Optimization for Learning

General Information

Course Responsible: **Pontus Giselsson**

TAs

Hamed Sadeghi

Manu Upadhyaya

Covid-19 Precautions

- Department of Automatic Control general rules¹ say
 - No physical lectures
 - Can have physical exercise sessions, but keep distance
 - No drop-ins at the department for asking questions
- We will have everything online via Zoom:
 - Video lectures
 - Office hours/exercise sessions
 - Discussion seminars

 $^{^{1} \\ \}text{http://www.control.lth.se/education/covid-19-teaching-policy-at-automatic-control-fall-2020/}$

Course scope

Course topics:

- · Convex analysis
- Supervised learning from an optimization perspective
- Algorithms suitable for large training problems

The course is:

- a math oriented course (but not too much focus on proofs)
- focusing on optimization that is key component in learning

The course is not:

a machine learning course

Prerequisites

- Recommended: A (convex) optimization course
- If not: convex analysis part can be tough

Course Details

- Convex analysis
 - Convex sets, convex functions, subdifferentials, proximal operators, conjugate functions, duality, proximal gradient method
- Supervised learning
 - Least squares, logistic regression, support vector machines (SVM), deep learning
- Algorithms
 - Convergence, proximal gradient method, stochastic gradient descent, coordinate gradient descent, (quasi)-Newton methods

Most of the theory in first and third parts

Exam

- Written exam tests convex analysis and theory part of algorithms
- The result on the exam decides the grade (3-5)

Handins

- Are done in groups of two and are graded pass or fail
- Test supervised learning and implementation of algorithms
- Involves coding in Julia (julialang.org)
 - Julia is a (new) scientific computing programming language
 - Designed to be as fast as c but as high-level as Matlab/Python
 - We have introduction to Julia that you will do this week
- Are submitted and returned via Canvas
- Need to pass all handins to pass the course
- First handin: two resubmissions, second: one

Literature

- No official course literature, only slides and videos (on webpage)
- Recommend: Convex Optimization by Boyd and Vandenberghe
 - Available for free download (google)
 - Good to read:
 - Section 1: optimization overview
 - Appendix A: general mathematics you need to know
 - Sections 2 and 3: complement slides on convex analysis (especially if you have not taken optimization course before)

Lecture videos

- Five to ten videos per lectures (3 to 15 minutes each)
- Each video covers a subtopic in lecture
- Videos intended for active listening
- Videos will be uploaded during course
- Only for convex analysis and algorithms (that are tested on exam)
- Available from Canvas course page

Office hours

- All TAs and course responsible will have online office hours
- Course responsible office hours focus on lectures
- TAs office hours focus on exercises and handins
- Will be on Zoom with Zoom info on Canvas course page

Discussion seminars

- Discuss concepts and put things into context
- Interactive online session between TA and students
- Held by TA Martin Morin
- Will be on Zoom with Zoom info on Canvas course page

Discussion forum

- Use the Canvas discussion forum if outside of office hours
- TAs will reply to questions
- Please also help each other by answering questions

Schedule

- We will use (essentially) the same time slots as in time edit
- Office hours
 - Mondays 13-15 Pontus Giselsson (For questions on lectures)
 - Tuesdays 15-17 Manu Upadhyaya
 - Thursdays 8-10 Hamed Sadeghi
 - Thursdays 15-17 Martin Morin
- Discussion seminars
 - Fridays 10-12 Martin Morin
- Remember: Everything is online with Zoom links on Canvas

Course representative

- We need a course representative
- If you are interested, send me an email

Webpage and course program

Course webpage on Canvas

```
https://canvas.education.lu.se/courses/7714/contains.all.course.material
```

• Course program (on Canvas) contains the info in these slides

Final comments

- We hope you will enjoy the course!
- Start working early, we start in a quite high pace
- Don't hesitate to ask questions and provide feedback!