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Composite optimization problems

• We have introduced the composite optimization problem

minimize
x

f(Lx) + g(x)

• Need an algorithm that solves it - proximal gradient method

• We will consider the simpler composite optimization problem

minimize
x

f(x) + g(x)

that gives the former by letting f → f ◦ L
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Problem assumptions

• Proximal gradient method works, e.g., for problems that satisfy
• f is β-smooth f : Rn → R (not necessarily convex)
• g is closed convex

• Recall that if β-smoothness implies that f satisfies

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)− β
2 ‖y − x‖

2
2

it has convex quadratic upper and concave quadratic lower bounds

• If f in addition is convex, we instead have

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)

where the concave quadratic lower bound is replaced by affine
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Minimizing upper bound

• Due to β-smoothness of f , we have

f(y) + g(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2 + g(y)

for all x, y ∈ Rn, i.e., r.h.s. is upper bound to l.h.s.

• Minimizing in every iteration the r.h.s. w.r.t. y for given x gives

v = argmin
y

(
f(x) +∇f(x)T (y − x) + β

2 ‖y − x‖
2
2 + g(y)

)
= argmin

y

(
g(y) + β

2 ‖y − (x− β−1∇f(x))‖22
)

= proxβ−1g(x− β−1∇f(x))
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Proximal gradient method

• Let us replace β by γ−1
k , x by xk, and v by xk+1 to get:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − xk) + 1

2γk
‖y − xk‖22 + g(y)

)
= argmin

y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)
= proxγkg(xk − γk∇f(xk))

• This is exactly the proximal gradient method

• The method replaces f by quadratic approximation and minimizes

• (Note that we need an initial guess x0 to start the iteration)
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Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x0

x1

x2

x3x4
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Proximal gradient – Special cases

• Proximal gradient method:
• solves minimize

x
(f(x) + g(x))

• iteration: xk+1 = proxγkg(xk − γk∇f(xk))

• Proximal gradient method with g = 0:
• solves minimize

x
(f(x))

• proxγkg(z) = argminx(0 + 1
2γ
‖x− z‖22) = z

• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = xk − γk∇f(xk)
• reduces to gradient method

• Proximal gradient method with f = 0:
• solves minimize

x
(g(x))

• ∇f(x) = 0
• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = proxγkg(xk)
• reduces to proximal point method (which is not very useful)
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Proximal gradient method – Fixed-point set

• Proximal gradient step

xk+1 = proxγkg(xk − γk∇f(xk))

• If xk+1 = xk, they are in proximal gradient fixed-point set

{x : x = proxγg(x− γ∇f(x))}

• Under some assumptions, algorithm will satisfy xk+1 − xk → 0
• this means that fixed-point equation will be satisfied in limit
• what does it mean for x to be a fixed-point?
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Proximal gradient – Optimality condition

• Proximal gradient step:

v = proxγg(x− γ∇f(x)) = argmin
y

(g(y) + 1
2γ ‖y − (x− γ∇f(x))‖22︸ ︷︷ ︸

h(y)

)

where v is unique due to strong convexity of h

• Fermat’s rule (since CQ holds) gives v = proxγg(x− γ∇f(x)) iff:

0 ∈ ∂g(v) + ∂h(v)

= ∂g(v) + γ−1(v − (x− γ∇f(x)))

= ∂g(v) +∇f(x) + γ−1(v − x)

since h differentiable

11



Proximal gradient – Fixed-point characterization

For γ > 0, we have that

x̄ = proxγg(x̄− γ∇f(x̄)) if and only if 0 ∈ ∂g(x̄) +∇f(x̄)

• Proof: the proximal step equivalence

v = proxγg(x− γ∇f(x)) ⇔ 0 ∈ ∂g(v) +∇f(x) + γ−1(v − x)

evaluated at a fixed-point x = v = x̄ reads

x̄ = proxγg(x̄− γ∇f(x̄)) ⇔ 0 ∈ ∂g(x̄) +∇f(x̄)

• We call inclusion 0 ∈ ∂g(x̄) +∇f(x̄) fixed-point characterization
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Meaning of fixed-point characterization

• What does fixed-point characterization 0 ∈ ∂g(x̄) +∇f(x̄) mean?

• For convex differentiable f , subdifferential ∂f(x) = {∇f(x)} and

0 ∈ ∂f(x̄) + ∂g(x̄) = ∂(f + g)(x̄)

(subdifferential sum rule holds), i.e., fixed-points solve problem

• For nonconvex differentiable f , we might have ∂f(x̄) = ∅
• Fixed-point are not in general global solutions
• Points x̄ that satisfy 0 ∈ ∂g(x̄) +∇f(x̄) are called critical points
• If g = 0, the condition is ∇f(x̄) = 0, i.e., a stationary point

• Quality of fixed-points differs between convex and nonconvex f
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Conditions on γk for convergence

• We replace in proximal gradient method f(y) by

f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖22

and minimize this plus g(y) over y to get the next iterate

• We know from β-smoothness of f that for all x, y

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

• If γk ∈ [ε, 1
β ] with ε > 0, an upper bound is minimized

• Can use γk ∈ [ε, 2
β − ε] and show convergence of some quantity
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Practical convergence – Example

• Logarithmic y axis of quantity that should go to 0 for convergence
• Linear x axis with iteration number

#10 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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10 1

iteration k

• Fast convergence to medium accuracy, slow from medium to high
• Many iterations may be required
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Stopping conditions

• For β-smooth f : Rn → R, we can stop algorithm when

1
βuk := 1

β (γ−1
k (xk − xk+1) +∇f(xk+1)−∇f(xk))

is small (notation and reason will be motivated in future lecture)

• This is the plotted quantity on the previous slide

• We can use absolute or relative stopping conditions:
• absolute stopping conditions with small εabs > 0

1
β
‖uk‖2 ≤ εabs or 1

β
‖uk‖2 ≤ εabs

√
n

• relative stopping condition with small εrel, ε > 0:

1
β

‖uk‖2
‖xk‖2+β−1‖∇f(xk)‖2+ε

≤ εrel

• Problem considered solved to optimality if, say, 1
β ‖uk‖2 ≤ 10−6

• Often lower accuracy of 10−3 or 10−4 is enough
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Applying proximal gradient to primal problems

Problem minimize
x

f(x) + g(x):

• Assumptions:
• f smooth
• g closed convex and prox friendly1

• Algorithm: xk+1 = proxγkg(xk − γk∇f(xk))

Problem minimize
x

f(Lx) + g(x):

• Assumptions:
• f smooth (implies f ◦ L smooth)
• g closed convex and prox friendly1

• Gradient ∇(f ◦ L)(x) = LT∇f(Lx)

• Algorithm: xk+1 = proxγkg(xk − γkL
T∇f(Lxk))

1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable
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Applying proximal gradient to dual problem

• Let us apply the proximal gradient method to the dual problem

minimize
µ

f∗(µ) + g∗(−LTµ)

• Assumptions:
• f : closed convex and prox friendly
• g: σ-strongly convex

• Why these assumptions?
• f∗: closed convex and prox friendly

• g∗ ◦ −LT :
‖L‖22
σ

-smooth and convex

• Algorithm:

µk+1 = proxγkf∗(µk − γk∇(g∗ ◦ −LT )(µk))
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Dual proximal gradient method – Explicit version 1

• We will make the dual proximal gradient method more explicit

µk+1 = proxγkf∗(µk − γk∇(g∗ ◦ −LT )(µk))

• Use ∇(g∗ ◦ −LT )(µ) = −L∇g∗(−LTµ) to get

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)
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Dual proximal gradient method – Explicit version 2

• Restating the previous formulation

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)

• Use Moreau decomposition for prox:

proxγf∗(v) = v − γproxγ−1f (γ−1v)

to get

xk = ∇g∗(−LTµk)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)
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Dual proximal gradient method – Explicit version 3

• Restating the previous formulation

xk = ∇g∗(−LTµk)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)

• Use subdifferential formula, since g∗ differentiable:

∇g∗(ν) = argmax
x

(νTx− g(x)) = argmin
x

(g(x)− νTx)

with ν = −LTµk to get

xk = argmin
x

(g(x) + (µk)TLx)

vk = µk + γkLxk

µk+1 = vk − γkproxγ−1
k f (γ−1

k vk)

• Can implement method without computing conjugate functions
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Dual proximal gradient method – Primal recovery

• Can we recover a primal solution from dual prox grad method?

• Let us use explicit version 1

xk = ∇g∗(−LTµk)

µk+1 = proxγkf∗(µk + γkLxk)

and assume we have found fixed-point (x̄, µ̄): for some γ̄ > 0,

x̄ = ∇g∗(−LT µ̄)

µ̄ = proxγ̄f∗(µ̄+ γ̄Lx̄)

• Fermat’s rule for proximal step

0 ∈ ∂f∗(µ̄) + γ̄−1(µ̄− (µ̄+ γ̄Lx̄)) = ∂f∗(µ̄)− Lx̄

is with x̄ = ∇g∗(−LT µ̄) a primal-dual optimality condition

• So xk will solve primal problem if algorithm converges
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Problems that prox-grad cannot solve

• Problem minimize
x

f(x) + g(x)

• Assumptions: f and g convex but nondifferentiable

• No term differentiable, another method must be used:
• Subgradient method
• Douglas-Rachford splitting
• Primal-dual methods
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Problems that prox-grad cannot solve efficiently

• Problem minimize
x

f(x) + g(Lx)

• Assumptions:
• f smooth
• g nonsmooth convex
• L arbitrary structured matrix

• Can apply proximal gradient method

xk+1 = argmin
y

(g(Ly) + 1
2γk
‖y − (xk − γk∇f(xk))‖22)

but proximal operator of g ◦ L

proxγ(g◦L)(z) = argmin
x

(g(Lx) + 1
2γ ‖x− z‖

2
2)

often not “prox friendly”, i.e., it is expensive to evaluate
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