# **Deep Learning**

Pontus Giselsson

### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

## **Deep learning**

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

where typically

- $L(u,y) = \frac{1}{2}||u-y||_2^2$  is used for regression
- $L(u,y) = \log\left(\sum_{j=1}^K e^{u_j}\right) y^T u$  is used for K-class classification
- Difference to previous convex methods: Nonlinear model  $m(x;\theta)$ 
  - Deep learning regression generalizes least squares
  - DL classification generalizes multiclass logistic regression
  - Nonlinear model makes training problem nonconvex

#### Prediction

- Prediction as in least squares and multiclass logistic regression
- Assume model  $m(x;\theta)$  trained and "optimal"  $\theta^{\star}$  found
- Regression:
  - Predict response for new data x using  $\hat{y} = m(x; \theta^*)$
- Classification:
  - We have one model  $m_j(x; \theta^*)$  output for each class
  - $\bullet$  Predict class belonging for new data  $\boldsymbol{x}$  according to

$$\underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} m_j(x; \theta^*)$$

i.e., class with largest model value (since loss designed this way)

### **Deep learning – Model**

Nonlinear model of the following form is often used:

$$m(x;\theta) := W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})+b_n$$

- The  $\sigma_j$  are nonlinear and called activation functions
- Composition of nonlinear  $(\sigma_j)$  and affine  $(W_j(\cdot) + b_j)$  operations
- Each  $\sigma_j$  function constitutes a hidden layer in the model network
- Graphical representation with three hidden layers



- Why this structure?
  - (Assumed) universal function approximators
  - Efficient gradient computation using backpropagation

#### **Activation functions**

- Activation function  $\sigma_i$  takes as input the output of  $W_i(\cdot) + b_i$
- Often a function  $\bar{\sigma}_i : \mathbb{R} \to \mathbb{R}$  is applied to each element

• Example: 
$$\sigma_j : \mathbb{R}^3 \to \mathbb{R}^3$$
 is  $\sigma_j(u) = \begin{bmatrix} \bar{\sigma}_j(u_1) \\ \bar{\sigma}_j(u_2) \\ \bar{\sigma}_j(u_3) \end{bmatrix}$ 

ullet We will use notation over-loading and call both functions  $\sigma_j$ 

# **Examples of activation functions**

| Name      | $\sigma(u)$                                                                                  | Graph |
|-----------|----------------------------------------------------------------------------------------------|-------|
| Sigmoid   | $\frac{1}{1+e^{-u}}$                                                                         |       |
| ReLU      | $\max(u,0)$                                                                                  |       |
| LeakyReLU | $\max(u, \alpha u)$                                                                          |       |
| ELU       | $\begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$         |       |
| SELU      | $\lambda \begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ |       |

## **Examples of affine transformations**

- Dense (fully connected): Dense  $W_i$
- Sparse: Sparse  $W_i$ 
  - Convolutional layer (convolution with small pictures)
  - Fixed (random) sparsity pattern
- Subsampling: reduce size,  $W_j$  fat (smaller output than input)
  - average pooling

### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

### Learning features

- Used prespecified feature maps (or Kernels) in convex methods
- Deep learning instead learns feature map during training
  - Define parameter (weight) dependent feature vector:

$$\phi(x;\theta) := \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})$$

- Model becomes  $m(x;\theta) = W_n \phi(x;\theta) + b_n$
- Inserted into training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \theta) + b_n, y_i)$$

same as before, but with learned (parameter-dependent) features

Learning features at training makes training nonconvex

# **Learning features – Graphical representation**

• Fixed features gives convex training problems



• Learning features gives nonconvex training problems



Output of last activation function is feature vector

## **Design choices**

Many design choices in building model to create good features

- Number of layers
- Width of layers
- Types of layers
- Types of activation functions
- Use different model structure (e.g., residual network)

### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

### Overparameterization

- ullet Assume fully connected network with n layers and N samples
- ullet Assume all layers have p outputs and data  $x_i \in \mathbb{R}^p$
- Number of weights  $(W_j)_{lk}$ :  $p^2n$  and  $(b_j)_l$ : pn
- Assume  $N \approx p^2$  then factor n more weights than samples
- Often overparameterized ⇒ can lead to overfitting



# Reduce overfitting

#### Reduce number of weights

- Sparse weight tensors (e.g., convolutional layers)
- Subsampling (gives fewer weights deeper in network)

#### Regularization

- Explicit regularization term in cost function, e.g., Tikhonov
- Data augmentation more samples, artificial often OK
- Early stopping stop algorithm before convergence
- Dropouts next slide

# **Dropouts**

- Training problem solved by stochastic gradient method
- Compute gradients on different networks to avoid overfitting
- Take out nodes from network with probability  $\rho$



• Use scaled  $\rho\sigma$  in prediction (on average used  $\rho\sigma$  in training)

### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

# Performance with increasing depth

- Increasing depth can deteriorate performance
- Deep networks may even have worse training errors than shallow
- Intuition: deeper layers bad at approximating identity mapping

#### Residual networks

- Add skip connections between layers
- Instead of network architecture with  $z_1 = x_i$  (see figure):

$$z_{j+1} = \sigma_j(W_j z_j + b_j) \text{ for } j \in \{1, \dots, n-1\}$$

use residual architecture

$$z_{j+1} = z_j + \sigma_j(W_j z_j + b_j)$$
 for  $j \in \{1, \dots, n-1\}$ 

- Assume  $\sigma(0) = 0$ ,  $W_j = 0$ ,  $b_j = 0$  for j = 1, ..., m (m < n 1)  $\Rightarrow$  deeper part of network is identity mapping and does no harm
- Learns variation from identity mapping (residual)



## **Graphical representation**

For graphical representation, first collapse nodes into single node



# **Graphical representation**

Collapsed network representation



• Residual network



• If some  $h_j = 0$  gives same performance as shallower network

# Regularization – Layer Dropouts

- Compute gradient on different networks to avoid overfitting
- In residual networks, layers are approximately identity
- We can drop out layers instead of individual neurons
- Drop layer with probability  $\rho$
- Called stochastic depth residual networks



### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

## **Training algorithm**

- Neural networks often trained using stochastic gradient descent
- DNN weights are updated via gradients in training
- Gradient of cost is sum of gradients of summands (samples)
- Gradient of each summand computed using backpropagation

## **Backpropagation**

- Backpropagation is reverse mode automatic differentiation
- Based on chain-rule in differentiation
- Backpropagation must be performed per sample
- Our derivation assumes:
  - Fully connected layers (W full, if not, set elements in W to 0)
  - Activation functions  $\sigma_j(v) = (\sigma_j(v_1), \dots, \sigma_j(v_p))$  element-wise (overloading of  $\sigma_j$  notation)
  - Weights  $W_j$  are matrices, samples  $x_i$  and responses  $y_i$  are vectors
  - No residual connections

### **Jacobians**

• The Jacobian of a function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

• The Jacobian of a function  $f: \mathbb{R}^{p \times n} \to \mathbb{R}$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_{p1}} & \cdots & \frac{\partial f}{\partial x_{pn}} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

• The Jacobian of a function  $f: \mathbb{R}^{p \times n} \to \mathbb{R}^m$  is at layer j given by

$$\begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}_{:,j,:} = \begin{bmatrix} \frac{\partial f_1}{\partial x_{j1}} & \cdots & \frac{\partial f_1}{\partial x_{jn}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_{j1}} & \cdots & \frac{\partial f_m}{\partial x_{jn}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

the full Jacobian is a 3D tensor in  $\mathbb{R}^{m \times p \times n}$ 

## Jacobian vs gradient

• The Jacobian of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• The gradient of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is given by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

i.e., transpose of Jacobian for  $f: \mathbb{R}^n \to \mathbb{R}$ 

• Chain rule holds for Jacobians:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$

## Jacobian vs gradient – Example

- Consider differentiable  $f: \mathbb{R}^m \to \mathbb{R}$  and  $M \in \mathbb{R}^{m \times n}$
- Compute Jacobian of  $g = (f \circ M)$  using chain rule:
  - Rewrite as g(x) = f(z) where z = Mx
  - Compute Jacobian by partial Jacobians  $\frac{\partial f}{\partial z}$  and  $\frac{\partial z}{\partial x}$ :

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = \nabla f(z)^T M = \nabla f(Mx)^T M \in \mathbb{R}^{1 \times n}$$

• Know gradient of  $(f \circ M)(x)$  satisfies

$$\nabla (f \circ M)(x) = M^T \nabla f(Mx) \in \mathbb{R}^n$$

which is transpose of Jacobian

# **Backpropagation – Introduce states**

• Compute gradient/Jacobian of

$$L(m(x_i;\theta),y_i)$$
 w.r.t.  $\theta=\{(W_j,b_j\}_{j=1}^n$ , where 
$$m(x_i;\theta)=W_n\sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x_i+b_1)+b_2)\cdots)+b_{n-1})+b_n$$

• Rewrite as function with states  $z_j$ 

$$L(z_{n+1},y_i)$$
 where  $z_{j+1}=\sigma_j(W_jz_j+b_j)$  for  $j\in\{1,\dots,n\}$  and  $z_1=x_i$  where  $\sigma_n(u)\equiv u$ 

# **Graphical representation**

Per sample loss function

$$L(z_{n+1},y_i)$$
 where  $z_{j+1}=\sigma_j(W_jz_j+b_j)$  for  $j\in\{1,\dots,n\}$  and  $z_1=x_i$  where  $\sigma_n(u)\equiv u$ 

Graphical representation



## **Backpropagation – Chain rule**

ullet Jacobian of L w.r.t.  $W_j$  and  $b_j$  can be computed as

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

where we mean derivative w.r.t. first argument in L

Backpropagation evaluates partial Jacobians as follows

$$\frac{\partial L}{\partial W_j} = \left( \left( \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial W_j}$$

$$\frac{\partial L}{\partial b_j} = \left( \left( \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial b_j}$$

# Backpropagation – Forward and backward pass

- Jacobian of  $L(z_{n+1}, y_i)$  w.r.t.  $z_{n+1}$  (transpose of gradient)
- Computing Jacobian of  $L(z_{n+1}, y_i)$  requires  $z_{n+1}$  $\Rightarrow$  forward pass:  $z_1 = x_i$ ,  $z_{j+1} = \sigma_j(W_j z_j + b_j)$
- Backward pass, store  $\delta_i$ :

$$\frac{\partial L}{\partial z_{j+1}} = \left( \underbrace{\left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{\delta_{n+1}^T} \underbrace{\frac{\partial z_{n+1}}{\partial z_n}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{\delta_{j+1}^T} \right)}_{\delta_{j+1}^T}$$

Compute

$$\begin{split} \frac{\partial L}{\partial W_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} \\ \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial b_j} \end{split}$$

#### **Dimensions**

- Let  $z_j \in \mathbb{R}^{n_j}$ , consequently  $W_j \in \mathbb{R}^{n_{j+1} \times n_j}$ ,  $b_j \in \mathbb{R}^{n_j}$
- Dimensions

$$\frac{\partial L}{\partial W_{j}} = \left( \left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{1 \times n_{n+1}} \underbrace{\frac{\partial z_{n+1}}{\partial z_{n}}}_{1 \times n_{n+1} \times n_{n}} \right) \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{n_{j+2} \times n_{j+1}} \right) \underbrace{\frac{\partial z_{j+1}}{\partial W_{j}}}_{n_{j+1} \times n_{j+1} \times n_{j}}$$

$$\frac{\partial L}{\partial b_{j}} = \underbrace{\left( \left( \underbrace{\frac{\partial L}{\partial z_{n+1}}}_{1 \times n_{j+1}} \underbrace{\frac{\partial z_{n+1}}{\partial z_{n}}}_{1 \times n_{j+1}} \cdots \underbrace{\frac{\partial z_{j+2}}{\partial z_{j+1}}}_{n_{j+1} \times n_{j}} \underbrace{\frac{\partial z_{j+1}}{\partial b_{j}}}_{n_{j+1} \times n_{j}} \right) \right)}_{1 \times n_{j+1}}$$

- Vector matrix multiplies except for in last step
- Multiplication with tensor  $\frac{\partial z_{j+1}}{\partial W_i}$  can be simplified
- ullet Backpropagation variables  $\delta_j \in \mathbb{R}^{n_j}$  are vectors (not matrices)

# Partial Jacobian $\frac{\partial z_{j+1}}{\partial z_j}$

- Recall relation  $z_{j+1} = \sigma_j(W_jz_j + b_j)$  and let  $v_j = W_jz_j + b_j$
- Chain rule gives

$$\begin{split} \frac{\partial z_{j+1}}{\partial z_j} &= \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial z_j} = \mathbf{diag}(\sigma_j'(v_j)) \frac{\partial v_j}{\partial z_j} \\ &= \mathbf{diag}(\sigma_j'(W_j z_j + b_j)) W_j \end{split}$$

where, with abuse of notation (notation overloading)

$$\sigma'_{j}(u) = \begin{bmatrix} \sigma'_{j}(u_{1}) \\ \vdots \\ \sigma'_{j}(u_{n_{j+1}}) \end{bmatrix}$$

• Reason:  $\sigma_j(u) = [\sigma_j(u_1), \dots, \sigma_j(u_{n_{j+1}})]^T$  with  $\sigma_j: \mathbb{R}^{n_{j+1}} \to \mathbb{R}^{n_{j+1}}$ , gives

$$\frac{d\sigma_j}{du} = \begin{bmatrix} \sigma'_j(u_1) & & \\ & \ddots & \\ & & \sigma'_j(u_{n_{j+1}}) \end{bmatrix} = \mathbf{diag}(\sigma'_j(u))$$

# Partial Jacobian $\delta_j^T = \frac{\partial L}{\partial z_j}$

• For any vector  $\delta_{j+1} \in \mathbb{R}^{n_{j+1} \times 1}$ , we have

$$\begin{split} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} &= \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)) W_j \\ &= (W_j^T (\delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(W_j z_j + b_j)))^T)^T \\ &= (W_j^T (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)))^T \end{split}$$

where ⊙ is element-wise (Hadamard) product

• We have defined  $\delta_{n+1}^T = \frac{\partial L}{\partial z_{n+1}}$ , then

$$\delta_n^T = \frac{\partial L}{\partial z_n} = \delta_{n+1}^T \frac{\partial z_{n+1}}{\partial z_n} = (\underbrace{W_n^T (\delta_{n+1} \odot \sigma_n' (W_n z_n + b_n))}_{\delta_n})^T$$

Consequently, using induction:

$$\delta_j^T = \frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (\underbrace{W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j))}_{\delta_j})^T$$

# Information needed to compute $\frac{\partial L}{\partial z_j}$

- To compute first Jacobian  $\frac{\partial L}{\partial z_n}$ , we need  $z_n \Rightarrow$  forward pass
- Computing

$$\frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)))^T = \delta_j^T$$

is done using a backward pass

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$$

• All  $z_j$  (or  $v_j = W_j z_j + b_j$ ) need to be stored for backward pass



# Partial Jacobian $\frac{\partial L}{\partial W_i}$

Computed by

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j}$$

where  $z_{j+1} = \sigma_j(v_j)$  and  $v_j = W_j z_j + b_j$ 

ullet Recall  $rac{\partial z_{j+1}}{\partial W_l}$  is 3D tensor, compute Jacobian w.r.t. row l  $(W_j)_l$ 

$$\delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_l} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial (W_j)_l} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \begin{bmatrix} \vdots \\ \vdots \\ z_j^T \\ \vdots \\ 0 \end{bmatrix}$$

$$=(\delta_{j+1}\odot\sigma_j'(W_jz_j+b_j))^Tegin{bmatrix}0\ dots\ z_j^T\ dots\ 0\end{bmatrix}=(\delta_{j+1}\odot\sigma_j'(W_jz_j+b_j))_lz_j^T$$

# Partial Jacobian $\frac{\partial L}{\partial W_i}$ cont'd

• Stack Jacobians w.r.t. rows to get full Jacobian:

$$\frac{\partial L}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} = \begin{bmatrix} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_1} \\ \vdots \\ \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_{n_{j+1}}} \end{bmatrix} = \begin{bmatrix} (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j))_1 z_j^T \\ \vdots \\ (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j))_{n_{j+1}} z_j^T \end{bmatrix} \\
= (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$

for all  $j \in \{1, ..., n-1\}$ 

- Dimension of result is  $n_{j+1} \times n_j$ , which matches  $W_j$
- ullet This is used to update  $W_j$  weights in algorithm

# Partial Jacobian $\frac{\partial L}{\partial b_i}$

- ullet Recall  $z_{j+1}=\sigma_j(v_j)$  where  $v_j=W_jz_j+b_j$
- Computed by

$$\begin{split} \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \operatorname{\mathbf{diag}}(\sigma_j'(v_j)) \\ &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))^T \end{split}$$

# **Backpropagation summarized**

1. Forward pass: Compute and store  $z_j$  (or  $v_j = W_j z_j + b_j$ ):

$$z_{j+1} = \sigma_j(W_j z_j + b_j)$$

where  $z_1 = x_i$  and  $\sigma_n = \operatorname{Id}$ 

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$$

with 
$$\delta_{n+1} = \frac{\partial L}{\partial z_{n+1}}$$

3. Weight update Jacobians (used in SGD)

$$\frac{\partial L}{\partial W_j} = (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$

$$\frac{\partial L}{\partial b_j} = (\delta_{j+1} \odot \sigma'_j (W_j x_j + b_j))^T$$

### **Outline**

- Deep learning
- Learning features
- Overfitting and regularization
- Residual networks
- Backpropagation
- Vanishing and exploding gradients

# Vanishing and exploding gradient problem

- For some activation functions, gradients can vanish
- For other activation functions, gradients can explode

# Vanishing gradient example: Sigmoid

- Assume  $\|W_j\| \le 1$  for all j and  $\|\delta_{n+1}\| \le C$
- Maximal derivative of sigmoid ( $\sigma$ ) is 0.25
- Then

$$\left\| \frac{\partial L}{\partial z_j} \right\| = \|\delta_j\| = \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\| \le 0.25 \|\delta_{j+1}\|$$
$$\le 0.25^{n-j+1} \|\delta_{n+1}\| \le 0.25^{n-j+1} C$$

- ullet Hence, as n grows, gradients can become very small for small i
- In general, vanishing gradient if  $\sigma' < 1$  everywhere
- Similar reasoning: exploding gradient if  $\sigma' > 1$  everywhere
- Hence, need  $\sigma' = 1$  in large regions

# **Examples of activation functions**

Activation functions that (partly) avoid vanishing gradients

| Name      | $\sigma(u)$                                                                                  | Graph |
|-----------|----------------------------------------------------------------------------------------------|-------|
| ReLU      | $\max(u,0)$                                                                                  |       |
| LeakyReLU | $\max(u, \alpha u)$                                                                          |       |
| ELU       | $\begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$         |       |
| SELU      | $\lambda \begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ |       |

# Avoiding exploding gradient – Gradient clipping

- "Clip" gradients, e.g.,:  $\|W_j\|_2 \le 1$ ,  $|(W_j)_{lk}| \le c$
- Using  $||W_j||_2 \le 1$ ,  $||b_j||_2 \le d$  and 1-Lipschitz  $\sigma_j$  controls growth:
  - Forward pass (assuming  $\sigma_j(0)=0$ ):  $z_{j+1}=\sigma_j(W_jz_j+b_j)$

$$||z_{j+1}||_2 = ||\sigma_j(W_j z_j + b_j)||_2 \le ||W_j z_j + b_j||_2 \le ||W_j z_j||_2 + ||b_j||_2$$
  
 
$$\le ||z_j||_2 + d$$

• Backward pass:  $\delta_j = W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))$ 

$$\|\delta_{j}\|_{2} = \|W_{j}^{T}(\delta_{j+1} \odot \sigma'_{j}(W_{j}z_{j} + b_{j}))\|_{2}$$

$$\leq \|W_{j}^{T}\|_{2}\|\delta_{j+1} \odot \sigma'_{j}(W_{j}z_{j} + b_{j})\|_{2}$$

$$\leq \|\delta_{j+1}\|_{2}$$

• Initialize weights from normal distr., scale to have  $\|W_j\|_2 = 1$