sgn( T:) since |a?b| = |al b|. Furthermore, we then also have

al'b T . al'b T o afbyy aTb
sg(Liy, — a1 a2) = sgn(sgn(iy) — aj az) = sgn(sgn(ry)) = sgn( i)

2
since |af az| < 1. This yields

1
1—a{a2 Sgl’l(.f:liz)

71| =

= \a2 bl.
By symmetry, the analogue holds for m\fcg], which then yield the
desired inequality
A < lafb] = |a3b] < Ao
This concludes the proof for the |alb| = |alb| case and for the statement in its

entirety.

Note, in all cases can the distances |\ — Aoo| and [A11 — A1 o] can be made
arbitrary small. This is to be expected since otherwise there would be A for which
no solution exists. Since the Lasso problem is strongly convex for all A > 0 we
know that this is not the case.

SoruTiOoN 5.6
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1. Let ¢t > 0, then ¢(w, b) also separate the data. Inserting this into the cost
yields

S max (0,1 — ty;(zFw + 1)) = max (0,1 — t|zlw + b)) > 0
; =1

Choosing any t > (max; |z w+b|)~! then give a cost of 0 and therefore t(w, b)
must be optimal. The set of optimal points is unbounded since ||t(w,b)|| =
t(w, )|, |(w,b)|| > 0 and ¢t > (max; |z w + b|)~! can be made arbitrary
large.

2. Choosing an arbitrary w and inserting into the cost gives
n
ZmaX(O, — yi(z]w + b)) Zmax 1 —afw—1b)) >0.

Choosing b > 1 — min; 27 w give cost 0 and therefore (w, b) is optimal. The
set of optimal points is unbounded since ||(w, b)||?> = ||w|?* + |b|?, were b >
1 — min; 2] w, clearly can be made arbitrary large.

3. Letting w = 0 and inserting into the cost gives

> max (0,1 — (2w + b)) + 3wl3 =) max (0,1 -b) >0

i=1 i=1

Any b > 1 yields a cost of 0 and is therefore optimal. The set of optimal
points is unbounded since ||(w,b)|| = |b|, were b > 1 can be made arbitrary
large.

SoruTIiON 5.7
The regularization term is the same so we focus on the sum of hinge-losses.

max (0,1 — y1(z] w+ 1))

Zmax (0,1 — y;(z]w+b)) =17 :
' max (0,1 — yn(zlw + b))

1 —y1(xTw +0) y1(xfw +b)
=1"max | 0, : =1"max | 0,1~ :
1 — yn(zlw + b) Yn(xTw + b)
y1z{w y1b e Y1
=1"max | 0,1~ o+ =1"max | 0,1~ Do lw+b |
ynxrj;w Ynb ynxg Yn

We can now identify X = [y1z1,...,yn2zn] and ¢ = (y1,...,yn)-

SoruTioN 5.8
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1. The function f is a separable sum of hinge-losses, h(z) = max(0,1 — z), i.e.
f(z) = En:max(o, 1—a) = i h(x;).
i=1 i=1
The conjugate f* is then
fi(w) = z": h*(wi) = z": i + =10 (pi) = 1+ t-1,00 (1)
i=1

=1

See Exercises 3.1 and 3.5. The conjugate of g is

g*(y’wa Vb) = Su}?((yuhyb)T(wvb) - %HwH%)

= sup(v,w — 3 |wlf3) + Slzp(w;b)
= w3 + 10 (v)-
See Exercise 3.1. Note that
% T N o * X _ 1 2 T
o (-2 =5 (= ] ) = 0l = X008+ oy (7).
The dual problem becomes

min 17+ 35| — X3 + ¢-1,0/ (1) + tgoy (=0 1)
or written differently

minimize 17p+ 5" X" Xp
subjectto —-1<u<0
T =0

2. We first note that CQ hold for the dual problem as long as there are data
points of both classes, i.e., ¢ has both positive and negative elements. In-
deed, if all elements of ¢ have the same sign, the only x in dom g* o — LT is
1 = 0, however, 0 is on the relative boundary of dom f*.

A dual optimal point ;4 must then satisfy

0€df*(p) — Ldg*(—L" )
{L@mb)eafWu>
(w,b) € dg"(—L" )
{W(L(w?b)) > p
dg((w,0)) > ~L"p
<« 0¢ LTof(L(w,b)) + dg((w,b)).

Hence, (w,b) is a solution to the primal problem and we can recover (w, b)
from



The second condition yields
w:_TlX,u and beR,

since Jifgy(s) = R if s = 0 and i) (s) = () otherwise, and that —¢Tu=0
for any dual optimal n. However, we need something else to recover the
optimal b. The first condition gives

(X7, ¢)(w,b) = XTw +bp € Of* (1),

and we note that

—_

if —1<p; <0,
1, 00] if u; =0,

Of* ()i =

—OO,l] ifui = —1,

=

otherwise.

If —1 < p; < 0 for any i, we see that we can determine b uniquely, i.e., take
b such that

yirtw +by; =1 — b:yi_l—wiTw:yi—a?ZTw

where z; and y; denote data and class label defined in Exercise 5.6 and 5.7.

3. From the previous task we know that

n

w=yXp= %Z%m =1 Z Tifhi-

i=1 i 70
Clearly w can be recovered by only considering z; s.t. u; # 0. Since b =
yi — 2] wforist. —1 < p; <0socanb.
It remains to show that ;; < 0 means that z; is support vector. From the
primal-dual optimality condition we know that
(X, 0)(w,b) = XTw +bp € Of*(n).

The ith coordinate of the inclusion problem can be written as

1 if —1<p; <0,
[1’ OO] if,u/l' =0,

[_007 1] if,u/i =-1,

0 otherwise.

yi(a:;fpw +0b) €

If y; < 0 this means y;(z] + b) < 1, or equivalently 0 < 1 — y;(z7 +b), and
x; 1s a support vector.

SoruTION 5.9
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1. True. See the model m,,(x) as a function of w instead of x, m,,(z) = f.(w) =
w’¢(z). Clearly, f,(w) is linear in w since ¢(x) does not depend on w and
therefore is constant. Since y; also does not depend on w is L(m.,(x;),y;) =
L(fs,(w), y;) a composition between convex and linear, which is convex. The
full cost is then a sum of convex functions which is convex.

2. False. Consider a two layer network with identity activation functions and
R — R layers, m,(z) = wywyz. Take the square error loss and the data
r =1andy = 0, then L(my(z;),%) = |[wiwal|3 = (wiws2)? which is not
convex. The points (0, 1) and (1, 0) both have function value 0 but the point
(0.5,0.5) on the line between them have a positive function value.
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Solutions to Chapter 6

SoruTiON 6.1

To estimate the overall computational cost of an algorithm, we can roughly use
(iterations count) x (per-iteration cost). This quantity for the first algorithm is
5 x 10® and for the second one is 10%. Hence, the second algorithm had a better
performance.

SoruTIOoN 6.2

O(p%) +> A2 (linear)

O(pk) «+ A4 (linear)
O(1/log(k)) <> A3 (sublinear)
O(1/k) <> Al (sublinear)
O(1/k?) <> A5 (sublinear)

A

SoruTION 6.3

1. From the Q-linear rate definition we have that
Vi < pVie1 < pViea < ... < PTG,
or
Vi < p*V0,

holds inductively for any & € N. This implies an R-linear rate with Cy = Vj.
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2. From the @Q-quadratic rate definition we have that

Vi < pVf

Vo < pVE < pp? V¥

Vs < pVE < pp?p¥ VE

Vi < pVid < pp*p® P VY

21{:71

2 3 k k_ k k k
Ve SpVE L <ppPp 0t . pt Vg =0 TV =02V /s
or
ko _
Vi < (pV0)* p T,

holds inductively for any k& € N. Here, we used that 1 + 24224 ... 421 =
2k — 1. This implies an R-quadratic rate with pg = pVp and Cg = p~L.
Since V;, > 0 by assumption, it will converge to zero if the upper bound,
(pVO)Qk p~ !, converge to zero. This upper bound only converge to zero if

pVo < 1.

SoruTION 6.4

1. Let n = 1 and consider f(z) = x and z;, = —k for each £ € N. Clearly,
(zx)ken is a descent sequence and f(zy) goes to —oo as k — oo. Le. the
sequence of function values (f(zy))ren does not converge in R.

2. Solution 1: Note that the sequence (f(zx))ken is monotone, by construction.
Moreover, (f(xr))ken is bounded - from above by f(z¢) and from below by
B. Then, by the monotone convergence theorem, the sequence (f(zx))ien
converges in R.

Solution 2: First, note that the non-empty set {f(x;) : ¥ € N} in R is
bounded from below by B or equivalently, {—f(zx) : £ € N} is bounded
from above by —B. By the least-upper-bound property of R, there exists a
real number, say b € R, such that sup{—f(xg) : k € N} = b, or equivalently,
inf{f(z;) : Kk € N} = b, where b = —b. The least-upper-bound property
of R can be taken as a completeness axoim of R, or, proven as a theorem
from some other completeness axoim, e.g., the convergence of every Cauchy
sequence.

Second, recall that the definition of the infimum of a set is the greates
lower bound of that set. In particular, for any ¢ € R that is a lower bound
of {f(xy): k € N},ie. ¢ < f(xy) for each k € N, it holds that ¢ < b.

Third, we claim that (f(zx))ren converges to b, or written differently, f(zx) —
b as k — oo. This, by definition, means that for any ¢ > 0, there exists an
N € N such that

|f(xx) —b| <€, foreach k>N,
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or equivalently,
b—e< f(xp) <b+e, foreach k> N.

Indeed, let € > 0 be arbitrary. Since b is the greates lower bound of { f(zy) :
k € N}, we get that

b—e<b< f(zr), VkeN.
Moreover, there exists an V € N such that
f(J,‘N) <b+e

Why does such an N exist? If there did not exists any such N, b + ¢ would
be a lower bound of the set {f(x) : £ € N}. But this would contradict the
fact that b is the greates lower bound of {f(zx) : k¥ € N}, since b < b + e.
Finally, note that

flzr) < flzn) <b+e,
by construction of the sequence (zy)rcn. I.e. we established that

for each &k > N,

foreach k> N,

b—e< f(xr) <b+e,

as desired.

. The most basic example would be to consider any function f that is bounded

from below and let 2, = = for each k € N, where z € R" is not the minimum.
A slightly more interesting example would be f(z,y) = 2> + y* and the
sequence

(zk, yx) = (sin(k)(1+ 7),cos(k)(1+ 1)), VkeEN,

for which f(zg,yx) = (1 + %)2 is decreasing but does not converge to the
optimum f(0,0) = 0. There are plenty more examples. Function value
decrease is a very weak (read: useless) condition for a minimization algo-
rithm.

SoruTION 6.5

Below you see an expanded table with the asked for ratios. We see that the
linear ratio is steadily decreasing while the quadratic ratio is more stable (up
until machine precision is achieved). Clearly the sequence appear to converge
Q@Q-quadratically. The parameter is given by the worst case ratio, i.e., p ~ 0.24.

B

L

|z — ¥ = dy

dit1/d

diy1/d;

© OO0 Tt WN = O

5.000000000000000
3.960109873126804
2.888130487596392
1.799138129515975
0.849076217909656
0.379763183818023
0.315791881094192
0.314923211324986
0.314923057845411
0.314923057845406

4.685076942154594
3.645186815281398
2.573207429750986
1.484215071670569
0.534153160064250
0.064840125972617
0.000868823248786
0.000000153479580
0.000000000000005
0.000000000000000
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0.77804204
0.70591922
0.57679574
0.35988932
0.12138864
0.01339947
0.00017665
0.00000003
0.00000000
NA

0.16606815
0.19365790
0.22415439
0.24247788
0.22725437
0.20665396
0.20332357
0.21226031
0.00000000
NA



For the interested: The gradient and Hessian are
Vfix)=¢€e"—2+2z
Vif(z) =e® + 2,

which shows that f is strictly convex and thus has a unique minimizer. The
Newton iteration is then explicitly written as

etk — 2+ 2z
Thpl =T — —————.
k+1 k oo 12
SorLuTION 6.6
1. Note that
Vv D
0<@Qr < —0 as k— oo.

P1(k) - Pa(k)

Therefore, Q; — 0 as k — oo, by the squeeze theorem.

2. Since we have two terms (both converging to zero as £k — oo) on the r.h.s.
of the inequality, the slower term is the bottleneck and decides the rate of
convergence, that is, the smaller between ¢; and 1)y determines the rate
of convergence. When comparing we can ignore the constant terms. With
that in mind, the rates are as the following

(a) O(log(k)/v'k) sublinear rate of convergence.

(b) We should compare O(1/k'~%) and O(W) = O(1/k*). Since

a € (0,0.5), O(1/k*) is the rate of convergence.

(c) We should compare O(1/k'~%) and O(W) = O(1/k%). Since

a € (0.5,1), O(1/k'=%) is the rate of convergence.

3. The cases in (b) and (c) are similar. We just need to compare them with
case (a). Let a € (0,0.5) and note that

log(k)/VE  log(k)
1//€°‘ T K05-a

We conclude that case (a) gives the faster rate.

—0 as k— oo.

SoruTION 6.7

1. We get that

o VADY v VDR

0 < flog) — flar) < LI D 2a=02  VH Dimo
b Zi:o Vi b Zi:o Vi

By the squeeze theorem, we have that f(zx) — f(2*) — 0 as £ — oo, and
therefore, f(x;) — f(z*) as k — oo.

—0 as k — oo.
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2. In each case, the function ¢ : R, — R,, where ¢(i) = ~;, is non-negative
and decreasing. Therefore, we obtain the following bound:

k k k
0 s/ o)t <3 6(i) =S 7. VkeN.
0 i=0 i=0

Similarly, we also get the bound

k k k 0o
Y =) ok < / @2(t)dt + ¢*(0) < / ¢*(t)dt + ¢*(0), VkeN.
=0 i=0 0 0

Combining these bounds with the inequality given by the convergence anal-
ysis, we get the new inequality

e 2 VADYE 2 VD ([P EWd+R0)
flo =1y s = e s b [ o(t)t ST

(a) Now let ¢(i) = v; = ¢/(i + 1). Note that
g oy 2f [ 1
/O G (1)t + $(0) = (/O (1+t)2dt+1>

(2]

= 202,
and
k ko
t)dt = —dt
/0 O
= c[log(t + 1)]?:0
= clog(k +1).
We conclude that
V 4+ 2Dc?

f(ﬂfk)_f(x*) < m, VkEN,

which shows a O(1/1log(k)) sublinear rate of convergence.

(b) Next, let ¢(i) =v; = ¢/(i + 1)® with a € (0.5,1). Note that

/OOO P> (t)dt + ¢*(0) = 2 </OOO (1+1t)2adt + 1>

- <[(1 - 2oz)(1 +t>2al]zﬂ i 1>

2

B 2ac
C2a—1’

k k 1
/0 gb(t)dt:c/o mdt
1

—° {(1 —a)(t+ 1)

_ ﬁ ((k+ 1) —1).

and

k
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We conclude that

V + D2
& , VkeN,
((k+1)t=o — 1)

flap) = f(2") < 5

l—«o

which shows a O(1/k'~?) sublinear rate of convergence.

3. a € (0.5,1) implies that 1 — « € (0,0.5). Note that

1/k'=  log(k)
1/log(k) ~ ki-o

—0 ask — oco.

Thus, step-size (b) gives the fastest convergence rate.

SoruTION 6.8

Let Vj, = ||z —2*||3 for each k € N. The Lyapunov inequality can then be written
as

Vi < Ve = 29(f(zx) — f(27)), Vk e N\ {0}
Recursively applying the inequality gives

k
Vi <Vo—2y) (f(@i) — f(a¥)), VkeN\{0},
i=1
and therefore

k

> (flai) = f(a¥) <

i=1

Vo Vi _ Vo
< — k
5y =g TRENA{O)

since V;, > 0 for each & € N. Then

k
R(f () — @) < S () - fla) < Qvg vk € N\ {0},
i=1

since (zj)ken is a descent sequence for f. Finally, note that

Vi
ogf@@—f@vg§%;+o as k — oc.

By the squeeze theorem, we have that f(x;)— f(z*) — 0 as k — oo, and therefore,
f(zr) — f(z*) as k — oo. Moreover, we identify a O(1/k) sublinear rate of
convergence.

SoruTION 6.9
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1. We start from the inequality

E [llzi+1 — 2113 [ @x] < lox —a*[13 = 29(f(zx) — f(2*)) +RG?, VkeN.

By monotonicity and linearity of expectation, we get that

E [E [loee — 213 | 2x]] < E[lor — 2*)3 = 2m(f (zx) = £(2*)) +17G7]
=E [|lex — 2*|3] —E [29(f (zx) — f(@)] + E [ G?]
=E [|lzx, — 2*(3] — 2 E [f(xx) — f(2*)] +77G?,

holds for each k£ € N. The law of total expectation yields
E [llzxs1 — 2*13] < B [llox — 23] — 2 E[f(ag) — F(2")] +72G2, V€ N.

This is the Lyapunov inequality we pick.
2. Recursively applying the Lyapunov inequality above gives

k k
E [llzxsr —a* 3] < Bflleo = 2" I3] =2 wE[f(z) = f@)] +G* 3o
=0 i
k k
= lleo = 2*3 =23 wElf(z) = f@)]+ G} of, VhEN,

1=0

since ||zo —2*||3 is deterministic. Again, by monotonicity of expectation, we

know that
0 <E[llzgrs —a*[5], V€N,
since
0 < ||wpe —2*]3, VkEN.
We conclude that
k k
0.< flzg — 2™~ 2D HE[f(w) — f@)] + G232, VEEN,
i=0 i=0
or by rearranging
k k
2D E[f(z:) = f@")] < llzo — 2" 5+ G D f, VEEN,
i=0 i=0
as desired.

SoruTioN 6.10
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1. First, we prove the claim provided in the hint, i.e.

Ao > 1405k VkeN. (7.17)

Clearly, (7.17) holds for k = 0. Note that A\, = 0.54,/0.25 + A2 | > 0.5+ ;1
holds for each k£ € N\ {0}. Recursively applying this gives

Ae > 0.5k + Ao =1+ 0.5k VkeN\ {0}
This establishes (7.17).

Next, rearranging (6.1) and recursive application gives

%%Tﬂ(f(l'k—&-l) — f(2*) < Vi = Vi1 + %U(xk) — @)

< Vi~ Vis + 52 (f (1) - f(a)

= Vi = Vi1 + 3(f(21) — f(z*))

< Vi+ 3(f(z1) = f(2), VkeN\{0},
since Vj, > 0 for each £ € N\ {0}. Using (7.17), we get that

Vi + 2(f(z) — f(z*

flarn) — fa") < 1+M§€i f(2%))
B

_ BVi+2(f (@) = f(=%))

=21 +05(k+1)2

Vk € N\ {0},
or equivalently

flay) = f(a¥) <
Note that

0 < f(zg) — fz") <

26V1 +4(f(x1) — f(2¥))
(k +2)2 ’

VkeN\{0,1}.  (7.18)

26Vi +4(f(21) — f(2¥))
(k+2)?

By the squeeze theorem, we have that f(z;) — f(z*) — 0 as k£ — oo, and
therefore, f(z;) — f(z*) as k — oo. Moreover, we identify a O(1/k?) sub-
linear rate of convergence.

2. From (7.18), if k£ > 2, we know that

oy < 2BV A (@) — ()
fla) = fat) < 2

Therefore, if the integer & > 2 is so large such that

26V1 +4(f(21) — f(2¥)) <
(k+2)2 -

we obtain an e-accurate objective value. This is equivalently to

k2{¢w%+ﬂmm—ﬂﬁﬁ_% and k52,

—0 as k — oo.

€

or simply

kZHmX<{¢mﬂﬁ+4Ufn%—f®ﬂ)_Qw£>‘
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Solutions to Chapter 7

SoruTtioN 7.1

1. Since f is smooth use the descent lemma at z; and =1,

F@ran) < flan) + Vi (an) " (@eer — 2) + Sllzne — 23
Inserting xp 1 — zx = =YV f(zk)
F@rgn) < flaw) + V@) (=Y @) + 51 =1V @)l
= f(z) —v(1 = SV f (@) 3.

Now subtracting f(z*) from both sides yields
Flarpa) = F(@%) < flan) = f@*) = 3(1 = SN[V f ()5

2. We see that the Lyapunov inequality has a telescoping term in V},. Sum
over the inequalities for indices i = 0,..., k,

V< Vo — (1 - 29)|V f(20)]3
VE< V(1= BV F(z1)]3

Vb1 < Vi — (1 — %v)HVf(xk)H%,
gives
k
YA = 5N DIV @) < Vo — Viqr.
i=0

Since z* is a minimizer of f, V;, > 0 for all k. Furthermore, if 0 < v < %
then v(1 — 2+) > 0, this gives

Vo > Vo — Vit
k
> 31— §9) Y I3
1=0

> (1= 2 (k+1 i \Y i 2
>y(1—57)(k+ )ieg{}gk}\\ [zl

>0
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Dividing both sides with v(1 — 2+)(k + 1) yield

. N 2V
0< @-eﬁlm IV F@lz = ar < A=) T

The sequence {¢;}ren then clearly converge to zero as the upper bound
converge to zero. The rate is easily identified as O(1/k) and is sublinear.

SoruTION 7.2

1. We start by expanding the square

|41 — ¥ (13 = llex — YV F(x) — 2|3
= llag — 2[5 — 2y(V f(@p)" (2 — 2*) + 2V f(2p) 13-

Using the first order condition for convexity we can bound the inner product
as

Fla*) = flar) + (V) (" — )
= =2y(f(ar) - f(a*) = =2y(Vf(ax))" (2 —a¥)

which yields

lzrs1 = 23 < llz — 213 = 29(f (zx) = F(2) + VIV F(@0) 3.

From Exercise 7.1 we know

f@rer) = F(2*) < faw) = F(2*) = (1 = 5NV F (@) 3.
Adding f(z*) to both sides, multiplying by 2y and rearranging gives

—2vf (k) < =27f(@ps1) — V(2 = BYIVf(@1)]]3.

Inserting this back into the original inequality gives

41 — 213
< lz — ™[5 = 29(f (@rs1) = F(2) + 72 (By = DIV f ()13

2. With Vj, = ||zx — 2*||3, sum over the Lyapunov inequalities for i = 0, ..., k,

Vi < Vo —29(f(z1) = f(2*)) + 2By = DIV F(w0)lI3
Va < Vi = 29(f(x2) = f(2*)) +9*(By = DIV F(21)ll3

Vir1 < Vi = 29(f(zps1) — (&) + 2By — DIV £ (i) |13,

which gives

k k
Vigr < Vo =27 ) (f(@™) = f(@) + 2By = 1) DIV F (@)l
=1

i=0 i=
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Rearranging and using v < % and V;, > 0 gives

k

k
29 (F@) = f(2*) < Vo = Vg + 7By = 1) D _ IV £(3)I3

=0 i=1

k
<o+ Y IVF@)3

i=1

From Exercise 7.1 we know that 42> | ||V f(z;)|2 is bounded, way by W,
and that f(zy) is decreasing,

k
Vot W =Vo+2 > IVF()3
i=1

k
> 2y Y (f@t) = f(a))
=0

> 2y(k+ 1)(f(a"*) — f(a*))
>0

Dividing by 2v(k + 1) yield

k+1 * %+W
Oﬁf(ﬂﬁJr)—f(l’)Sm-

This shows that f(zy) — f(2*) with O(1/k) sublinear rate.

SoruTioN 7.3

1. We start by expanding the square

|zp1 — 2¥)|3 = |lzk — YV f (2) — 273
= |z, — 2*[|3 — 29(V (@) (z1, — %) + 22|V f(zx) 13-

Using the first order condition for strong convexity we can bound the inner
product

F@*) = flan) + (V@) (@ —zx) + §llz* — a3
= =2y(f(ar) = f(2") = pyllee — 2|3 = =2y (V (@) (21, — 2%)

which yields

k1 = 2113 < (1= py)llzk — 213 = 2v(f(2x) = f(2) + IV f (@) 13-

From Exercise 7.2 we know

=27 f (k) < =27 f(@ps1) — V(2 = BYIVf(@1)]]3.
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Inserting this back into the original inequality gives

41 — 213
< (1= p)llag — a3 = 29(f (@r41) — f(29) + 7 (By = DIV f ()13
Since v < % the last term is non-positive. The second to last term also
non-positive since v > 0 and f(zxy1) > f(x*) since z* is optimal. This yield
the desired inequality,
k1 — 23 < (1= py)Jag — 3.

The rate is maximized when 1— ;1 is minimized, i.e., when ~ is maximized.
The best step-size is therefore v = %

2. The best step-size minimize h(y) = max(l — pvy, 5y — 1). Since h is the
maximum of two affine functions it is closed and convex. Fermat’s rule
then give that the best step-size v satisfies

—H ifl—py>py—1
0€dg(y) =18 if 1 —py <py—1
[—p, 8] ifl—py=py-1
This can clearly only hold when 1 — yy = 8y — 1, i.e., when v = ﬁ

From the analysis earlier in this exercise we got that the best rate conver-
gence was given by

[rsr — a3 < (1= F)llax — 273
From the analysis in the lectures we get that the best rate is given by

2
lzksr — 23 < (1= 525) 2 lew — 2|3

Since 0 < 1 < 8 we have
_ 212 _ 2u 2w _q_
( B+u)<1 B-&-ugl B+B_1 B
and hence does the convergence analysis in the lecture yields a faster rate.

SoruTtiOoN 7.4

1. We have

e = 2F — 4V f(aF) = 2 — Q2" — vg = (I —1Q)2" — 4.

If x* is a solution, then 0 = V f(z*) i.e.

et =27 =V f(@") =a" —yQx" —y¢= (I —yQ)z" —vq
S0

M =2t = (I =4Q)a" — (I —yQ)z" = (I —7Q) (2" — %)
we therefore get [|z*+1 — 2*| = (I — Q) (* — )| < |T —1Q|[lz* — 2" Let
A(M) be the set of eigenvalues for a matrix M. Then 0 < A\(Q) < Amax(Q),
and since L = A\pax(Q) we get v € (0,2/L) = (0,2/Amax(Q)), which means
that A\(7Q) € (0,2), and lastly \(1 —vQ) € (—1,1). Hence, 0 < || —7Q] < 1
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2. Withy =1/L we get A\(vQ) € (0,1) and A(I —~Q) € (0, 1). The eigenvalue of
I—~@Q with the largest absolute value therefore corresponds to the smallest
eigenvalue of 7@, i.e. Anin(Q)/L, where L = Apax(@). The convergence
rate therefore becomes 7 = 1 — Ayin(Q)/Amax(Q), Wwhere Anin(Q)/Amax(Q)
is known as the condition number.

3. The eigenvalues are 1 and e. L = 1, so the eigenvalues of I — (@ are 0 and
1 — ¢ with the rate set by »r = 1 — ¢. When ¢ = 0 then z* = 0. If we let
2% = [1 0]7 then 2 = [(1 — ¢)¥ 0]” and the rate is achieved.

1 0.01
0.01 1
values 0.99 and 1.01. The convergence will therefore be very fast. With
v=1/L =1/1.01 we get r ~ 0.02.

4. Let V = [UO\/E (1)], we then get VIQV = [ ] which has eigen-

5. The prox if often computed on some function g(x) that is separable. With a
change of variables to x = Vy, we need to prox on the function g(Vy) which
is no longer separable, and computing the prox on this term generally be-
comes computationally expensive.

SoruTIiON 7.5

1. Let 2 = prox, (z) = argmin,(f(2) + o[z — 2[[3). Therefore, for all 2, it
holds that

Fa) + et — 23 < £(2)+ £l — 3
Set in particular z = z to get

F@) + g llzs — 23 < f(a).

2. We have
o ||l — 2R3 < fah) — F(@M).

Summing this inequality gives for all n € N:

o5 Dl = b3 < f(2%) — fa") < f(2%) - B.

2y
k=0

Letting n — oo means that 5= 37 [|2%! —2*[|3 < oo and [|«*+ — 2| = 0
as k — oo.

3. From convexity of f and Fermat’s rule we have that z* = prox, ,;(v) =
argmin, (f(z) + %Hx — z||3) is equivalent to

0€af(x™)+ %(f — 1) %(m —zT) e af(z™).
This means that - ("' — 2*) = s" is a subgradient, s* € 9f(z*). Then

0 < distypur(0) < [|ls* = 0| = 2|z* " =¥ = 0
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4. Strong convexity means that
fy) = f@) +s"(y —2) + §lly — |
for all z,y and all s € Jf(x). In particular we can take z* with %(wk
zF) = s* € 9f(«*) and 2* with 0 € 9f (z*).
f@*) > fa*) + §lla* —a*|?
F@*) = f(a®) + (M (" —a) + Glla — )2

71_

Adding these two together and using Cauchy-Schwarz yields

k— k k k
15 =) = [Is"]] = plla® — 2]

which implies 2% — 2*.

SoruTioN 7.6
The complete procedure is given below.

1. The goal is to get an inequality on the form

Virr < Vi — Qk
where () is some non-negative convergence measure. Here we choose
Vi = |lzx — 2*||3 as the Lyapunov function. We further define the resid-

ual mapping as Ry, = @y, — prox, (vx — vV f(zx)). The proximal gradient
update can then be written as

Tpt1 = Tk — Ry (7.19)
and we can use this to relate Vj,; to Vi by expanding the square,
Vit = [[@pe1 — 2*f3
= |lzx — 2|3 — 2(zx — o) (Ray) + | Rax||3 (7.20)
= Vi, — 2(z), — )" (Ray) + | Ry 3.

2. The quantity —2(z — 2*)7 (Ray,) + || R |3 now needs to be bounded. We
start by using (7.19) to re-write it as
— 2(ay, — 2*)" (Ray) + | Rl
= —2(zy, — «*)" (Rag) + (Ray)" (Ray,)
= —2(zp, — )T (Ray) + 2(Ray) T (Ray) — (Ray)T (Ray,) (7.21)
= —2(zp — Ray — ) (Ray) — (Rap) T (Ray)
— —2(

2wp1 — ) (Rag) — [ Raw3-

3. We now turn to bounding —2(z;1—2*) (Rx}). From the proximal gradient
update we have

xp — YV f(xg) — zp + Rag € v0g(xp41)
- v_lek — Vf(z) € 0g(xpy1).
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The definition of a subgradient then gives

9(2*) > g(xp1) + (v Ray — V()T (2% — 2p41)

— 2 — )T (Ray) < ~29(g(ann) — 9(*)) — 27V (@) (@1 — 2*).
(7.22)

4. We continue to bound —2vV f(z)” (2,1 — 2*). Using B-smoothness of f
and definition of convexity of f gives the two following inequalities

Farsr) < flaw) + V@) @i — 21) + 5llaess — 2l
= f(zi) + V@) (@re1 — 21) + 51 Rx3
fzr) < f(@*) + V()" (2 — 2*).

Adding these two together and rearranging yield

flargr) < f(@*) + V(ae) (@psr — %) + g”Rﬂﬁng (7.23)
= 29V f(zr)" (wep1 — 2°) < =2v(f(@rg1) — f(2¥)) + VB[ Ry l3.
5. Inserting (7.23) into (7.22), (7.22) into (7.21), and finally (7.21) into (7.20)
yield
Virr = Vi — 2(zx — )T (Ray) + | Ry |3
= Vi — | Ral5 — 2(wx 11 — o) (Raxy)
< Vi — IRkl — 2v(9(xrs1) — 9(*)) — 29V f ()" (wpg1 — 2¥)
< Vi — [IRzll5 — 29(9(mrs1) — 9(2%)) — 29(f(mhp1) — F(2*)) + 18| Rae 3
< Vi — (L= B8)IR@kl3 — 2v(g(xhs1) + f@rgr) — g(2*) — f(a*)).

6. Using the assumption v < 57! gives

Vi1 < Vi — (1= 98) | Rakl|3 — 27v(9(wks1) + fzii1) — g(x*) — f(z¥))
< Vi = 29(9(wpg1) + f(@rg1) — g(z") — f(27))
= Vi —Q

and where
Qr = 2v(9(k+1) + f(wp41) — g(a*) — f(z7))

which is non-negative since v > 0 and g(xp11) + f(apr1) > g(a*) + f(a*)
since x* is a minimum.

7. Since Vi, > 0 and Q; > 0 we have that (), — 0 which implies that

flxr) +g(@r) — f(z¥) + g(a¥)

as k — oo.

SoruTIiOoN 7.7
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1. Following the steps yield

k1 = a3 = [prox, (ex — AV f(ar)) - o3
= Iprox (a1 = 19 (1)) — pro,(o” — 9V "))
< b ek — 1V F () — 2 + V()]
= = (Nl — 13
= 29(V(wx) = VI @) (g — %) + 22|V Fwx) = V(@*)]3)

< b (0= 222 — w13 = 15 — DIV () = VEE)IB)-

If0<v < g7 + , then the last term is negative and we can use

IVF(zr) = VI(@)lle = pyllor — 272

to get

28 2 2 2
s (0= 220 o — 21 = (52 = Vwdllax — 2713)

_ 1 2Bupy 23y 2 2 2
gy (= By — mry 7 ) len — 2712

2B py+2u3y 2 9 2
= 1+Lg'}’( AT =)l — 2l

= = (U= 20y + )l — 2113

k1 — 2|13 <

1— 2
= L8 g, — 03,
Ifv > o +u , the last term is positive and we can use Lipschitz continuity

of Vf to get

28
lowss = 2*13 < mhs (1= T2k — 2*13 = vz — 1) ax - 2*13)

< oo (1- FAD - 280 4 22|y — o3
< (1 2 g2 |y — a3

< 11y (1= 267 + 8%9°) |2k — 2|3

< Gy — a3,

To write these on one common form we use the fact that

L—ppy ify €0, 52-]

maX(l-,Uf’Y,ﬁ’Y ) {5*’}/—1 lf"}/e[ﬁuﬁuf OO)

which gives the searched for inequality,

1—ppy,8v—1)2
lonsr — 213 < PO 2 — 2|3,

(l—ppv,8y—1)2
I4+pgy
assume ;i > 0, this can be verified to hold if 0 < v < yom + so we only look

2. The algorithm converge, ||z — z*| — 0, if == < 1. First we
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2
Btuy:

at the case when v > This results in

(By=1)?
I+pgy

<1 <= (By—1)% <1+ pyy
= 1+ 6292 - 28y <1+ pgy
= [ -1B82+4) <0
— 57<2+%
<= 7<%+%.

If iy > 0, the algorithm converge if 0 < v < % + 5.

Assume p; = 0, this means %}w < 1 which can’t hold if p; = 0.

Hence, the algorithm can’t converge linearly if 11 = p1y = 0.
(1—pgy,By=1)2

T+pgy
guaranteed to hold. If v > % the condition once again reads

< 1is

Assume py = 0 and py > 0,if 0 < v < %then mex

(By—1)?
T+pgy

<l = y<Z+5

To summarize, the algorithm converge if 0 < v < % + % and at least one

of iy > 0 and py > 0 hold.

. We first consider § = 1, this means § = L 4+ pu, uy = p and gy = 0. The
linear rate of ||z — z*||3 is then given by

max(1 — py, (L + p)y — 1%

In Exercise 7.3 we have already shown that this is minimized by v =

resulting in the rate
1 2u 2 B L 2
L+2u)  \L+2u)

Let’s now consider 6 = 0 which give 5 = L, iy = 0 and 4 = p. The rate is
then given by

_2
L+2p°

max(1, Ly — 1)?
L+py

We consider two cases, if v < %, the rate is ﬁ and hence should ~ be

chosen as large as possible, v = %

(Ly—1)?
1T4+py

If 2 <y < 2 + £ with the rate
gives

. Taking the derivative of the rate

d (Ly=1)*  2L(Iy—1)  uizy-1)?

dy 1+pwy — 1d+py @)
Lvy—1
= W(QLO +py) — p(Ly — 1))
Ly—-1
BREYTE (2L + Lpy + )
> 0.
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Hence is the rate increasing in v and the step-size should be chosen as

small as possible v = %

The rate for when § = 0 is then

L L \?
>
L+2p L+2p
since L > 0 and p > 0. It is therefore advantageous two put the strong
convexity in the gradient step.

SoruTioN 7.8

1. L-smoothness gives

@) = f(@* — 4V f;(ah)
< f(a") + VF (@™ (aF — 4V fi(a¥) — 2¥) + L)% — 1V f;(ah) — 2F|?
< f(@*) —AVE@M TV f;(2%) + 59|V £i(29)] 2.

Taking expectation conditioned on z*

yield

over both sides and using linearity

E[f(2*1)|2"]

IN

F(a*) = AVE ) EV fi(a")a*] + §97E[|V fi(a")*|2"]

= f(a¥) =AVF (@) VF(@") + 577E[||V fi(«")|*|2"]
= f(&*) =AU VF@")|1? + 5PE|V fi(«")[*[«*].
Using the hint gives

E[|V fi(z")[?|a*] = IE[V fi(z")|=*]||* + E[|V fi(2") — VF(2")||2*]
< |[VE (™) + o2

Inserting this into the first inequality gives the desired result.

2. Rearranging the first result

VE (1= EIVEERIP - (455 < B[F(a*) — F(a*H)[2"].

Taking total expectation yields
V(1 = SARE[|[VF @M - (v%)* 28 <E[F(a%) - F@H),

Summing from k£ = 0 to k = n yields

ZZZO YH(1 = SOE[|VF @M - (+%)*L8° < E[F(2°) — F(a")]
<EF(z°) - B

since F'(xz) > B. Letting n — oo gives

> A= EMENVFEN P - ()25 < oo (7.24)
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Inserting v* gives

S EE[IVE@H)? - 0% < oo

i.e. E[|VF(2")||? — 02 must be summable and therefore must E||V F (") | —
02 — 0. As a result we can not ensure that the gradient converge to 0 for
a fixed step-size stochastic gradient descent. We only converge to a noise
ball of size o.

3. Inserting v* into (7.24) yield
2

S (- EREVEEH) - A < oo

The ; Lg® term will be summable there fore must the (£ — £ LE|VE ()|

terms be summable to. For some finite C' the following then hold

T

C> Z (; = 53)EIVF(")|* > [min B|[VF (2 PTG -5 7e)
k=K

for all T > K where K is such that % - %k% > 0 for all £ > K. This give

Q

—0 as T —

0 <minE|VF(z")|? < —
1 L1
kT k:K(E - 51?2)

since + not is summable.

4. Inserting v* into (7.24) yield

S (- LBEIIVEENY) - A < oo

Once again is k14 Le® summable, forcing (1 — £ %) E[||V F(2*)]|?] to be summable

to But (4 — %/ is here also summable, making it possible for E[|| V F (2*)||? —
¢? > 0 without destroying summability. Clearly, having to fast decaying
step-size could also hinder the convergence of the gradient.

SoruTioN 7.9

¢ All methods were applicable. The gradients of the primal functions are
Qz + b and z. With g(z) = ||z[|3 we have (prox.,(z)); = zi/(1 + 7).

— One iteration of gradient descent therefore requires vector operations
(O(n)) as well as one matrix multiplications (O(n?)). Gradient descent
therefore has complexity O(n?) per iteration.

— The gradient can be computed for each coordinate using only multi-
plication of one row in @ with = (O(n)). Per iteration complexity of
coordinate gradient descent is therefore O(n).

— The prox on g is separable, and the complexity for each coordinate
is O(1), so the complexity of the full prox is O(n). The complexity
of proximal gradient is therefore O(n?) and for coordinate proximal
gradient it is O(n).
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¢ The following solution assumes a straight-forward implementation of the
algorithms. It is possible to do some tricks to reduce the complexity of the
coordiante-wise implementations, see Excercise 7.10. The gradient of the

—wly
first term f(z) = log(1 + e*“’T””) is Vf(x) = —wliefsz
1

term g(z) = 5>, max(0,z;)* we get (Vg(z)); = max(0,z;), with the prox
(prox. ,(z)); = max(0,z;/(1 +7)).
- Both gradient descent and proximal gradient will therefore have vec-

tor operations as the most costly operations, and the complexity is
O(n).

and for the second

—wly
Ty

— The coordinates of the gradient to f is given by (Vf(x)); = —w; 1:18*“’
The main cost here is the scalar product w?x which is O(n). The
coordinate-wise versions of the algorithms will therefore have a per
iteration complexity of O(n), which is the same as the full (proximal)
gradient method. Iteration over all coordinates will therefore have a
cost of O(n?) which means that the coordinate-wise methods are not

competitive compared to the full algorithms.

SoruTioN 7.10

At each iteration the algorithms update only one coordinate, i.e z*t! = 2% +
§j, where §;, is zero for all indices except ji. Assume that *~! = wl2* ! is
already computed at iteration k. We can then calculate c* := w”z* = wT (z*~1 +
§jpy) = wlak=t +wj, 6, . = &1 + wj,_,6;,_, using only scalar operations.
The gradient of the term f(z) = log(1 + e~*" ) at some index i can therefore be
computed as

k eick

i 1+ec

T
wa

i Tk
14 e w'

(Vf(@@"))i = —w

using only scalar operations. Since g(z) = 3, gi(z;) = max(0, z;)? is separable,
so is the prox, i.e
(prox, ,(2)); = prox, , ()
hence
it = (prox, (a* — 4V f(a"))); = prox,,, ((«* — 7V f(")))i) =
prox. , (af — (Vf(a*));) = max(0, (} —y(Vf(&)),) /(L +7)).

This means that if we start by computing w” z°, we are then able to do each of

the following coordinate-wise updates using only scalar operations.

SoruTioN 7.11

e We have

Fz) = %(Ax 0T (Az — b) = %xTATA:c T A+ %bTb
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SO

1 1
fiz(a) = i(x + ae))TAT Az 4 ae;) — b Az + ae;) + ibTb (7.25)

= %aze;frATAei — abTA$ei + ... (7.26)

where the rest does not depend on . We therefore get
vfi,;v(a) = aefATAei — bTA:(:ei

and
V2fi7$(a) = GZTATA(?Z‘ = (ATA)Z’Z

where L; = (AT A), ; is the i:th diagonal element of AT A.
* The Lipschitz constant of f is ||AT A||» and

T T .
||ATA||2 = sup ||A Atz > ||A AeZHQ

> = || AT Aei2
=zl lleill2

_(STATA2)? > (AT A)2)E = (AT A)s
i ( )

J

SoruTtioN 7.12
The proximal update of the i:th coordinate is equivalent to

o} = argming,(2) + £z — (x; — Vi f ()|
Due to convexity is this equivalent to

0 € dgi(z;") + Vif(z) + %(xj —z;) <= —(Vif(z)+ %(%Jr — ;) € Agi(z™).
From the definition of a subgradient we get

gi(z) < gi(wi) = Vif (@) (@f = 2i) + Slla7 — .

Since ™ and z only differ in the i:th coordinate we have that gj(x;r) = gj(z;) for
all j # 4. This yields

G(a™) < Glz) = Vif ()T« — i) + 2z — il ”.

where G(z) = Y., gi(x;). Furthermore, ||z —z;(|? = |27 —2|? and V, f (z) (z] -
z;) = Vf(z)T (z7 — ) which yields

Gat) < G(x) = V(@) (@ —a) + 32" — 2.
Using L-smoothness of f yields

fat) < fl@) + V(@) (@ —2) + et — 2|
Adding these together yields

f@®) +G(a®) < f2) + Gla) = (5 = F)llat —a|”.

1
v
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which proves descent if v < #.

SoruTioN 7.13
The exact same reasoning as Exercise 7.12 yields

G(a") < Gz) = V(@) (@* —2) + 5 lla" — .

The smoothness condition

fa®) < fla) + V@) (@ -
= f(z) + Vf(2)" (a" — 2)
= f(z) + Vf(2)" (z™ — 2)

where M;; is the i:th diagonal element of M and the equalities hold since z+ and
z only differ in one coordinate. Adding the two inequalties together yields
f@) +Gat) < f2) + Gz) = (£ = 22) 2" — 2|,

and 7; < 37— yields descent.

SoruTion 7.14
For implementations, see appendix. The function values are show in Figure 7.1.

We see that coordinate descent and gradient descent converge at approximately
the same speed for the same amount of computations. However, by selecting a
step length for each coordinate according to the individual smoothness constants
as y; = 1/(AT A), ;, we get considerably faster convergence.

SoruTioN 7.15

For implementations, see appendix. The function values are show in Figure 7.2.

* We see that a larger step size will result in a quicker initial decrease of the
function value. However, the error doesn’t converge towards 0, and with a
larger step-size the iterates will stay further away from the optimal point.

¢ The error keeps decreasing with this approach and we seem to get the
benefit of both a large step size when we are far away, and a smaller step
size when we are close to the solution. However, the convergence rate is
still very slow compared to gradient descent.

* The error quickly converges (to something greater than 0) and the variance
goes to 0. This is because the sequence 1/k? is summable, i.e. >, ||z*+! —
z¥|| < ¢ is bounded by some constant ¢, so the step lengths are not long
enough to allow the iterates to go to the optimal point.
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Figure 7.1: Function value for each iteration over full data with Gradient De-
scent, Coordinate Descent and Coordinate Descent with Diagonal scaling.
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Figure 7.2: Stochastic gradient for different step lengths from Excercise 7.2,
where g = Apax.
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Julia Code
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Implementation of Excercise 7.14

function grad descent(A, b, x0, y, kmax, xsol)
X = copy(x0)
res = zeros(kmax)
err = zeros(kmax)
AtA = A'A
Atb = A'b
for 1 = 1:kmax
X =X .- Y.*(AtA*x .- Atb)
res[i] = norm(A*x-b)"2
end
return x, res
end

coord descent(A, b, x0, y::Number, kmax, xsol) =
coord descent efficient(A, b, x0, fill(y, size(A,2)), kmax, xsol)

stochastic gradient(A, b, x0, ys::AbstractArray, kmax, xsol)
ys[i] should be y a for index i

function coord descent(A, b, x0, ys::AbstractArray, kmax, xsol)
n = size(A,2)

X = copy(x0)
res = zeros(kmax)

err = zeros(kmax)

# Store A*AT to avoid recomputing
AAt = A'A

Atb = A'b

for i = 1:(kmax*n)
# Random index
j = rand(1l:n)
Vj = view(AAt,:,j)'x - Atb[jl]
x[31 = x[31 - ys[j1*Vj
if i%sn == 0 # Every n iterations, compute error

res[i+n] = norm(A*x-b)"2

end

end

return x, res

end
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Implementation of Excercise 7.15

stochastic gradient(A, b, x0, y::Number, kmax, xsol) =
stochastic gradient(A, b, x0, fill(y, kmax*size(A,1)), kmax, xsol)

stochastic gradient(A, b, x0, ys::AbstractArray, kmax, xsol)
ys[i] should be y at batch i

function stochastic gradient(A, b, x0, ys::AbstractArray, kmax, xsol)
n = size(A,1)

X = copy(x0)

# Only store every n iterations

res = zeros(kmax)

err = zeros(kmax)

# Store AT since extracting rows is cheaper than columns
At = copy(A')

for i = 1:(kmax*n)
j rand(1l:n) # Random index
Atj = view(At,:,j) # For efficency, use views instead of direct index
X .= X .- ys[(i-1)+n+1].*Atj.*(Atj'*x - b[j])
if i%n == 0 # Every n iterations, compute error
res[i+n] = norm(A*x-b)"2

end
end
return x, res
end
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