
Optimization for Learning - FRTN50
Assignment 2

Introduction
This assignment will examine the effect of different problem properties on the
convergence of gradient descent. For which problem classes we can design glob-
ally convergent algorithms and how those properties affect the rate of conver-
gence will be the main focus.

ProximalOperators.jl In Assignment 1 you implemented functions that cal-
culate gradients and proximal operators of some objective functions. However,
this should be avoided whenever possible due to the ease of making mistakes.
In this assignment we will therefore use a software package that contain imple-
mentations of gradients and proximal operators for a wide range of functions.
The package is called ProximalOperators.jl and includes also basic operations
such as scaling and conjugation. Following is a short example on how to use
ProximalOperators.jl to compute the gradient and prox for the squared Eu-
clidean norm. For more information we refer to the package documentation
http://kul-forbes.github.io/ProximalOperators.jl/stable/. It contains sim-
ple examples and a list of supported functions and operations that can be per-
formed on them.

f = SqrNormL2() # Create the function 1
2
∥ · ∥22

val = f([1.0, 1.0]) # val = 1.0
df, _ = gradient(f, [1.0, 1.0]) # df = [1.0, 1.0]
pf, _ = prox(f, [1.0, 1.0], 0.5) # pf = [0.6666..., 0.6666...]

Remark Another way to compute gradients is to automate it using backpropagation/automatic
differentiation. We will use this in the next assignment.

Preliminaries
You will be asked to solve a number of problems and answer questions regarding
the behavior of different algorithms. Before that, you will need to classify the
problems in terms of what properties the objective functions have.
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Task 1 Consider the following problems:
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The problem parameters ai ∈ Rn and li ∈ {−1, 1} are defined in Julia-functions
in the file problems.jl. Which of the problem objectives are L-smooth? Which
are σ-strongly convexity? Motivate your answers and specify the property pa-
rameters.

Task 2 Problems (1), (2) and (3) are particularly simple. Prove that all three
have the unique solution 0.

Convergence with Constant Step-Size
We’ll start by examining the first three problems and will try to solve them
with gradient descent, xk+1 = xk − γ∇f(xk), with a constant step-size. The
problems are scaled so they have the same gradient at x = 1 in order to
make fair comparisons between them. Note that they are not all differentiable
and so technically we can not use gradient descent for all of them. However,
ProximalOperators.jl will return a subgradient when trying to calculate the
gradient of a non-differentiable function, allowing us to perform a subgradient
“descent” instead. The distinction between gradient and subgradients is impor-
tant but not one we will comment on further in this assignment.

Since the solutions to problems (1), (2) and (3) are known we will judge
convergence by plotting the distance to the solution at each iteration. To un-
derstand the behavior it might also be beneficial to plot the objective function
itself together with the iterates and their function value. In order to make this
visualization possible we will only consider the one dimensional case, n = 1.

Remark The dimension of these problems does not make any real difference. The problems
are all rotationally symmetric and the iterates of gradient descent will therefore only move
along a single line.

Task 3 Solve (1) with (sub-)gradient descent. The file problems.jl contains
functions for generating the objective function. Start at x = 1 and try the step-
sizes γ ∈ {0.3, 0.9, 1.8, 2.1}. Does the distance to the solution converge? Do
the iterates appear to converge to the solution? Does increasing or decreasing
the step-size affect how close to the solution you can come? Does increasing or
decreasing the step-size affect how fast you can reach a given distance to the
solution? Find a step-size in the interval (0, 3) that makes the iterates converge
to the solution. Try changing the initial point to x = 1.1, do you still converge?
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Hint: The functions in ProximalOperators.jl require the input to be an array,
even when the dimension is one.

Task 4 Solve (2) with gradient descent. The file problems.jl contains func-
tions for generating the objective function. Use the step-size γ = 1 and try the
initial points x ∈ {0.3, 0.9, 1.8, 2.1}. Does the distance to the solution converge?
Do the iterates appear to converge to the solution? Does initial point affect how
close to the solution you can come? Hint: In this case, if the iterates converge,
they do so very slowly. It might it therefore not be possible to run until machine
precision is achieved, use your best judgment for when to stop.

Task 5 Solve (3) with gradient descent. The file problems.jl contains func-
tions for generating the objective function. Use the step-size γ = 1.5 and try
the initial points x ∈ {0.2, 2.0, 20}. Do the iterates appear to converge to the
solution? Does initial point affect how close to the solution you can come? Start
at x = 3.14 and search in (0, 3) for the maximal step-size that still guarantee
convergence. Try this step-size on the previous three initial points. Does the
step-size required for convergence appear to depend on the initial point?

Task 6 When designing algorithms or choosing algorithm parameters, all de-
cisions need to be based on known information. For instance, the solution can’t
be used in any way since it, of course, is not known. This limits the available
information to global properties such as the ones in Task 1. Based on the previ-
ous three tasks, which property, apart from convexity, seems necessary in order
to construct a globally convergent gradient descent algorithm?

Task 7 If the problem objective is cheaply proximable these restrictions can
be loosen by using the proximal point method, xk+1 = proxγf (x

k), instead of
gradient descent. Of the first three problems, (2) and (3) are proximable, solve
them with the proximal point method. Start at x = 1 and try several step-sizes
in the interval (0,∞). Does it appear to exist an upper bound on the step-size in
order to achieve convergence? Does increasing the step-size affect how fast you
converge? Give intuition into why/why not it affects the speed of convergence.
Hint: What would proxγf be if one could set γ = ∞?

Remark The proximal point method as presented here is not the most useful algorithm
since it requires the entire minimization objective to be proximable. Proximable functions are
usually minimized equally easily, negating the need to solve them iteratively. The proximal
operator is mainly useful when the objective can be broken down into simpler parts and
combined with either gradient or other proximal steps.

Convergence Rates
From the previous task you probably noticed the significant difference in con-
vergence speed. The rate at which an algorithm converges is of course of great
interest. Even if one knows that you eventually get within the desired precision,
it does not matter if it takes until the heat death of the universe.
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In general, first order methods are usually classified as either linearly, sub-
linearly och superlinearly convergent for a problem class. A sequence {αk}k∈N
converges to A linearly if

lim
k→∞

|αk+1 −A|
|αk −A|

= ρ ∈ (0, 1) (6)

where ρ is called the linear rate. Sub-, and superlinear convergence simply
means that a sequence converges slower or faster than linearly. Assuming the
quotient in (6) is equal to the linear rate ρ for all k we can write the convergence
as

|αk+1 −A| = ρ|αk −A| = ρk+1|α0 −A|

and it’s clear that linear convergence means that the distance to the limit de-
creased by a constant proportion each iteration. The reason this is called linear
convergence is clear if one takes the log of this expression,

log(|αk −A|) = k log(ρ) + log(|α0 −A|). (7)

The log of the distance to A is clearly a linear expression in k.
The goal here is to examine the convergence rate of gradient descent when

applied to the logistic regression and least squares problems, (4) and (5). We
will look at both which objective properties give sub-, super-, and linear con-
vergence as well how the property parameters affect the rate. Different to the
previous tasks, we are not interested in if we converge but rather how fast. In
fact, the step-sizes used in these tasks guarantee convergence, given a correct
implementation of gradient decent. Also different from previous tasks, we do not
know the distance to the solution and we will instead look at the convergence
of the gradient to zero.

Task 8 Solve problems (4) and (5) with gradient descent. The problem pa-
rameters ai ∈ rn and li ∈ {−1, 1} are defined in Julia-functions in the file
problems.jl. Start at x = 0, run for 1000 iterations and use the step-size
γ = 1.2/L where L is the smoothness constant of the objective function. For
each problem, specify if the gradient converges to zero sub-, super-, or lin-
early. Which objective property seems responsible for achieving fast conver-
gence? Hint:

∑N
i=1(a

T
i x − li)

2 = ∥Ax− l∥22 where the ith row of A and l is
given by ai and li respectively.

Prescaling Prescaling is the practice of transforming the problem data in
some way in hopes of improving the convergence speed of the optimization/training.
There are many ways of doing this, but here we consider linear transformations.
These can be seen as a variable change in the original optimization problem,
i.e., setting x = Hx̂ where is H is a full rank square matrix yields

min
x∈Rn

f(Ax) ⇐⇒ min
x̂∈Rn

f(AHx̂) ⇐⇒ min
x̂∈Rn

f(Âx̂)

where Â = AH. The rightmost problem can then be solved and the solution to
the original problem can then be recovered by x⋆ = Hx̂⋆.
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The result of this variable change is clearly a problem on the same form
but with a different data matrix Â. This changes the smoothness and strong-
convexity parameters, L and σ, and therefore the convergence rate. It turns out
that the convergence rate is not really affected by both L and σ simultaneously
but only by the ratio κ = L

σ . This ratio is called the condition number of the
problem and the goal when designing a prescaling matrix H is to get a more
advantageous condition number.

A good prescaling matrix H should of course yield a good condition number
but also not be to expensive to compute. The design of H is a non-trivial task
that usually requires domain and problem specific knowledge. For this reason
we have provided a function prescale(A,r) in problems.jl that computes a
matrix H that is adequate for the use in the next task. The function takes
a data matrix A and a number r ∈ [0, 1] and returns H. The parameter r
sets the trade-off between good prescaling and low computational cost. Setting
r = 1 yields the best H but is also the most computationally intensive while
r = 0 gives the H that is cheapest to compute but worst performing. You are
encouraged to read the source of prescale(A,r) and try to understand what it
does and why.

Task 9 Solve the least squares problem (5) with a prescaled gradient descent.
Start at x = 0, use a step-size of γ = 1.2/L, and try the prescaling parame-
ters r ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. For each prescaling parameter, calculate the
condition number of the scaled problem. What happens with the convergence
speed and condition number when r is increased?

Remark There are other methods than prescaling for achieving lower condition numbers.
For instance could Newton’s method be seen as a form of post-scaling to do the same thing.
The main difference is that the post-scaling needs to be applied at each iteration while the
prescaling is done only once. This makes Newton-like methods much more costly and are in
general deemed too expensive to use in modern learning problems.

Submission
Your submission should contain the following.

• All your code.

• A single pdf where you answer and/or discuss the questions raised in each
task.

Use plots, figures and tables to motivate your answers.
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