Optimization for Learning - FRTN50 Assignment 1

Introduction

The goal of this assignment is to become familiar with some of the steps involved in solving an optimization problem. These include forming Fenchel-dual problems and finding gradients and/or proximal operators. Most of these steps will not need to be repeated every time a new problem is encountered and one can often rely on previous work by you or others. However, it is still important to be aware of and understand them.

Problem The problem we will solve is the following constrained problem

$$
\min _{x \in S} f(x)=\min _{x} f(x)+\iota_{S}(x)
$$

where ι_{S} is the indicator function for the set S. In this case, we let f be a quadratic, $f(x)=\frac{1}{2} x^{T} Q x+q^{T} x$ where $Q \succ 0$, and S be the box, $S=\{x$: $\left.\forall i, a_{i} \leq x_{i} \leq b_{i}\right\}$ where a_{i} and b_{i} are the lower and upper bounds on the i :th coordinate of x.

Solution Method To solve the optimization problem we will use the proximal gradient method. It solves problems of the form

$$
\begin{equation*}
\min _{x} \phi(x)+h(x) \tag{1}
\end{equation*}
$$

where ϕ is differentiable and h is proximable, i.e., prox $_{h}$ can be cheaply computed. The proximal gradient method starts from some arbitrary initial guess x^{0} and iteratively performs the following update

$$
\begin{equation*}
x^{k+1}=\operatorname{prox}_{\gamma h}\left(x^{k}-\gamma \nabla \phi\left(x^{k}\right)\right) \tag{2}
\end{equation*}
$$

until x^{k} is deemed to have converged. In this assignment, we simply run it a large fixed number of iterations and plot the norm of the step-length/residual, $\left\|x^{k+1}-x^{k}\right\|$, of each step to make sure it converges to zero. Since the experiments are run on a computer, zero means smaller than machine precision which usually is around 10^{-15}. Make sure you plot in a such a way that these small quantities are visible.

The iteration (2) has a positive step-size parameter γ that will affect the convergence. It should be tuned to the problem or chosen based on the properties of ϕ and h. In the closed convex case with ϕ being L-smooth, i.e., $\nabla \phi$ is L-Lipschitz continuous, the maximal step-size to guarantee convergence is $\gamma<\frac{2}{L}$. The proximal gradient method is one of the fundamental building blocks of modern optimization methods and will be covered in more detail later in the course.

Assignment

Solve the following tasks.
Task 1 Derive f^{*} and ι_{S}^{*} and write down the Fenchel-dual problem.
Task 2 Show that f and f^{*} are L-, and L^{*}-smooth respectively. Find L and L^{*}.

Task 3 Derive expressions for $\nabla f, \nabla f^{*}, \operatorname{prox}_{\gamma \iota_{S}}$ and $\operatorname{prox}_{\gamma \iota_{S}^{*}}$.
Task 4 Let y^{\star} be a solution to the dual problem, derive an expression that gives a solution to the primal problem given y^{\star}.

Task 5 The file functions.jl contains empty JULIA-functions for evaluating the functions, gradients, proximal operators, and primal solution from the previous tasks. Use your results to fill in the functions.

Task 6 The file problem. jl contains a function for generating Q, q, a, and b that define the quadratic function f and the box constraint set S. Use Task 5 to solve the primal problem using the proximal gradient method.

Try a range of different step-sizes. What seems to be the best choice? Does the upper bound $\gamma<\frac{2}{L}$ seem reasonable?

Test different initial points for the algorithm, does this affect the solution the algorithm converges to? Reason about why/why not it affects the solution? Does your solution satisfy the constraint $x^{\star} \in S$? What about the iterates, do they always satisfy the constraint, $x^{k} \in S$? Why/why not?

Task 7 Solve the dual problem. Similar to the previous task, find/verify the upper bound on the step-size and find a good step-size choice.

Compare the solutions from the primal and the one extracted from the dual, are they the same? Do they satisfy the constraint $x^{\star} \in S$? Let y^{k} be the iterates of the dual method, using the expression from Task 4, extract the primal iterates \hat{x}^{k} from y^{k}. Does \hat{x}^{k} always satisfy the constraint $\hat{x}^{k} \in S$?

How do the function values, $f\left(\hat{x}^{k}\right)$, develop over the iterations? What about $f\left(\hat{x}^{k}\right)+\iota_{S}\left(\hat{x}^{k}\right)$?

Submission

Your submission should contain the following files.

- Your filled in version of functions.jl from Task 5.
- Your code that solves the problems from Task 6 and 7.
- A single pdf containing the following:
- Your derivations and final expressions from Task 1-4.
- Answers and/or discussions for the questions raised in 6 and 7.

Use plots, figures and tables to motivate your answers.

