# Logistic Regression 

Pontus Giselsson

## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## Classification

- Let $(x, y)$ represent object and label pairs
- Object $x \in \mathcal{X} \subseteq \mathbb{R}^{n}$
- Label $y \in \mathcal{Y}=\{1, \ldots, K\}$ that corresponds to $K$ different classes
- Available: Labeled training data (training set) $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$

Objective: Find parameterized model (function) $m(x ; \theta)$ :

- that takes data (example, object) $x$ as input
- and predicts corresponding label (class) $y \in\{1, \ldots, K\}$

How?:

- learn parameters $\theta$ by solving training problem with training data

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

with some loss function $L$

## Binary classification

- Labels $y=0$ or $y=1$ (alternatively $y=-1$ or $y=1$ )
- Training problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

- Design loss $L$ to train model parameters $\theta$ such that:
- $m\left(x_{i} ; \theta\right)<0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=0$
- $m\left(x_{i} ; \theta\right)>0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=1$
- Predict class belonging for new data points $x$ with trained $\theta^{*}$ :
- $m\left(x ; \theta^{*}\right)<0$ predict class $y=0$
- $m\left(x ; \theta^{*}\right)>0$ predict class $y=1$
objective is that this prediction is accurate on unseen data


## Binary classification - Cost functions

- Different cost functions $L$ can be used:
- $y=0$ : Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$ : Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

nonconvex (Neyman Pearson loss)


## Binary classification - Cost functions

- Different cost functions $L$ can be used:
- $y=0$ : Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$ : Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$



$$
L(u, y)=\max (0, u)-y u
$$

## Binary classification - Cost functions

- Different cost functions $L$ can be used:
- $y=-1$ : Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$ : Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$



$$
L(u, y)=\max (0,1-y u)(\text { hinge loss used in SVM })
$$

## Binary classification - Cost functions

- Different cost functions $L$ can be used:
- $y=-1$ : Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$ : Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$



$$
L(u, y)=\max (0,1-y u)^{2} \text { (squared hinge loss) }
$$

## Binary classification - Cost functions

- Different cost functions $L$ can be used:
- $y=0$ : Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$ : Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$



$$
L(u, y)=\log \left(1+e^{u}\right)-y u \text { (logistic loss) }
$$

## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## Logistic regression

- Logistic regression uses:
- affine parameterized model $m(x ; \theta)=w^{T} x+b$ (where $\theta=(w, b)$ )
- loss function $L(u, y)=\log \left(1+e^{u}\right)-y u$ (if labels $y=0, y=1$ )
- Training problem, find model parameters by solving:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)=\sum_{i=1}^{N}\left(\log \left(1+e^{x_{i}^{T} w+b}\right)-y_{i}\left(x_{i}^{T} w+b\right)\right)
$$

- Training problem convex in $\theta=(w, b)$ since:
- model $m(x ; \theta)$ is affine in $\theta$
- loss function $L(u, y)$ is convex in $u$




## Prediction

- Use trained model $m$ to predict label $y$ for unseen data point $x$
- Since affine model $m(x ; \theta)=w^{T} x+b$, prediction for $x$ becomes:
- If $w^{T} x+b<0$, predict corresponding label $y=0$
- If $w^{T} x+b>0$, predict corresponding label $y=1$
- If $w^{T} x+b=0$, predict either $y=0$ or $y=1$
- A hyperplane (decision boundary) separates class predictions:

$$
H:=\left\{x: w^{T} x+b=0\right\}
$$



## Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters $\theta$ :



## Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters $\theta$ :



## Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters $\theta$ :



## Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters $\theta$ :



## Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters $\theta$ :



## What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{1}$ :

- Training loss:



## What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{2}$ :

- Training loss:



## What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{3}$ :

- Training loss:



## What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{4}$ :

- Training loss:



## What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta^{*}$ :

- Training loss:



## Fully separable data - Solution

- Let $\bar{\theta}=(\bar{w}, \bar{b})$ give model that separates data:

- Let $H_{\bar{\theta}}:=\left\{x: m(x ; \bar{\theta})=\bar{w}^{T} x+\bar{b}=0\right\}$ be hyperplane separates
- Training loss:



## Fully separable data - Solution

- Also $2 \bar{\theta}=(2 \bar{w}, 2 \bar{b})$ separates data:

- Hyperplane $H_{2 \bar{\theta}}:=\left\{x: m(x ; 2 \bar{\theta})=2\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss reduced since input $m(x ; 2 \bar{\theta})=2 m(x ; \bar{\theta})$ further out:



## Fully separable data - Solution

- And $3 \bar{\theta}=(3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3 \bar{\theta}}:=\left\{x: m(x ; 3 \bar{\theta})=3\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss further reduced since input $m(x ; 3 \bar{\theta})=3 m(x ; \bar{\theta})$ :



## Fully separable data - Solution

- And $3 \bar{\theta}=(3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3 \bar{\theta}}:=\left\{x: m(x ; 3 \bar{\theta})=3\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss

- Let $\theta=t \bar{\theta}$ and $t \rightarrow \infty$, then loss $\rightarrow 0 \Rightarrow$ no optimal point


## The bias term

- The model $m(x ; \theta)=w^{T} x+b$ bias term is $b$
- Least squares: optimal $b$ has simple formula
- No simple formula to remove bias term here!


## Bias term gives shift invariance

- Assume all data points shifted $x_{i}^{c}:=x_{i}+c$
- We want same hyperplane to separate data, but shifted


- Assume $(w, b)=(\bar{w}, \bar{b})$ is optimal for $\left(x_{i}, y_{i}\right)$
- Then $(w, b)=\left(\bar{w}, \bar{b}_{c}\right)$ with $\bar{b}_{c}=\bar{b}+\bar{w}^{T} c$ optimal for $\left(x_{i}^{c}, y_{i}\right)$
- Why? Model outputs the same:
- Model output $m\left(x_{i} ; \theta\right)=w^{T} x_{i}+b$
- Model output $m\left(x_{i}^{c} ; \theta\right)=w^{T} x_{i}^{c}+b=w^{T} x_{i}+\left(b+w^{T} c\right)$
- Exactly the same output by shifting bias term with $w^{T} c$


## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## Logistic regression - Nonlinear example

- Logistic regression tries to affinely separate data
- Can nonlinear boundary be approximated by logistic regression?
- Introduce features (perform lifting)



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared



## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Logistic regression - Example

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Data linearly separable in lifted (feature) space


## Nonlinear models - Features

- Create feature map $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ of training data
- Data points $x_{i} \in \mathbb{R}^{n}$ replaced by featured data points $\phi\left(x_{i}\right) \in \mathbb{R}^{p}$
- New model: $m(x ; \theta)=w^{T} \phi(x)+b$, still linear in parameters
- Feature can include original data $x$
- We can add feature 1 and remove bias term $b$
- Logistic regression training problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N}\left(\log \left(1+e^{\phi\left(x_{i}\right)^{T} w+b}\right)-y_{i}\left(\phi\left(x_{i}\right)^{T} w+b\right)\right)
$$

same as before, but with features as inputs

## Graphical model representation

- A graphical view of model $m(x ; \theta)=w^{T} \phi(x)$ :

- The input $x_{i}$ is transformed by fixed nonlinear features $\phi$
- Feature-transformed input is multiplied by model parameters $\theta$
- Model output is then fed into cost $L\left(m\left(x_{i} ; \theta\right), y\right)$
- Problem convex since $L$ convex and model affine in $\theta$


## Polynomial features

- Polynomial feature map for $\mathbb{R}^{n}$ with $n=2$ and degree $d=3$

$$
\phi(x)=\left(x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right)
$$

(note that original data is also there)

- New model: $m(x ; \theta)=w^{T} \phi(x)+b$, still linear in parameters
- Number of features $p+1=\binom{n+d}{d}=\frac{(n+d)!}{d!n!}$ grows fast!
- Training problem has $p+1$ instead of $n+1$ decision variables


## Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree:


## Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 2



## Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 3



## Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 4


Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 5



## Example - Different polynomial model orders

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 6



## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## Overfitting

- Models with higher order polynomials overfit
- Logistic regression (no regularization) polynomial features of degree 6

- Tikhonov regularization can reduce overfitting


## Tikhonov regularization

Regularized problem:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N}\left(\log \left(1+e^{x_{i}^{T} w+b}\right)-y_{i}\left(x_{i}^{T} w+b\right)\right)+\lambda\|w\|_{2}^{2}
$$

Regularization:

- Regularize only $w$ and not the bias term $b$
- Why? Model looses shift invariance if also $b$ regularized

Problem properties:

- Problem is strongly convex in $w \Rightarrow$ optimal $w$ exists and is unique
- Optimal $b$ is bounded if examples from both classes exist


## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training

| $\lambda$ | $J$ | \# mislabels |
| :---: | :---: | :---: |
| 0.00001 | 4.60 | 1 |



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training

| $\lambda$ | $J$ | $\#$ mislabels |
| :---: | :---: | :---: |
| 0.00006 | 6.83 | 5 |



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training

| $\lambda$ | $J$ | $\#$ mislabels |
| :---: | :---: | :---: |
| 0.00036 | 9.94 | 5 |



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training



## Example - Different regularization

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter $\lambda$, training cost $J$, \# mislabels in training

* 


## Generalization

- Interested in models that generalize well to unseen data
- Assess generalization using holdout or $k$-fold cross validation


## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Example - Validation data

- Regularized logistic regression and polynomial features of degree 6
- $J$ and \# mislabels specify training/test values



## Test vs training error - Cost

- Increasing $\lambda$ gives lower complexity model
- Overfitting to the left, underfitting to the right
- Select lowest complexity model that gives good generalization

Training vs test cost


## Test vs training error - Classification accuracy

- Increasing $\lambda$ gives lower complexity model
- Overfitting to the left, underfitting to the right
- Cost often better measure of over/underfitting

Number of misclassifications


## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## What is multiclass classification?

- We have previously seen binary classification
- Two classes (cats and dogs)
- Each sample belongs to one class (has one label)
- Multiclass classification
- $K$ classes with $K \geq 3$ (cats, dogs, rabbits, horses)
- Each sample belongs to one class (has one label)
- (Not to confuse with multilabel classification with $\geq 2$ labels)


## Multiclass classification from binary classification

- 1-vs-1: Train binary classifiers between all classes
- Example:
- cat-vs-dog,
- cat-vs-rabbit
- cat-vs-horse
- dog-vs-rabbit
- dog-vs-horse
- rabbit-vs-horse
- Prediction: Pick, e.g., the one that wins the most classifications
- Number of classifiers: $\frac{K(K-1)}{2}$
- 1-vs-all: Train each class against the rest
- Example
- cat-vs-(dog,rabbit,horse)
- dog-vs-(cat,rabbit,horse)
- rabbit-vs-(cat,dog,horse)
- horse-vs-(cat,dog,rabbit)
- Prediction: Pick, e.g., the one that wins with highest margin
- Number of classifiers: $K$
- Always skewed number of samples in the two classes


## Multiclass logistic regression

- $K$ classes in $\{1, \ldots, K\}$ and data/labels $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- Labels: $y \in \mathcal{Y}=\left\{e_{1}, \ldots, e_{K}\right\}$ where $\left\{e_{j}\right\}$ coordinate basis
- Example, $K=5$ class 2: $y=e_{2}=[0,1,0,0,0]^{T}$
- Use one model per class $m_{j}\left(x ; \theta_{j}\right)$ for $j \in\{1, \ldots, K\}$
- Objective: Find $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ such that for all models $j$ :
- $m_{j}\left(x ; \theta_{j}\right) \gg 0$, if label $y=e_{j}$ and $m_{j}\left(x ; \theta_{j}\right) \ll 0$ if $y \neq e_{j}$
- Training problem loss function:

$$
L(u, y)=\log \left(\sum_{j=1}^{K} e^{u_{j}}\right)-u^{T} y
$$

where label $y$ is a "one-hot" basis vector, is convex in $u$

## Multiclass logistic loss function - Example

- Multiclass logistic loss for $K=3, u_{1}=1, y=e_{1}$

$$
L\left(\left(1, u_{2}, u_{3}\right), 1\right)=\log \left(e^{1}+e^{u_{2}}+e^{u_{3}}\right)-1
$$

- Model outputs $u_{2} \ll 0, u_{3} \ll 0$ give smaller cost for label $y=e_{1}$



## Multiclass logistic loss function - Example

- Multiclass logistic loss for $K=3, u_{2}=-1, y=e_{1}$

$$
L\left(\left(u_{1},-1, u_{3}\right), 1\right)=\log \left(e^{u_{1}}+e^{-1}+e^{u_{3}}\right)-u_{1}
$$

- Model outputs $u_{1} \gg 0$ and $u_{3} \ll 0$ give smaller cost for $y=e_{1}$



## Multiclass logistic regression - Training problem

- Affine data model $m(x ; \theta)=w^{T} x+b$ with

$$
w=\left[w_{1}, \ldots, w_{K}\right] \in \mathbb{R}^{n \times K}, \quad b=\left[b_{1}, \ldots, b_{K}\right]^{T} \in \mathbb{R}^{K}
$$

- One data model per class

$$
m(x ; \theta)=\left[\begin{array}{c}
m_{1}\left(x ; \theta_{1}\right) \\
\vdots \\
m_{K}\left(x ; \theta_{K}\right)
\end{array}\right]=\left[\begin{array}{c}
w_{1}^{T} x+b_{1} \\
\vdots \\
w_{K}^{T} x+b_{K}
\end{array}\right]
$$

- Training problem:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_{j}^{T} x_{i}+b_{j}}\right)-y_{i}^{T}\left(w^{T} x_{i}+b\right)
$$

where $y_{i}$ is "one-hot" encoding of label

- Problem is convex since affine model is used


## Multiclass logistic regression - Prediction

- Assume model is trained and want to predict label for new data $x$
- Predict class with parameter $\theta$ for $x$ according to:

$$
\underset{j \in\{1, \ldots, K\}}{\operatorname{argmax}} m_{j}(x ; \theta)
$$

i.e., class with largest model value (since trained to achieve this)

## Special case - Binary logistic regression

- Consider two-class version and let
- $\Delta u=u_{1}-u_{2}, \Delta w=w_{1}-w_{2}$, and $\Delta b=b_{1}-b_{2}$
- $\Delta u=m_{\text {bin }}(x ; \theta)=m_{1}\left(x ; \theta_{1}\right)-m_{2}\left(x ; \theta_{2}\right)=\Delta w^{T} x+\Delta b$
- $y_{\text {bin }}=1$ if $y=(1,0)$ and $y_{\text {bin }}=0$ if $y=(0,1)$
- Loss $L$ is equivalent to binary, but with different variables:

$$
\begin{aligned}
L(u, y) & =\log \left(e^{u_{1}}+e^{u_{2}}\right)-y_{1} u_{1}-y_{2} u_{2} \\
& =\log \left(1+e^{u_{1}-u_{2}}\right)+\log \left(e^{u_{2}}\right)-y_{1} u_{1}-y_{2} u_{2} \\
& =\log \left(1+e^{\Delta u}\right)-y_{1} u_{1}-\left(y_{2}-1\right) u_{2} \\
& =\log \left(1+e^{\Delta u}\right)-y_{\mathrm{bin}} \Delta u
\end{aligned}
$$

## Example - Linearly separable data

- Problem with 7 classes


## Example - Linearly separable data

- Problem with 7 classes and affine multiclass model



## Example - Quadratically separable data

- Same data, new labels in 6 classes


## Example - Quadratically separable data

- Same data, new labels in 6 classes, affine model



## Example - Quadratically separable data

- Same data, new labels in 6 classes, quadratic model



## Features

- Used quadratic features in last example
- Same procedure as before:
- replace data vector $x_{i}$ with feature vector $\phi\left(x_{i}\right)$
- run classification method with feature vectors as inputs



## Outline

- Classification
- Logistic regression
- Nonlinear features
- Overfitting and regularization
- Multiclass logistic regression
- Training problem properties


## Composite optimization - Binary logistic regression

Regularized (with $g$ ) logistic regression training problem (no features)

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N}\left(\log \left(1+e^{w^{T} x_{i}+b}\right)-y_{i}\left(w^{T} x_{i}+b\right)\right)+g(\theta)
$$

can be written on the form

$$
\underset{\theta}{\operatorname{minimize}} f(L \theta)+g(\theta)
$$

where

- $f(u)=\sum_{i=1}^{N}\left(\log \left(1+e^{u_{i}}\right)-y_{i} u_{i}\right)$ is data misfit term
- $L=[X, \mathbf{1}]$ where training data matrix $X$ and 1 satisfy

$$
X=\left[\begin{array}{c}
x_{1}^{T} \\
\vdots \\
x_{N}^{T}
\end{array}\right] \quad \mathbf{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

- $g$ is regularization term


## Gradient and function properties

- Gradient of $h_{i}\left(u_{i}\right)=\log \left(1+e^{u_{i}}\right)-y_{i} u_{i}$ is:

$$
\nabla h_{i}\left(u_{i}\right)=\frac{e^{u_{i}}}{1+e^{u_{i}}}-y_{i}=\frac{1}{1+e^{-u_{i}}}-y_{i}=: \sigma\left(u_{i}\right)-y_{i}
$$

where $\sigma\left(u_{i}\right)=\left(1+e^{-u_{i}}\right)^{-1}$ is called a sigmoid function

- Gradient of $(f \circ L)(\theta)$ satisfies:

$$
\begin{aligned}
\nabla(f \circ L)(\theta) & =\nabla \sum_{i=1}^{N} h_{i}\left(L_{i} \theta\right)=\sum_{i=1}^{N} L_{i}^{T} \nabla h_{i}\left(L_{i} \theta\right) \\
& =\sum_{i=1}^{N}\left[\begin{array}{c}
x_{i} \\
1
\end{array}\right]\left(\sigma\left(x_{i}^{T} w+b\right)-y_{i}\right) \\
& =\left[\begin{array}{c}
X^{T} \\
\mathbf{1}^{T}
\end{array}\right](\sigma(X w+b \mathbf{1})-Y)
\end{aligned}
$$

where last $\sigma: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ applies $\frac{1}{1+e^{-u_{i}}}$ to all $[X w+b \mathbf{1}]_{i}$

- Function and sigmoid properties:
- sigmoid $\sigma$ is 0.25 -Lipschitz continuous:
- $f$ is convex and 0.25 -smooth and $f \circ L$ is $0.25\|L\|_{2}^{2}$-smooth

