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Extended-valued functions and domain

• We consider extended-valued functions f : Rn → R ∪ {∞} =: R
• Example: Indicator function of interval [a, b]

ι[a,b](x) =

{
0 if a ≤ x ≤ b
∞ else

a b

• The (effective) domain of f : Rn → R ∪ {∞} is the set

dom f = {x ∈ Rn : f(x) <∞}

• (Will always assume domf 6= ∅, this is called proper)

3



Convex functions

• Graph below line connecting any two pairs (x, f(x)) and (y, f(y))

convex function nonconvex function

• Function f : Rn → R is convex if for all x, y ∈ Rn and θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(in extended valued arithmetics)

• A function f is concave if −f is convex
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Epigraphs

• The epigraph of a function f is the set of points above graph

epif

• Mathematical definition:

epif = {(x, r) | f(x) ≤ r}

• The epigraph is a set in Rn × R
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Epigraphs and convexity

• Let f : Rn → R ∪ {∞}
• Then f is convex if and only epif is a convex set in Rn × R

epif epif

• f is called closed (lower semi-continuous) if epif is closed set
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Convex envelope

• Convex envelope of f is largest convex minorizer

f(x)

x

envf(x)

x

• Definition: The convex envelope envf satisfies: envf convex,

envf ≤ f and envf ≥ g for all convex g ≤ f
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Convex envelope and convex hull

• Assume f : Rn → R ∪ {∞} is closed

• Epigraph of convex envelope of f is closed convex hull of epif

• epif in light gray, epi envf includes dark gray
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Affine functions

• Affine functions f : Rn → R are of the form

f(y) = sT y + r

• Affine functions f : Rn → R cut Rn × R in two halves

(s,−1)

f(y) = sT y + r

• s defines slope of function

• Upper halfspace is epigraph with normal vector (s,−1):

epif = {(y, t) : t ≥ sT y + r} = {(y, t) : (s,−1)T (y, t) ≤ −r}
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Affine functions – Reformulation

• Pick any fixed x ∈ Rn; affine f(y) = sT y + r can be written as

f(y) = f(x) + sT (y − x)

(since r = f(x)− sTx)

(s,−1)

f(y) = f(x) + sT (y − x)

• Affine function of this form is important in convex analysis

11



First-order condition for convexity

• A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• coincides with function f at x
• has slope s defined by ∇f , which coincides the function slope
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f
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Second-order condition for convexity

• A twice differentiable function is convex if and only if

∇2f(x) � 0

for all x ∈ Rn (i.e., the Hessian is positive semi-definite)

• “The function has non-negative curvature”

• Nonconvex example: f(x) = xT
[
1 0
0 −1

]
x with ∇2f(x) 6� 0
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Operations that preserve convexity

• Positive sum

• Marginal function

• Supremum of family of convex functions

• Composition rules

• Prespective of convex function
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Positive sum

• Assume that fj are convex for all j ∈ {1, . . . ,m}
• Assume that there exists x such that fj(x) <∞ for all j

• Then the positive sum

f =

m∑
j=1

tjfj

with tj > 0 is convex
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Marginal function

• Let f : Rn × Rm → R ∪ {∞} be convex

• Define the marginal function

g(x) := inf
y
f(x, y)

• The marginal function g is convex if f is
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Supremum of convex functions

• Point-wise supremum of convex functions from family {fj}j∈J :

f(x) := sup{fj(x) : j ∈ J}

• Supremum is over functions in family for fixed x

• Example:

f1

f2

f3

• Convex since epigraph is intersection of convex epigraphs
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Scalar composition rule

• Consider the function f : Rn → R ∪ {∞} defined as

f(x) = h(g(x))

where h : R→ R ∪ {∞} is convex and g : Rn → R
• Suppose that one of the following holds:

• h is nondecreasing and g is convex
• h is nonincreasing and g is concave
• g is affine

Then f is convex
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Vector composition rule

• Consider the function f : Rn → R ∪ {∞} defined as

f(x) = h(g1(x), g2(x), . . . , gk(x))

where h : Rk → R ∪ {∞} is convex and gi : Rn → R
• Suppose that for each i ∈ {1, . . . , k} one of the following holds:

• h is nondecreasing in the ith argument and gi is convex
• h is nonincreasing in the ith argument and gi is concave
• gi is affine

Then f is convex
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Perspective of function

Let

• f : Rn → R be convex

• t be positive, i.e, t ∈ R+

then the perspective function g : Rn × R→ R, defined by

g(x, t) :=

{
tf(x/t) if t > 0

∞ else

is convex
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Ways to conclude convexity

• Use convexity definition

• Show that epigraph is convex set

• Use first or second order condition for convexity

• Show that function constructed by convexity preserving operations
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Conclude convexity – Some examples

• From definition:
• indicator function of convex set C

ιC(x) :=

{
0 if x ∈ C
∞ else

• norms: ‖x‖
• From first- or second-order conditions:

• affine functions: f(x) = sTx+ r
• quadratics: f(x) = 1

2
xTQx with Q positive semi-definite matrix

• From convex epigraph:

• matrix fractional function: f(x, Y ) =

{
xTY −1x if Y � 0

∞ else

• From marginal function:
• (shortest) distance to convex set C: distC(x) = infy∈C(‖y − x‖)
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Example – Convexity of norms

Show that f(x) := ‖x‖ is convex from convexity definition

• Norms satisfy the triangle inequality

‖u+ v‖ ≤ ‖u‖+ ‖v‖

• For arbitrary x, y and θ ∈ [0, 1]:

f(θx+ (1− θ)y) = ‖θx+ (1− θ)y‖
≤ ‖θx‖+ ‖(1− θ)y‖
= θ‖x‖+ (1− θ)‖y‖
= θf(x) + (1− θ)f(y)

which is definition of convexity

• Proof uses triangle inequality and θ ∈ [0, 1]
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Example – Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

• The matrix fractional function

f(x, Y ) =

{
xTY −1x if Y � 0

∞ else

• The epigraph satisfies

epif(x, Y, t) = {(x, Y, t) : f(x, Y ) ≤ t}
= {(x, Y, t) : xTY −1x ≤ t and Y � 0}

• Schur complement condition says for Y � 0 that

xTY −1x ≤ t ⇔
[
Y x
xT t

]
� 0

which is a (convex) linear matrix inequality (LMI) in (x, Y, t)

• Epigraph is intersection between LMI and positive definite cone
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Example – Composition with matrix

• Let
• f : Rm → R be convex
• L ∈ Rm×n be a matrix

then composition with a matrix

(f ◦ L)(x) := f(Lx)

is convex

• Vector composition with convex function and affine mappings
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Example – Image of function under linear mapping

• Let
• f : Rn → R be convex
• L ∈ Rm×n be a matrix

then image function (sometimes called infimal postcomposition)

(Lf)(x) := inf
y
{f(y) : Ly = x}

is convex

• Proof: Define

h(x, y) = f(y) + ι{0}(Ly − x)

which is convex in (x, y), then

(Lf)(x) = inf
y
h(x, y)

which is convex since marginal of convex function
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Example – Nested composition

Show that: f(x) := e‖Lx−b‖
3
2 is convex where L is matrix b vector:

• Let

g1(u) = ‖u‖2, g2(u) =

{
0 if u < 0

u3 if u ≥ 0
, g3(u) = eu

then f(x) = g3(g2(g1(Lx− b)))
• g1(Lx− b) convex: convex g1 and Lx− b affine

• g2(g1(Lx− b)) convex: cvx nondecreasing g2 and cvx g1(Lx− b)
• f(x) convex: convex nondecreasing g3 and convex g2(g1(Lx− b))
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Example – Conjugate function

Show that the conjugate f∗(s) := sup
x∈Rn

(sTx− f(x)) is convex:

• Define (uncountable) index set J and xj such that ∪j∈Jxj = Rn

• Define rj := f(xj) and affine (in s): aj(s) := sTxj − rj
• Therefore f∗(s) = sup(aj(s) : j ∈ J)
• Convex since supremum over family of convex (affine) functions

• Note convexity of f∗ not dependent on convexity of f
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Strict convexity

• A function is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for all x 6= y and θ ∈ (0, 1)
• Convexity definition with strict inequality
• No flat (affine) regions
• Example: f(x) = 1/x for x > 0

x

f(x)
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Strong convexity

• Let σ > 0
• A function f is σ-strongly convex if f − σ

2 ‖ · ‖
2
2 is convex

• Alternative equivalent definition of σ-strong convexity:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖

2

holds for every x, y ∈ Rn and θ ∈ [0, 1]
• Strongly convex functions are strictly convex and convex
• Example: f 2-strongly convex since f − ‖ · ‖22 convex:

f(x) f(x)− ‖x‖22
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Uniqueness of minimizers

• Strictly (strongly) convex functions have unique minimizers

• Strictly convex functions may not have a minimizing point

• Strongly convex functions always have a unique minimizing point
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First-order condition for strict convexity

• Let f : Rn → R be differentiable
• f is strictly convex if and only if

f(y) > f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn where x 6= y

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f only at x
• is supporting hyperplane to epigraph of f
• defines normal (∇f(x),−1) to epigraph of f
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First-order condition for strong convexity

• Let f : Rn → R be differentiable
• f is σ-strongly convex with σ > 0 if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ‖x− y‖

2
2

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + σ
2
‖x− y‖22

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn a quadratic minorizer that:
• has curvature defined by σ
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f
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Second-order condition for strict/strong convexity

Let f : Rn → R be twice differentiable

• f is strictly convex if

∇2f(x) � 0

for all x ∈ Rn (i.e., the Hessian is positive definite)

• f is σ-strongly convex if and only if

∇2f(x) � σI

for all x ∈ Rn
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Examples of strictly/strongly convex functions

Strictly convex

• f(x) = − log(x) + ι>0(x)

• f(x) = 1/x+ ι>0(x)

• f(x) = e−x

Strongly convex

• f(x) = λ
2 ‖x‖

2
2

• f(x) = 1
2x

TQx where Q positive definite

• f(x) = f1(x) + f2(x) where f1 strongly convex and f2 convex

• f(x) = f1(x) + f2(x) where f1, f2 strongly convex

• f(x) = 1
2x

TQx+ ιC(x) where Q positive definite and C convex
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Proofs for two examples

Strict convexity of f(x) = e−x:

• ∇f(x) = −e−x, ∇2f(x) = e−x > 0 for all x ∈ R

Strong convexity of f(x) = 1
2x

TQx with Q positive definite

• ∇f(x) = Qx, ∇2f(x) = Q � λmin(Q)I where λmin(Q) > 0
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Smoothness

• A function is called β-smooth if its gradient is β-Lipschitz:

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2
for all x, y ∈ Rn (it is not necessarily convex)

• Alternative equivalent definition of β-smoothness

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖

2

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) + β
2 θ(1− θ)‖x− y‖

2

hold for every x, y ∈ Rn and θ ∈ [0, 1]
• Smoothness does not imply convexity
• Example:
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First-order condition for smoothness

• f is β-smooth with β ≥ 0 if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖x− y‖

2
2

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)− β
2
‖x− y‖22

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• Quadratic upper/lower bounds with curvatures defined by β
• Quadratic bounds coincide with function f at x
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First-order condition for smooth convex

• f is β-smooth with β ≥ 0 and convex if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)
for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Quadratic upper bounds and affine lower bound
• Bounds coincide with function f at x
• Quadratic upper bound is called descent lemma
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Second-order condition for smoothness

Let f : Rn → R be twice differentiable

• f is β-smooth if and only if

−βI � ∇2f(x) � βI

for all x ∈ Rn

• f is β-smooth and convex if and only if

0 � ∇2f(x) � βI

for all x ∈ Rn
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Convex Optimization Problems
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Composite optimization form

• We will consider optimization problem on composite form

minimize
x

f(Lx) + g(x)

where f and g are convex functions and L is a matrix

• Convex problem due to convexity preserving operations

• Can model constrained problems via indicator function

• This model format is suitable for many algorithms
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