Least Squares

Pontus Giselsson

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Machine learning

- Machine learning can very roughly be divided into:
- Supervised learning
- Unsupervised learning
- Semisupervised learning (between supervised and unsupervised)
- Reinforcement learning
- We will focus on supervised learning

Supervised learning

- Let (x, y) represent object and label pairs
- Object $x \in \mathcal{X} \subseteq \mathbb{R}^{n}$
- Label $y \in \mathcal{Y} \subseteq \mathbb{R}^{K}$
- Available: Labeled training data (training set) $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
- Data $x_{i} \in \mathbb{R}^{n}$, or examples (often n large)
- Labels $y_{i} \in \mathbb{R}^{K}$, or response variables (often $K=1$)

Objective: Find a model (function) $m(x)$:

- that takes data (example, object) x as input
- and predicts corresponding label (response variable) y

How?:

- learn m from training data, but should generalize to all (x, y)

Relation to optimization

Training the "machine" m consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

- Regression:
- Predicts quantities
- Real-valued labels $y \in \mathcal{Y}=\mathbb{R}^{K}$ (will mainly consider $K=1$)
- Classification:
- Predicts class belonging
- Finite number of class labels, e.g., $y \in \mathcal{Y}=\{1,2, \ldots, k\}$

Examples of data and label pairs

Data	Label	R/C
text in email	spam?	C
dna	blood cell concentration	R
dna	cancer?	C
image	cat or dog	C
advertisement display	click?	C
image of handwritten digit	digit	C
house address	selling cost	R
stock	price	R
sport analytics	winner	C
speech representation	spoken word	C

R / C is for regression or classification

In this course

Lectures will cover different supervised learning methods:

- Classical methods with convex training problems
- Least squares (this lecture)
- Logistic regression
- Support vector machines
- Deep learning methods with nonconvex training problem

Highlight difference:

- Deep learning (specific) nonlinear model instead of linear

Notation

- (Primal) Optimization variable notation:
- Optimization literature: x, y, z (as in first part of course)
- Statistics literature: β
- Machine learning literature: θ, w, b
- Reason: data, labels in statistics and machine learning are x, y
- Will use machine learning notation in these lectures
- We collect training data in matrices (one example per row)

$$
X=\left[\begin{array}{c}
x_{1}^{T} \\
\vdots \\
x_{N}^{T}
\end{array}\right] \quad Y=\left[\begin{array}{c}
y_{1}^{T} \\
\vdots \\
y_{N}^{T}
\end{array}\right]
$$

- Columns X_{j} of data matrix $X=\left[X_{1}, \ldots, X_{n}\right]$ are called features

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Regression training problem

- Objective: Find data model m such that for all (x, y) :

$$
m(x)-y \approx 0
$$

- Let model output $u=m(x)$; Examples of data misfit losses

$$
\begin{aligned}
& L(u, y)=\frac{1}{2}(u-y)^{2} \\
& L(u, y)=|u-y| \\
& L(u, y)= \begin{cases}\frac{1}{2}(u-y)^{2} & \text { if }|u-v| \leq c \\
c(|u-y|-c / 2) & \text { else }\end{cases}
\end{aligned}
$$

Square

1-norm

- Training: find model m that minimizes sum of training set losses

$$
\underset{m}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i}\right), y_{i}\right)
$$

Supervised learning - Least squares

- Parameterize model m and set a linear (affine) structure

$$
m(x ; \theta)=w^{T} x+b
$$

where $\theta=(w, b)$ are parameters (also called weights)

- Training: find model parameters that minimize training cost

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)=\frac{1}{2} \sum_{i=1}^{N}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

(note: optimization over model parameters θ)

- Once trained, predict response of new input x as $\hat{y}=w^{T} x+b$

Example - Least squares

- Find affine function parameters that fit data:

Example - Least squares

- Find affine function parameters that fit data:

- Data points (x, y) marked with (*), LS model $w x+b(-)$

Example - Least squares

- Find affine function parameters that fit data:

- Data points (x, y) marked with (*), LS model $w x+b(-)$
- Least squares finds affine function that minimizes squared distance 13

Solving for constant term

- Constant term b also called bias term or intercept
- What is optimal b ?

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{N}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

- Optimality condition w.r.t. b (gradient w.r.t. b is 0):

$$
0=N b+\sum_{i=1}^{N}\left(w^{T} x_{i}-y_{i}\right) \quad \Leftrightarrow \quad b=\bar{y}-w^{T} \bar{x}
$$

where $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ and $\bar{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i}$ are mean values

Equivalent problem

- Plugging in optimal $b=\bar{y}-w^{T} \bar{x}$ in least squares estimate gives

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{N}\left(w^{T} x_{i}+b-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{N}\left(w^{T}\left(x_{i}-\bar{x}\right)-\left(y_{i}-\bar{y}\right)\right)^{2}
$$

- Let $\tilde{x}_{i}=x_{i}-\bar{x}$ and $\tilde{y}_{i}=y_{i}-\bar{y}$, then it is equivalent to solve

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{N}\left(w^{T} \tilde{x}_{i}-\tilde{y}_{i}\right)^{2}=\frac{1}{2}\|X w-Y\|_{2}^{2}
$$

where X and Y now contain all \tilde{x}_{i} and \tilde{y}_{i} respectively

- Obviously \tilde{x}_{i} and \tilde{y}_{i} have zero averages (by construction)
- Will often assume averages subtracted from data and responses

Least squares - Solution

- Training problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\|X w-Y\|_{2}^{2}
$$

- Strongly convex if X full column rank
- Features linearly independent and more examples than features
- Consequences: $X^{T} X$ is invertible and solution exists and is unique
- Optimal w satisfies (set gradient to zero)

$$
0=X^{T} X w-X^{T} Y
$$

if X full column rank, then unique solution $w=\left(X^{T} X\right)^{-1} X^{T} Y$

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Nonaffine example

- What if data that cannot be well approximated by affine mapping?

Nonaffine example

- What if data that cannot be well approximated by affine mapping?

Nonaffine example

- What if data that cannot be well approximated by affine mapping?

Adding nonlinear features

- A linear model is not rich enough to model relationship
- Try, e.g., a quadratic model

$$
m(x ; \theta)=b+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{i} q_{i j} x_{i} x_{j}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and parameters $\theta=(b, w, q)$

- For $x \in \mathbb{R}^{2}$, the model is

$$
\begin{aligned}
& m(x ; \theta)=b+w_{1} x_{1}+w_{2} x_{2}+q_{11} x_{1}^{2}+q_{12} x_{1} x_{2}+q_{22} x_{2}^{2}=\theta^{T} \phi(x) \\
& \text { where } x=\left(x_{1}, x_{2}\right) \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\left(b, w_{1}, w_{2}, q_{11}, q_{12}, q_{22}\right) \\
\phi(x) & =\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)
\end{aligned}
$$

- Add nonlinear features $\phi(x)$, but model still linear in parameter θ

Least squares with nonlinear features

- Can, of course, use other nonlinear feature maps ϕ
- Gives models $m(x ; \theta)=\theta^{T} \phi(x)$ with increased fitting capacity
- Use least squares estimate with new model

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{N}\left(m\left(x_{i} ; \theta\right)-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{N}\left(\theta^{T} \phi\left(x_{i}\right)-y_{i}\right)^{2}
$$

which is still convex since ϕ does not depend on θ !

- Build new data matrix (with one column per feature in ϕ)

$$
X=\left[\begin{array}{c}
\phi\left(x_{1}\right)^{T} \\
\vdots \\
\phi\left(x_{N}\right)^{T}
\end{array}\right]
$$

to arrive at least squares formulation

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2}\|X \theta-Y\|_{2}^{2}
$$

- The more features, the more parameters θ to optimize (lifting)

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Nonaffine example

- Fit polynomial of degree k to data using LS (J is cost):

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Generalization and overfitting

- Generalization: How well does model perform on unseen data
- Overfitting: Model explains training data, but not unseen data
- How to reduce overfitting/improve generalization?

Tikhonov Regularization

- Example indicates: Reducing $\|\theta\|_{2}$ seems to reduce overfitting
- Least squares with Tikhonov regularization:

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2}\|X \theta-Y\|_{2}^{2}+\frac{\lambda}{2}\|\theta\|_{2}^{2}
$$

- Regularization parameter $\lambda \geq 0$ controls fit vs model expressivity
- Optimization problem called ridge regression in statistics
- (Could regularize with $\|\theta\|_{2}$, but square easier to solve)
- (Don't regularize b - constant data offset gives different solution)

Ridge Regression - Solution

- Recall ridge regression problem for given λ :

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2}\|X \theta-Y\|_{2}^{2}+\frac{\lambda}{2}\|\theta\|_{2}^{2}
$$

- Objective λ-strongly convex for all $\lambda>0$, hence unique solution
- Objective is differentiable, Fermat's rule:

$$
\begin{aligned}
0=X^{T}(X \theta-Y)+\lambda \theta & \Longleftrightarrow \quad\left(X^{T} X+\lambda I\right) \theta=X^{T} Y \\
& \Longleftrightarrow \quad \theta=\left(X^{T} X+\lambda I\right)^{-1} X^{T} Y
\end{aligned}
$$

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Ridge Regression - Example

- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_{2}$ norm of weights

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Selecting model hyperparameters

- Parameters in machine learning models are called hyperparameters
- Ridge model has polynomial order and λ as hyperparameters
- How to select hyperparameters?

Holdout

- Randomize data and assign to train, validate, or test set

Training set:

- Solve training problems with different hyperparameters

Validation set:

- Estimate generalization performance of all trained models
- Use this to select model that seems to generalize best

Test set:

- Final assessment on how chosen model generalizes to unseen data
- Not for model selection, then final assessment too optimistic

Holdout - Comments

- Typical division between sets $50 / 25 / 25$ (or $70 / 20 / 10$)
- Sometimes no test set (then no assessment of final model)
- If no test set, then validation set often called test set
- Can work well if lots of data, if less, use (k-fold) cross validation

k-fold cross validation

- Similar to hold out - divide first into training/validate and test set
- Divide training/validate set into k data chunks
- Train k models with $k-1$ chunks, use k :th chunk for validation
- Loop

1. Set hyperparameters and train all k models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

- Select final model hyperparameters based on best score
- Simpler model with slightly worse score may generalize better
- Estimate generalization performance via test set

4-fold cross validation - Graphics

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Evaluate generalization score/performance

- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_{t} train cost, J_{v} validation cost

Selecting model

- Average training and test error vs model complexity
- Average training error smaller than average test error
- Large λ (left) model not rich enough
- Small λ (right) model too rich (overfitting)

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Feature selection

- Assume $X \in \mathbb{R}^{m \times n}$ with $m<n$ (fewer examples than features)
- Want to find a subset of features that explains data well
- Example: Which genes in genome control eyecolor

Lasso

- Feature selection by regularizing least squares with 1-norm:

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\|X w-Y\|_{2}^{2}+\lambda\|w\|_{1}
$$

- Problem can be written as

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\left\|\sum_{i=1}^{n} w_{i} X_{i}-Y\right\|_{2}^{2}+\lambda\|w\|_{1}
$$

if $w_{i}=0$, then feature X_{i} not important

- The 1-norm promotes sparsity (many 0 variables) in solution
- It also reduces size (shrinks) w (like $\|\cdot\|_{2}^{2}$ regularization)
- Problem is called the Lasso problem

Example - Lasso

- Data $X \in \mathbb{R}^{30 \times 200}$, Lasso solution for different λ

- For large enough λ solution $w=0$
- More nonzero elements in solution as λ decreases
- For small $\lambda, 30$ (nbr examples) nonzero w_{i} (i.e., $170 w_{i}=0$)

Lasso and correlated features

- Assume two equal features exist, e.g., $X_{1}=X_{2}$, lasso problem is

$$
\operatorname{minimize} \frac{1}{2}\left\|\left(w_{1}+w_{2}\right) X_{1}+\sum_{i=3}^{n} w_{i} X_{i}-Y\right\|_{2}^{2}+\lambda\left(\left|w_{1}\right|+\left|w_{2}\right|+\left\|w_{3: n}\right\|_{1}\right)
$$

- Assume w^{*} solves the problem and let $\Delta:=w_{1}^{*}+w_{2}^{*}>0$ (wlog)
- Then all $w_{1} \in[0, \Delta]$ with $w_{2}=\Delta-w_{1}$ solves problem:
- quadratic cost unchanged since sum $w_{1}+w_{2}$ still Δ
- the remainder of the regularization part reduces to

$$
\min _{w_{1}} \lambda\left(\left|w_{1}\right|+\left|\Delta-w_{1}\right|\right)
$$

- For almost correlated features:
- often only w_{1} or w_{2} nonzero (the one with slightly better fit)
- however, features highly correlated, if X_{1} explains data so does X_{2}

Elastic net

- Add Tikhonov regularization to the Lasso

$$
\operatorname{minimize} \frac{1}{2}\|X w-Y\|^{2}+\lambda_{1}\|w\|_{1}+\frac{\lambda_{2}}{2}\|w\|_{2}^{2}
$$

- This problem is called elastic net in statistics
- Can perform better with correlated features

Elastic net and correlated features

- Assume equal features $X_{1}=X_{2}$ and that w^{*} solves the elastic net
- Let $\Delta:=w_{1}^{*}+w_{2}^{*}>0(\mathrm{wlog})$, then $w_{1}^{*}=w_{2}^{*}=\frac{\Delta}{2}$
- Data fit cost still unchanged for $w_{2}=\Delta-w_{1}$ with $w_{1} \in[0, \Delta]$
- Remaining (regularization) part is

$$
\min _{w_{1}} \lambda_{1}\left(\left|w_{1}\right|+\left|\Delta-w_{1}\right|\right)+\lambda_{2}\left(w_{1}^{2}+\left(\Delta-w_{1}\right)^{2}\right)
$$

which is minimized in the middle at $w_{1}=w_{2}=\frac{\Delta}{2}$

- For highly correlated features, both (or none) probably selected

Group lasso

- Sometimes want groups of variables to be 0 or nonzero
- Introduce blocks $w=\left(w_{1}, \ldots, w_{p}\right)$ where $w_{i} \in \mathbb{R}^{n_{i}}$
- The group Lasso problem is

$$
\operatorname{minimize} \frac{1}{2}\|X w-Y\|_{2}^{2}+\lambda \sum_{i=1}^{p}\left\|w_{i}\right\|_{2}
$$

(note $\|\cdot\|_{2}$-norm without square)

- With all $n_{i}=1$, it reduces to the Lasso
- Promotes block sparsity, meaning full block $w_{i} \in \mathbb{R}^{n_{i}}$ would be 0

Outline

- Supervised learning - Overview
- Least squares - Basics
- Nonlinear features
- Generalization, overfitting, and regularization
- Cross validation
- Feature selection
- Training problem properties

Composite optimization

- Least squares problems are convex problems of the form

$$
\underset{\theta}{\operatorname{minimize}} f(X \theta)+g(\theta),
$$

where

- $f=\frac{1}{2}\|\cdot-Y\|_{2}^{2}$ is data misfit term
- X is training data matrix (potentially extended with features)
- g is regularization term (1-norm, squared 2-norm, group lasso)
- Function properties
- f is 1 -strongly convex and 1 -smooth and $f \circ X$ is $\|X\|_{2}^{2}$-smooth
- g is convex and possibly nondifferentiable
- Gradient $\nabla(f \circ X)(\theta)=X^{T}(X \theta-Y)$

