
Deep Learning

Pontus Giselsson

1

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

2

Deep learning

• Can be used both for classification and regression

• Deep learning training problem is of the form

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj

)
− yTu is used for K-class classification

• Difference to previous convex methods: Nonlinear model m(x; θ)
• Deep learning regression generalizes least squares
• DL classification generalizes multiclass logistic regression
• Nonlinear model makes training problem nonconvex

3

Prediction

• Prediction as in least squares and multiclass logistic regression

• Assume model m(x; θ) trained and “optimal” θ? found

• Regression:
• Predict response for new data x using ŷ = m(x; θ?)

• Classification:
• We have one model mj(x; θ?) output for each class
• Predict class belonging for new data x according to

argmax
j∈{1,...,K}

mj(x; θ?)

i.e., class with largest model value (since loss designed this way)

4

Deep learning – Model

• Nonlinear model of the following form is often used:

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · ·) + bn−1) + bn

• The σj are nonlinear and called activation functions
• Composition of nonlinear (σj) and affine (Wj(·) + bj) operations
• Each σj function constitutes a hidden layer in the model network
• Graphical representation with three hidden layers

x
i

σ1(·)
σ2(·)

σ3(·)

• Why this structure?
• (Assumed) universal function approximators
• Efficient gradient computation using backpropagation

5

Activation functions

• Activation function σj takes as input the output of Wj(·) + bj
• Often a function σ̄j : R→ R is applied to each element

• Example: σj : R3 → R3 is σj(u) =

σ̄j(u1)
σ̄j(u2)
σ̄j(u3)

• We will use notation over-loading and call both functions σj

6

Examples of activation functions

Name σ(u) Graph

Sigmoid 1
1+e−u

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

SELU λ

{
u if u ≥ 0

α(eu − 1) else
7

Examples of affine transformations

• Dense (fully connected): Dense Wj

• Sparse: Sparse Wj

• Convolutional layer (convolution with small pictures)
• Fixed (random) sparsity pattern

• Subsampling: reduce size, Wj fat (smaller output than input)
• average pooling

8

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

9

Learning features

• Used prespecified feature maps (or Kernels) in convex methods

• Deep learning instead learns feature map during training
• Define parameter (weight) dependent feature vector:

φ(x; θ) := σn−1(Wn−1σn−2(· · · (W2σ1(W1x+b1)+b2) · · ·)+bn−1)

• Model becomes m(x; θ) = Wnφ(x; θ) + bn
• Inserted into training problem:

minimize
θ

N∑
i=1

L(Wnφ(xi; θ) + bn, yi)

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

10

Learning features – Graphical representation

• Fixed features gives convex training problems

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i

• Learning features gives nonconvex training problems

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• Output of last activation function is feature vector 11

Design choices

Many design choices in building model to create good features

• Number of layers

• Width of layers

• Types of layers

• Types of activation functions

• Use different model structure (e.g., residual network)

12

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

13

Overparameterization

• Assume fully connected network with n layers and N samples

• Assume all layers have p outputs and data xi ∈ Rp

• Number of weights (Wj)lk: p2n and (bj)l: pn

• Assume N ≈ p2 then factor n more weights than samples

• Often overparameterized ⇒ can lead to overfitting

x
i

σ1(·) σ2(·) σ3(·)

14

Reduce overfitting

Reduce number of weights

• Sparse weight tensors (e.g., convolutional layers)

• Subsampling (gives fewer weights deeper in network)

Regularization

• Explicit regularization term in cost function, e.g., Tikhonov

• Data augmentation – more samples, artificial often OK

• Early stopping – stop algorithm before convergence

• Dropouts – next slide

15

Dropouts

• Training problem solved by stochastic gradient method
• Compute gradients on different networks to avoid overfitting
• Take out nodes from network with probability ρ

x
i

σ1(·)
σ2(·)

σ3(·)

• Use scaled ρσ in prediction (on average used ρσ in training)

16

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

17

Performance with increasing depth

• Increasing depth can deteriorate performance

• Deep networks may even have worse training errors than shallow

• Intuition: deeper layers bad at approximating identity mapping

18

Residual networks

• Add skip connections between layers
• Instead of network architecture with z1 = xi (see figure):

zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}

use residual architecture

zj+1 = zj + σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}
• Assume σ(0) = 0, Wj = 0, bj = 0 for j = 1, . . . ,m (m < n− 1)
⇒ deeper part of network is identity mapping and does no harm

• Learns variation from identity mapping (residual)

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

19

Graphical representation

For graphical representation, first collapse nodes into single node

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

h1(·)
h2(·) h3(·)

h4(·)

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

20

Graphical representation

• Collapsed network representation

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

• Residual network

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

• If some hj = 0 gives same performance as shallower network

21

Regularization – Layer Dropouts

• Compute gradient on different networks to avoid overfitting

• In residual networks, layers are approximately identity

• We can drop out layers instead of individual neurons

• Drop layer with probability ρ

• Called stochastic depth residual networks

h1(·) h2(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

22

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

23

Training algorithm

• Neural networks often trained using stochastic gradient descent

• DNN weights are updated via gradients in training

• Gradient of cost is sum of gradients of summands (samples)

• Gradient of each summand computed using backpropagation

24

Backpropagation

• Backpropagation is reverse mode automatic differentiation

• Based on chain-rule in differentiation

• Backpropagation must be performed per sample

• Our derivation assumes:
• Fully connected layers (W full, if not, set elements in W to 0)
• Activation functions σj(v) = (σj(v1), . . . , σj(vp)) element-wise

(overloading of σj notation)
• Weights Wj are matrices, samples xi and responses yi are vectors
• No residual connections

25

Jacobians

• The Jacobian of a function f : Rn → Rm is given by

∂f

∂x
=

∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n

• The Jacobian of a function f : Rp×n → R is given by

∂f

∂x
=

∂f
∂x11

· · · ∂f
∂x1n

...
...

...
∂f
∂xp1

· · · ∂f
∂xpn

 ∈ Rp×n

• The Jacobian of a function f : Rp×n → Rm is at layer j given by

[
∂f

∂x

]
:,j,:

=

∂f1
∂xj1

· · · ∂f1
∂xjn

...
...

...
∂fm
∂xj1

· · · ∂fm
∂xjn

 ∈ Rm×n

the full Jacobian is a 3D tensor in Rm×p×n
26

Jacobian vs gradient

• The Jacobian of a function f : Rn → R is given by

∂f

∂x
=
[
∂f
∂x1

· · · ∂f
∂xn

]
• The gradient of a function f : Rn → R is given by

∇f =

∂f
∂x1

...
∂f
∂xn

i.e., transpose of Jacobian for f : Rn → R

• Chain rule holds for Jacobians:

∂f

∂x
=
∂f

∂z

∂z

∂x

27

Jacobian vs gradient – Example

• Consider differentiable f : Rm → R and M ∈ Rm×n
• Compute Jacobian of g = (f ◦M) using chain rule:

• Rewrite as g(x) = f(z) where z = Mx
• Compute Jacobian by partial Jacobians ∂f

∂z
and ∂z

∂x
:

∂g

∂x
=
∂g

∂z

∂z

∂x
=
∂f

∂z

∂z

∂x
= ∇f(z)TM = ∇f(Mx)TM ∈ R1×n

• Know gradient of (f ◦M)(x) satisfies

∇(f ◦M)(x) = MT∇f(Mx) ∈ Rn

which is transpose of Jacobian

28

Backpropagation – Introduce states

• Compute gradient/Jacobian of

L(m(xi; θ), yi)

w.r.t. θ = {(Wj , bj}nj=1, where

m(xi; θ) = Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1xi + b1) + b2) · · ·) + bn−1) + bn

• Rewrite as function with states zj

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u

29

Graphical representation

• Per sample loss function

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u
• Graphical representation

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

30

Backpropagation – Chain rule

• Jacobian of L w.r.t. Wj and bj can be computed as

∂L

∂Wj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂bj

where we mean derivative w.r.t. first argument in L

• Backpropagation evaluates partial Jacobians as follows

∂L

∂Wj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂Wj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂bj

31

Backpropagation – Forward and backward pass

• Jacobian of L(zn+1, yi) w.r.t. zn+1 (transpose of gradient)
• Computing Jacobian of L(zn+1, yi) requires zn+1

⇒ forward pass: z1 = xi, zj+1 = σj(Wjzj + bj)
• Backward pass, store δj :

∂L

∂zj+1
=

((
∂L

∂zn+1︸ ︷︷ ︸
δTn+1

∂zn+1

∂zn

)
︸ ︷︷ ︸

δTn

· · · ∂zj+2

∂zj+1

)

︸ ︷︷ ︸
δTj+1

• Compute

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂bj
= δTj+1

∂zj+1

∂bj

32

Dimensions

• Let zj ∈ Rnj , consequently Wj ∈ Rnj+1×nj , bj ∈ Rnj

• Dimensions

∂L

∂Wj
=

((
∂L

∂zn+1︸ ︷︷ ︸
1×nn+1

∂zn+1

∂zn︸ ︷︷ ︸
nn+1×nn︸ ︷︷ ︸

1×nn

)
· · · ∂zj+2

∂zj+1︸ ︷︷ ︸
nj+2×nj+1

︸ ︷︷ ︸
1×nj+1

)
∂zj+1

∂Wj︸ ︷︷ ︸
nj+1×nj+1×nj

︸ ︷︷ ︸
nj+1×nj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
︸ ︷︷ ︸

1×nj+1

∂zj+1

∂bj︸ ︷︷ ︸
nj+1×nj︸ ︷︷ ︸

1×nj

• Vector matrix multiplies except for in last step
• Multiplication with tensor

∂zj+1

∂Wj
can be simplified

• Backpropagation variables δj ∈ Rnj are vectors (not matrices)
33

Partial Jacobian ∂zj+1

∂zj

• Recall relation zj+1 = σj(Wjzj + bj) and let vj = Wjzj + bj
• Chain rule gives

∂zj+1

∂zj
=
∂zj+1

∂vj

∂vj
∂zj

= diag(σ′j(vj))
∂vj
∂zj

= diag(σ′j(Wjzj + bj))Wj

where, with abuse of notation (notation overloading)

σ′j(u) =

 σ′j(u1)
...

σ′j(unj+1
)

• Reason: σj(u) = [σj(u1), . . . , σj(unj+1

)]T with
σj : Rnj+1 → Rnj+1 , gives

dσj
du

=

σ
′
j(u1)

. . .

σ′j(unj+1
)

 = diag(σ′j(u))

34

Partial Jacobian δTj = ∂L
∂zj

• For any vector δj+1 ∈ Rnj+1×1, we have

δTj+1

∂zj+1

∂zj
= δTj+1 diag(σ′j(Wjzj + bj))Wj

= (WT
j (δTj+1 diag(σ′j(Wjzj + bj)))

T)T

= (WT
j (δj+1 � σ′j(Wjzj + bj)))

T

where � is element-wise (Hadamard) product
• We have defined δTn+1 = ∂L

∂zn+1
, then

δTn =
∂L

∂zn
= δTn+1

∂zn+1

∂zn
= (WT

n (δn+1 � σ′n(Wnzn + bn))︸ ︷︷ ︸
δn

)T

• Consequently, using induction:

δTj =
∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj))︸ ︷︷ ︸
δj

)T

35

Information needed to compute ∂L
∂zj

• To compute first Jacobian ∂L
∂zn

, we need zn ⇒ forward pass
• Computing

∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj)))
T = δTj

is done using a backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

• All zj (or vj = Wjzj + bj) need to be stored for backward pass

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

36

Partial Jacobian ∂L
∂Wj

• Computed by

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

where zj+1 = σj(vj) and vj = Wjzj + bj
• Recall

∂zj+1

∂Wl
is 3D tensor, compute Jacobian w.r.t. row l (Wj)l

δTj+1
∂zj+1

∂(Wj)l
= δTj+1

∂zj+1

∂vj

∂vj
∂(Wj)l

= δTj+1 diag(σ′j(vj))

0
...
zTj
...
0

= (δj+1 � σ′j(Wjzj + bj))
T

0
...
zTj
...
0

 = (δj+1 � σ′j(Wjzj + bj))lz
T
j

37

Partial Jacobian ∂L
∂Wj

cont’d

• Stack Jacobians w.r.t. rows to get full Jacobian:

∂L

∂Wj
= δTj+1

∂zj+1

∂Wj
=

δTj+1

∂zj+1

∂(Wj)1
...

δTj+1
∂zj+1

∂(Wj)nj+1

 =

 (δj+1 � σ′j(Wjzj + bj))1z
T
j

...
(δj+1 � σ′j(Wjzj + bj))nj+1

zTj

= (δj+1 � σ′j(Wjzj + bj))z

T
j

for all j ∈ {1, . . . , n− 1}

• Dimension of result is nj+1 × nj , which matches Wj

• This is used to update Wj weights in algorithm

38

Partial Jacobian ∂L
∂bj

• Recall zj+1 = σj(vj) where vj = Wjzj + bj
• Computed by

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1 diag(σ′j(vj))

= (δj+1 � σ′j(Wjzj + bj))
T

39

Backpropagation summarized

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj)

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

with δn+1 = ∂L
∂zn+1

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T

40

Outline

Deep learning

Learning features

Overfitting and regularization

Residual networks

Backpropagation

Vanishing and exploding gradients

41

Vanishing and exploding gradient problem

• For some activation functions, gradients can vanish

• For other activation functions, gradients can explode

42

Vanishing gradient example: Sigmoid

• Assume ‖Wj‖ ≤ 1 for all j and ‖δn+1‖ ≤ C
• Maximal derivative of sigmoid (σ) is 0.25

• Then∥∥∥∥ ∂L∂zj
∥∥∥∥ = ‖δj‖ = ‖WT

j (δj+1 � σ′j(Wjzj + bj))‖ ≤ 0.25‖δj+1‖

≤ 0.25n−j+1‖δn+1‖ ≤ 0.25n−j+1C

• Hence, as n grows, gradients can become very small for small i

• In general, vanishing gradient if σ′ < 1 everywhere

• Similar reasoning: exploding gradient if σ′ > 1 everywhere

• Hence, need σ′ = 1 in large regions

43

Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

Name σ(u) Graph

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

SELU λ

{
u if u ≥ 0

α(eu − 1) else

44

Avoiding exploding gradient – Gradient clipping

• “Clip” gradients, e.g.,: ‖Wj‖2 ≤ 1, |(Wj)lk| ≤ c
• Using ‖Wj‖2 ≤ 1, ‖bj‖2 ≤ d and 1-Lipschitz σj controls growth:

• Forward pass (assuming σj(0) = 0): zj+1 = σj(Wjzj + bj)

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 ≤ ‖Wjzj + bj‖2 ≤ ‖Wjzj‖2 + ‖bj‖2
≤ ‖zj‖2 + d

• Backward pass: δj = WT
j (δj+1 � σ′j(Wjzj + bj))

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2

≤ ‖WT
j ‖2‖δj+1 � σ′j(Wjzj + bj)‖2

≤ ‖δj+1‖2

• Initialize weights from normal distr., scale to have ‖Wj‖2 = 1

45

