Support Vector Machines

Pontus Giselsson

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Binary classification

- Labels $y=0$ or $y=1$ (alternatively $y=-1$ or $y=1$)
- Training problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

- Design loss L to train model parameters θ such that:
- $m\left(x_{i} ; \theta\right)<0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=0$
- $m\left(x_{i} ; \theta\right)>0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=1$
- Predict class belonging for new data points x with trained $\bar{\theta}$:
- $m(x ; \bar{\theta})<0$ predict class $y=0$
- $m(x ; \bar{\theta})>0$ predict class $y=1$

Binary classification - Cost functions

- Different cost functions L can be used:
- $y=0$: Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$: Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

$$
L(u, y)=\log \left(1+e^{u}\right)-y u \text { (logistic loss) }
$$

Binary classification - Cost functions

- Different cost functions L can be used:
- $y=0$: Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$: Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

nonconvex (Neyman Pearson loss)

Binary classification - Cost functions

- Different cost functions L can be used:
- $y=0$: Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$: Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

$$
L(u, y)=\max (0, u)-y u
$$

Binary classification - Cost functions

- Different cost functions L can be used:
- $y=-1$: Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$: Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

$$
L(u, y)=\max (0,1-y u)(\text { hinge loss used in SVM })
$$

Binary classification - Cost functions

- Different cost functions L can be used:
- $y=-1$: Small cost for $m(x ; \theta) \ll 0$ large for $m(x ; \theta) \gg 0$
- $y=1$: Small cost for $m(x ; \theta) \gg 0$ large for $m(x ; \theta) \ll 0$

$$
L(u, y)=\max (0,1-y u)^{2} \text { (squared hinge loss) }
$$

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Support vector machine

- SVM uses:
- affine parameterized model $m(x ; \theta)=w^{T} x+b$ (where $\theta=(w, b)$)
- loss function $L(u, y)=\max (0,1-y u)$ (if labels $y=-1, y=1$)
- Training problem, find model parameters by solving:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)=\sum_{i=1}^{N} \max \left(0,1-y_{i}\left(w^{T} x_{i}+b\right)\right)
$$

- Training problem convex in $\theta=(w, b)$ since:
- model $m(x ; \theta)$ is affine in θ
- loss function $L(u, y)$ is convex in u

Prediction

- Use trained model m to predict label y for unseen data point x
- Since affine model $m(x ; \theta)=w^{T} x+b$, prediction for x becomes:
- If $w^{T} x+b<0$, predict corresponding label $y=-1$
- If $w^{T} x+b>0$, predict corresponding label $y=1$
- If $w^{T} x+b=0$, predict either $y=-1$ or $y=1$
- A hyperplane (decision boundary) separates class predictions:

$$
H:=\left\{x: w^{T} x+b=0\right\}
$$

Training problem interpretation

- Every parameter choice $\theta=(w, b)$ gives hyperplane in data space:

$$
H:=\left\{x: w^{T} x+b=0\right\}=\{x: m(x ; \theta)=0\}
$$

- Training problem searches hyperplane to "best" separates classes
- Example - models with different parameters θ :

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{1}$:

- Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{2}$:

- Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{3}$:

- Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta_{4}$:

- Training loss:

What is "best" separation?

- The "best" separation is the one that minimizes the loss function
- Hyperplane for model $m(\cdot ; \theta)$ with parameter $\theta=\theta^{*}$:

- Training loss:

$$
=0.0
$$

Fully separable data - Solution

- Let $\bar{\theta}=(\bar{w}, \bar{b})$ give model that separates data:

- Let $H_{\bar{\theta}}:=\left\{x: m(x ; \bar{\theta})=\bar{w}^{T} x+\bar{b}=0\right\}$ be hyperplane separates
- Training loss:

Fully separable data - Solution

- Also $2 \bar{\theta}=(2 \bar{w}, 2 \bar{b})$ separates data:

- Hyperplane $H_{2 \bar{\theta}}:=\left\{x: m(x ; 2 \bar{\theta})=2\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss reduced since input $m(x ; 2 \bar{\theta})=2 m(x ; \bar{\theta})$ further out:

Fully separable data - Solution

- And $3 \bar{\theta}=(3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3 \bar{\theta}}:=\left\{x: m(x ; 3 \bar{\theta})=3\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss further reduced since input $m(x ; 3 \bar{\theta})=3 m(x ; \bar{\theta})$:

Fully separable data - Solution

- And $3 \bar{\theta}=(3 \bar{w}, 3 \bar{b})$ also separates data:

- Hyperplane $H_{3 \bar{\theta}}:=\left\{x: m(x ; 3 \bar{\theta})=3\left(\bar{w}^{T} x+\bar{b}\right)=0\right\}=H_{\bar{\theta}}$ same
- Training loss

- As soon as $\left|m\left(x_{i} ; \theta\right)\right| \geq 1$ (with correct sign) for all x_{i}, cost is 0

Margin classification and support vectors

- Support vector machine classifiers for separable data
- Classes separated with margin, o marks support vectors

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Nonlinear example

- Can classify nonlinearly separable data using lifting

Adding features

- Create feature map $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ of training data
- Data points $x_{i} \in \mathbb{R}^{n}$ replaced by featured data points $\phi\left(x_{i}\right) \in \mathbb{R}^{p}$
- Example: Polynomial feature map with $n=2$ and degree $d=3$

$$
\phi(x)=\left(x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right)
$$

- Number of features $p+1=\binom{n+d}{d}=\frac{(n+d)!}{d!n!}$ grows fast!
- SVM training problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right)\right)
$$

still convex since features fixed

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 2

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 3

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 4

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 5

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 6

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 7

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 8

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 9

Nonlinear example - Polynomial features

- SVM and polynomial features of degree 10

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Overfitting and regularization

- SVM is prone to overfitting if model too expressive
- Regularization using $\|\cdot\|_{1}$ (for sparsity) or $\|\cdot\|_{2}^{2}$
- Tikhonov regularization with $\|\cdot\|_{2}^{2}$ especially important for SVM
- Regularize only linear terms w, not bias b
- Training problem with Tikhonov regularization of w

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right)\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

(note that features are used $\phi\left(x_{i}\right)$)

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.00001$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.00006$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.00036$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.0021$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.013$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.077$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=0.46$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=2.78$

Nonlinear example revisited

- Regularized SVM and polynomial features of degree 6
- Regularization parameter: $\lambda=16.7$

- λ and polynomial degree chosen using cross validation/holdout

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

SVM problem reformulation

- Consider Tikhonov regularized SVM:

$$
\underset{w, b}{\operatorname{minimize}} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right)\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

- Derive dual from reformulation of SVM:

$$
\underset{w, b}{\operatorname{minimize}} \mathbf{1}^{T} \max \left(\mathbf{0}, \mathbf{1}-\left(X_{\phi, Y} w+Y b\right)\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

where max is vector valued and

$$
X_{\phi, Y}=\left[\begin{array}{c}
y_{1} \phi\left(x_{1}\right)^{T} \\
\vdots \\
y_{N} \phi\left(x_{N}\right)^{T}
\end{array}\right], \quad Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Dual problem

- Let $L=\left[X_{\phi, Y}, Y\right]$ and write problem as

$$
\underset{w, b}{\operatorname{minimize}} \underbrace{\mathbf{1}^{T} \max \left(\mathbf{0}, \mathbf{1}-\left(X_{\phi, Y} w+Y b\right)\right)}_{f(L(w, b))}+\underbrace{\frac{\lambda}{2}\|w\|_{2}^{2}}_{g(w, b)}
$$

where

- $f(\psi)=\sum_{i=1}^{N} f_{i}\left(\psi_{i}\right)$ and $f_{i}\left(\psi_{i}\right)=\max \left(0,1-\psi_{i}\right)$ (hinge loss)
- $g(w, b)=\frac{\lambda}{2}\|w\|_{2}^{2}$, i.e., does not depend on b
- Dual problem

$$
\underset{\nu}{\operatorname{minimize}} f^{*}(\nu)+g^{*}\left(-L^{T} \nu\right)
$$

Conjugate of g

- Conjugate of $g(w, b)=\frac{\lambda}{2}\|w\|_{2}^{2}=: g_{1}(w)+g_{2}(b)$ is

$$
g^{*}\left(\mu_{w}, \mu_{b}\right)=g_{1}^{*}\left(\mu_{w}\right)+g_{2}^{*}\left(\mu_{b}\right)=\frac{1}{2 \lambda}\left\|\mu_{w}\right\|_{2}^{2}+\iota_{\{0\}}\left(\mu_{b}\right)
$$

- Evaluated at $-L^{T} \nu=-\left[X_{\phi, Y}, Y\right]^{T} \nu$:

$$
\begin{aligned}
g^{*}\left(-L^{T} \nu\right) & =g^{*}\left(-\left[\begin{array}{c}
X_{\phi, Y}^{T} \\
Y^{T}
\end{array}\right] \nu\right)=\frac{1}{2 \lambda}\left\|-X_{\phi, Y}^{T} \nu\right\|_{2}^{2}+\iota_{\{0\}}\left(-Y^{T} \nu\right) \\
& =\frac{1}{2 \lambda} \nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu+\iota_{\{0\}}\left(Y^{T} \nu\right)
\end{aligned}
$$

Conjugate of f

- Conjugate of $f_{i}\left(\psi_{i}\right)=\max \left(0,1-\psi_{i}\right)$ (hinge-loss):

$$
f_{i}^{*}\left(\nu_{i}\right)= \begin{cases}\nu_{i} & \text { if }-1 \leq \nu_{i} \leq 0 \\ \infty & \text { else }\end{cases}
$$

- Conjugate of $f(\psi)=\sum_{i=1}^{N} f_{i}\left(\psi_{i}\right)$ is sum of individual conjugates:

$$
f^{*}(\nu)=\sum_{i=1}^{N} f_{i}^{*}\left(\nu_{i}\right)=\mathbf{1}^{T} \nu+\iota_{[-\mathbf{1}, \mathbf{0}]}(\nu)
$$

SVM dual

- The SVM dual is

$$
\underset{\nu}{\operatorname{minimize}} f^{*}(\nu)+g^{*}\left(-L^{T} \nu\right)
$$

- Inserting the above computed conjugates gives dual problem

$$
\begin{array}{ll}
\underset{\nu}{\operatorname{minimize}} & \sum_{i=1}^{N} \nu_{i}+\frac{1}{2 \lambda} \nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu \\
\text { subject to } & -\mathbf{1} \leq \nu \leq \mathbf{0} \\
& Y^{T} \nu=0
\end{array}
$$

- Since $Y \in \mathbb{R}^{N}, Y^{T} \nu=0$ is a hyperplane constraint
- If no bias term b; dual same but without hyperplane constraint

Primal solution recovery

- Meaningless to solve dual if we cannot recover primal
- Necessary and sufficient primal-dual optimality conditions

$$
0 \in\left\{\begin{array}{l}
\partial f^{*}(\nu)-L(w, b) \\
\partial g^{*}\left(-L^{T} \nu\right)-(w, b)
\end{array}\right.
$$

- From dual solution ν, find (w, b) that satisfies both of the above
- For SVM, second condition is

$$
\partial g^{*}\left(-L^{T} \nu\right)=\left[\begin{array}{c}
\frac{1}{\lambda}\left(-X_{\phi, Y}^{T} \nu\right) \\
\partial \iota_{\{0\}}\left(-Y^{T} \nu\right)
\end{array}\right] \ni\left[\begin{array}{c}
w \\
b
\end{array}\right]
$$

which gives optimal $w=-\frac{1}{\lambda} X_{\Phi, Y}^{T} \nu$ (since unique)

- Cannot recover b from this condition

Primal solution recovery - Bias term

- Necessary and sufficient primal-dual optimality conditions

$$
0 \in\left\{\begin{array}{l}
\partial f^{*}(\nu)-L(w, b) \\
\partial g^{*}\left(-L^{T} \nu\right)-(w, b)
\end{array}\right.
$$

- For SVM, row i of first condition is $0 \in \partial f_{i}^{*}\left(\nu_{i}\right)-L_{i}(w, b)$ where

$$
\partial f_{i}^{*}\left(\nu_{i}\right)=\left\{\begin{array}{ll}
{[-\infty, 1]} & \text { if } \nu_{i}=-1 \\
\{1\} & \text { if }-1<\nu_{i}<0 \\
{[1, \infty]} & \text { if } \nu_{i}=0 \\
\emptyset & \text { else }
\end{array}, \quad L_{i}=y_{i}\left[\phi\left(x_{i}\right)^{T} 1\right]\right.
$$

- Pick i with $\nu_{i} \in(-1,0)$, then unique subgradient $\partial f_{i}\left(\nu_{i}\right)$ is 1 and

$$
0=1-y_{i}\left(w^{T} \phi\left(x_{i}\right)+b\right)
$$

and optimal b must satisfy $b=y_{i}-w^{T} \phi\left(x_{i}\right)$ for such i

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

SVM dual - A reformulation

- Dual problem

$$
\begin{array}{ll}
\underset{\nu}{\operatorname{minimize}} & \sum_{i=1}^{N} \nu_{i}+\frac{1}{2 \lambda} \nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu \\
\text { subject to } & -\mathbf{1} \leq \nu \leq \mathbf{0} \\
& Y^{T} \nu=0
\end{array}
$$

- Let $\kappa_{i j}:=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$ and rewrite quadratic term:

$$
\begin{aligned}
\nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu & =\nu \operatorname{diag}(Y) \\
& =\nu \operatorname{diag}(Y) \underbrace{\left[\begin{array}{c}
\phi\left(x_{1}\right)^{T} \\
\vdots \\
\phi\left(x_{N}\right)^{T}
\end{array}\right]\left[\begin{array}{lll}
\phi\left(x_{1}\right) & \cdots & \left.\phi\left(x_{N}\right)\right] \operatorname{diag}(Y) \nu \\
\kappa_{11} & \cdots & \kappa_{1 N} \\
\vdots & \ddots & \vdots \\
\kappa_{N 1} & \cdots & \kappa_{N N}
\end{array}\right]}_{K} \operatorname{diag}(Y) \nu
\end{aligned}
$$

where K is called Kernel matrix

SVM dual - Kernel formulation

- Dual problem with Kernel matrix

$$
\begin{array}{ll}
\underset{\nu}{\operatorname{minimize}} & \sum_{i=1}^{N} \nu_{i}+\frac{1}{2 \lambda} \nu^{T} \operatorname{diag}(Y) K \operatorname{diag}(Y) \nu \\
\text { subject to } & -\mathbf{1} \leq \nu \leq \mathbf{0} \\
& Y^{T} \nu=0
\end{array}
$$

- Solved without evaluating features, only scalar products:

$$
\kappa_{i j}:=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

Kernel methods

- We explicitly defined features and created Kernel matrix
- We can instead create Kernel that implicitly defines features

Kernel operators

- Define:
- Kernel operator $\kappa(x, y): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Kernel shortcut $\kappa_{i j}=\kappa\left(x_{i}, x_{j}\right)$
- A Kernel matrix

$$
K=\left[\begin{array}{ccc}
\kappa_{11} & \cdots & \kappa_{1 N} \\
\vdots & \ddots & \vdots \\
\kappa_{N 1} & \cdots & \kappa_{N N}
\end{array}\right]
$$

- A Kernel operator $\kappa: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is:
- symmetric if $\kappa(x, y)=\kappa(y, x)$
- positive semidefinite (PSD) if symmetric and

$$
\sum_{i, j}^{m} a_{i} a_{j} \kappa\left(x_{i}, x_{j}\right) \geq 0
$$

for all $m \in \mathbb{N}, \alpha_{i}, \alpha_{j} \in \mathbb{R}$, and $x_{i}, x_{j} \in \mathbb{R}^{n}$

- All Kernel matrices PSD if Kernel operator PSD

Mercer's theorem

- Assume κ is a positive semidefinite Kernel operator
- Mercer's theorem:

There exists continuous functions $\left\{e_{j}\right\}_{j=1}^{\infty}$ and nonnegative

$$
\begin{gathered}
\left\{\lambda_{j}\right\}_{j=1}^{\infty} \text { such that } \\
\kappa(x, y)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) e_{j}(y)
\end{gathered}
$$

- Let $\phi(x)=\left(\sqrt{\lambda_{1}} e_{1}(x), \sqrt{\lambda_{2}} e_{2}(x), \ldots\right)$ be a feature map, then

$$
\kappa(x, y)=\langle\phi(x), \phi(y)\rangle
$$

where scalar product in ℓ_{2} (space of square summable sequences)

- A PSD kernel operator implicitly defines features

Kernel SVM dual and corresponding primal

- SVM dual from Kernel κ with Kernel matrix $K_{i j}=\kappa\left(x_{i}, x_{j}\right)$

$$
\begin{array}{ll}
\underset{\nu}{\operatorname{minimize}} & \sum_{i=1}^{N} \nu_{i}+\frac{1}{2 \lambda} \nu \operatorname{diag}(Y) K \operatorname{diag}(Y) \nu \\
\text { subject to } & -\mathbf{1} \leq \nu \leq \mathbf{0} \\
& Y^{T} \nu=0
\end{array}
$$

- Due to Mercer's theorem, this is dual to primal problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(\left\langle w, \phi\left(x_{i}\right)\right\rangle+b\right)\right)+\frac{\lambda}{2}\|w\|^{2}
$$

with potentially an infinite number of features ϕ and variables w

Primal recovery and class prediction

- Assume we know Kernel operator, dual solution, but not features
- Can recover: Label prediction and primal solution b
- Cannot recover: Primal solution w (might be infinite dimensional)
- Primal solution $b=y_{i}-w^{T} \phi\left(x_{i}\right)$:

$$
w^{T} \phi\left(x_{i}\right)=-\frac{1}{\lambda} \nu^{T} X_{\phi, Y} \phi\left(x_{i}\right)=-\frac{1}{\lambda} \nu^{T}\left[\begin{array}{c}
y_{1} \phi\left(x_{1}\right)^{T} \\
\vdots \\
y_{N} \phi\left(x_{N}\right)^{T}
\end{array}\right] \phi\left(x_{i}\right)=-\frac{1}{\lambda} \nu^{T}\left[\begin{array}{c}
y_{1} \kappa_{1 i} \\
\vdots \\
y_{N} \kappa_{N i}
\end{array}\right]
$$

- Label prediction for new data x (sign of $\left.w^{T} \phi(x)+b\right)$:

$$
w^{T} \phi(x)+b=-\frac{1}{\lambda} \nu^{T}\left[\begin{array}{c}
y_{1} \phi\left(x_{1}\right)^{T} \phi(x) \\
\vdots \\
y_{N} \phi\left(x_{N}\right)^{T} \phi(x)
\end{array}\right]+b=-\frac{1}{\lambda} \nu^{T}\left[\begin{array}{c}
y_{1} \kappa\left(x_{1}, x\right) \\
\vdots \\
y_{N} \kappa\left(x_{N}, x\right)
\end{array}\right]+b
$$

- We are really interested in label prediction, not primal solution

Valid kernels

- Polynomial kernel of degree $d: \kappa(x, y)=\left(1+x^{T} y\right)^{d}$
- Radial basis function kernels:
- Gaussian kernel: $\kappa(x, y)=e^{-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}}$
- Laplacian kernel: $\kappa(x, y)=e^{-\frac{\|x-y\|_{2}}{\sigma}}$
- Bias term b often not needed with Kernel methods

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=0.01$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=0.035938$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=0.12915$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=0.46416$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=1.6681$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=5.9948$

Example - Laplacian Kernel

- Regularized SVM with Laplacian Kernel with $\sigma=1$
- Regularization parameter: $\lambda=21.5443$

Example - Laplacian Kernel

- What if there is no structure in data? (Labels are randomly set)

Example - Laplacian Kernel

- What if there is no structure in data? (Labels are randomly set)
- Regularized SVM Laplacian Kernel, regularization parameter: $\lambda=0.01$

- Linearly separable in high dimensional feature space
- Can be prone to overfitting \Rightarrow Regularize and use cross validation

Outline

- Classification
- Support vector machines
- Nonlinear features
- Overfitting and regularization
- Dual problem
- Kernel SVM
- Training problem properties

Composite optimization - Dual SVM

Dual SVM problems

$$
\begin{array}{ll}
\underset{\nu}{\operatorname{minimize}} & \sum_{i=1}^{N} \nu_{i}+\frac{1}{2 \lambda} \nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu \\
\text { subject to } & -\mathbf{1} \leq \nu \leq \mathbf{0} \\
& Y^{T} \nu=0
\end{array}
$$

can be written on the form

$$
\underset{\nu}{\operatorname{minimize}} h_{1}(\nu)+h_{2}\left(-X_{\phi, Y}^{T} \nu\right)
$$

where

- $h_{1}(\nu)=\mathbf{1}^{T} \nu+\iota_{[-\mathbf{1}, \mathbf{0}]}(\nu)+\iota_{\{0\}}\left(Y^{T} \nu\right)$
- First part $\mathbf{1}^{T} \nu+\iota_{[-\mathbf{1}, \mathbf{0}]}(\nu)$ is conjugate of sum of hinge losses
- Second part $\iota_{\{0\}}\left(Y^{T} \nu\right)$ comes from that bias b not regularized
- $h_{2}(\mu)=\frac{1}{2 \lambda}\|\mu\|_{2}^{2}$ is conjugate to Tikhonov regularization $\frac{\lambda}{2}\|w\|_{2}^{2}$

Gradient and function properties

- Gradient of $\left(h_{2} \circ-X_{\phi, Y}^{T}\right)$ satisfies:

$$
\begin{aligned}
\nabla\left(h_{2} \circ-X_{\phi, Y}^{T}\right)(\nu) & =\nabla\left(\frac{1}{2 \lambda} \nu^{T} X_{\phi, Y} X_{\phi, Y}^{T} \nu\right)=\frac{1}{\lambda} X_{\phi, Y} X_{\phi, Y}^{T} \nu \\
& =\frac{1}{\lambda} \operatorname{diag}(Y) K \operatorname{diag}(Y) \nu
\end{aligned}
$$

where K is Kernel matrix

- Function properties
- h_{2} is convex and λ^{-1}-smooth, $h_{2} \circ-X_{\phi, Y}^{T}$ is $\frac{\left\|X_{\phi, Y}\right\|_{2}^{2}}{\lambda}$-smooth
- h_{1} is convex and nondifferentiable, use prox in algorithms

