Implicit regularization

Pontus Giselsson

Outline

- Implicit regularization
- Early termination

Generalization and implicit regularization

- What is implicit regularization?
 - · Assume infinitely many solutions on large manifolds exist
 - · overparameterized neural networks
 - least squares with fewer examples than features
 - Algorithm selects solution with small(est) desired norm
- Implicit regularization may give model with better generalization
- SGD is believed to have good implicit regularization
- Adaptive scaling methods might have worse

Example – Gradient method and least squares

We will consider least squares

$$\mathop{\mathrm{minimize}}_x \tfrac{1}{2} \|Ax - b\|_2^2$$

for which \bar{x} exists such that $A\bar{x}=b$

We will show that scaled gradient method

$$x_{k+1} = x_k - H^{-1} \nabla f(x_k)$$

converges, if $x_0 = 0$, to minimum $\|\cdot\|_H$ solution

- This gives implicit regularization of gradient method
- Compare to explicit regularization that penalizes norm in problem

Least squares problem

Consider least squares problem of the form

$$\underset{x}{\text{minimize }} \frac{1}{2} ||Ax - b||_2^2$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, m < n, and $\exists \bar{x}$ such that $A\bar{x} = b$

- Solution set $X = \{x : Ax = b\} = \{x : \bar{x} + v\}$ where:
 - $\bar{x} \in X$ is such that $A\bar{x} = b$
 - v any vector such that Av=0, i.e. in nullspace of A, $\mathcal{N}(A)$ why? cost satisfies for all x: $\frac{1}{2}\|Ax-b\|_2^2 \geq 0$ and

$$\frac{1}{2}||A(\bar{x}+v)-b||_2^2 = ||A\bar{x}+Av-b||_2^2 = ||b-b||_2^2 = 0$$

- If $v \in \mathcal{N}(A)$ so is tv (A(tv) = tAv = 0) for all $t \in \mathbb{R}$
- \bullet Since m < n , $\mathcal{N}(A)$ is (at least) n-m -dimensional subspace

Graphical interpretation

- What happens with scaled gradient method?
- Solution set X extends infinitely
 - sequence is perpendicular to X in scalar product $(Hx)^Ty$
 - algorithm converges to projection point $\operatorname{argmin}_{x \in X}(\|x x_0\|_H)$

Convergence to minimum norm solution

• The scaled gradient method with $\gamma \in (0,\frac{2}{\beta})$

$$x_{k+1} = x_k - \gamma H^{-1} A^T (A x_k - b)$$

converges to a point $x_k \to \bar{x}$ such that $A\bar{x} = b$

• Letting $\lambda_k = -\sum_{l=0}^k \gamma(Ax_l - b) \in \mathbb{R}^m$ and unfolding iteration:

$$Hx_{k+1} = Hx_0 - \sum_{l=0}^{k} \gamma_l A^T (Ax_l - b) = Hx_0 + A^T \lambda_k$$

• The unique projection point $\hat{x} = \operatorname*{argmin}_{x \in X} (\|x - x_0\|_H)$ if and only if

$$H\hat{x} - Hx_0 + A^T\lambda = 0$$
 and $A\hat{x} = b$

- There is only one such \hat{x} , so we must have $\lambda_k \to \lambda$ and $\bar{x} = \hat{x}$
- If $x_0 = 0$, the algorithm converges to $\operatorname*{argmin}_{x \in X}(\|x\|_H)$

Comparison to Tikhonov regularization

- Tikhonov adds $\|\cdot\|_2^2$ norm penalty for better generalization
- ullet Standard gradient method converges to minimium $\|\cdot\|_2$ norm
 - Similar to using Tikhonov regularization
- Scaled gradient converges to minimium $\|\cdot\|_H$ norm solution
- If H very skewed that can happen e.g. in
 - Newton, quasi-newton, Adagrad, Adam maybe not as good generalization
- Analysis in convex least squares setting
- Some evidence that same thing holds in nonconvex setting
 - That suggests using SGD instead of, e.g., Adam

Outline

- Implicit regularization
- Early termination

Early termination

- Another implicit regularization is to terminate algorithm early
- Sometimes generalization deteriorates with higher accuracy
- Can happen if model too complex for data

Will consider SVM with small regularization on this problem data

- Will see:
 - best generalization after only a few iterations at medium accuracy
 - high accuracy takes many iterations but poor generalization

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 1 Residual norm: $\beta^{-1} \|u_k\|_2 = 6.6e^{-1}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 2 Residual norm: $\beta^{-1} \|u_k\|_2 = 4.7e^{-1}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 3 Residual norm: $\beta^{-1} ||u_k||_2 = 3.5e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 4 Residual norm: $\beta^{-1} ||u_k||_2 = 2.8e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 5 Residual norm: $\beta^{-1} \|u_k\|_2 = 2.3e^{-1}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 6 Residual norm: $eta^{-1}\|u_k\|_2=1.9e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 7 Residual norm: $\beta^{-1} ||u_k||_2 = 1.5e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 8 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.3e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 9 Residual norm: $eta^{-1}\|u_k\|_2=1.2e^{-1}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 10 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.1e^{-1}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 20 Residual norm: $\beta^{-1} ||u_k||_2 = 5.8e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 30 Residual norm: $\beta^{-1} ||u_k||_2 = 4.1e^{-2}$

- \bullet SVM polynomial features of degree 6, $\lambda=0.00001$
- ullet Iteration number: 40 Residual norm: $eta^{-1}\|u_k\|_2=3.2e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 50 Residual norm: $\beta^{-1} ||u_k||_2 = 2.4e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 60 Residual norm: $\beta^{-1} ||u_k||_2 = 1.8e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 70 Residual norm: $\beta^{-1} ||u_k||_2 = 1.4e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 80 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.2e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 90 Residual norm: $\beta^{-1} \|u_k\|_2 = 1e^{-2}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 100 Residual norm: $\beta^{-1} ||u_k||_2 = 7.8e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 110 Residual norm: $\beta^{-1} ||u_k||_2 = 6.5e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 120 Residual norm: $\beta^{-1} ||u_k||_2 = 5.9e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 130 Residual norm: $\beta^{-1} \|u_k\|_2 = 5.5e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 140 Residual norm: $\beta^{-1} \|u_k\|_2 = 5.1e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 150 Residual norm: $\beta^{-1} ||u_k||_2 = 4.8e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 160 Residual norm: $\beta^{-1} \|u_k\|_2 = 4.5e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 170 Residual norm: $\beta^{-1} \|u_k\|_2 = 3.9e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 180 Residual norm: $\beta^{-1} \|u_k\|_2 = 3.8e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 190 Residual norm: $\beta^{-1} \|u_k\|_2 = 3.6e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 300 Residual norm: $\beta^{-1} ||u_k||_2 = 2.3e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 400 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.6e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 500 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.2e^{-3}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 600 Residual norm: $\beta^{-1} ||u_k||_2 = 8.9e^{-4}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 700 Residual norm: $\beta^{-1} ||u_k||_2 = 6.7e^{-4}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 800 Residual norm: $\beta^{-1} ||u_k||_2 = 4.7e^{-4}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 900 Residual norm: $\beta^{-1} \|u_k\|_2 = 4.1e^{-4}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 1000 Residual norm: $\beta^{-1} ||u_k||_2 = 3.7e^{-4}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 2000 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.5e^{-4}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 3000 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.2e^{-4}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 4000 Residual norm: $\beta^{-1} \|u_k\|_2 = 1.1e^{-4}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 5000 Residual norm: $\beta^{-1} ||u_k||_2 = 9e^{-5}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 6000 Residual norm: $\beta^{-1} ||u_k||_2 = 8e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 7000 Residual norm: $\beta^{-1} \|u_k\|_2 = 7.2e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 8000 Residual norm: $\beta^{-1} \|u_k\|_2 = 6.6e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 9000 Residual norm: $\beta^{-1} ||u_k||_2 = 5.6e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 10000 Residual norm: $eta^{-1}\|u_k\|_2 = 5.3e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 20000 Residual norm: $\beta^{-1} \|u_k\|_2 = 3.1e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 30000 Residual norm: $eta^{-1}\|u_k\|_2=1.8e^{-5}$

ullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 40000 Residual norm: $eta^{-1}\|u_k\|_2=1.3e^{-5}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 50000 Residual norm: $eta^{-1}\|u_k\|_2=9.3e^{-6}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

• Iteration number: 60000 Residual norm: $\beta^{-1} ||u_k||_2 = 7.9e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 70000 Residual norm: $\beta^{-1} ||u_k||_2 = 7.1e^{-6}$

 \bullet SVM polynomial features of degree 6, $\lambda=0.00001$

ullet Iteration number: 80000 Residual norm: $eta^{-1}\|u_k\|_2=6.5e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 90000 Residual norm: $\beta^{-1} \|u_k\|_2 = 6e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 100000 Residual norm: $\beta^{-1} ||u_k||_2 = 5.5e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 200000 Residual norm: $\beta^{-1} \|u_k\|_2 = 2.7e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 300000 Residual norm: $\beta^{-1} ||u_k||_2 = 1.9e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 400000 Residual norm: $\beta^{-1} ||u_k||_2 = 1.5e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 500000 Residual norm: $\beta^{-1} ||u_k||_2 = 1.2e^{-6}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 600000 Residual norm: $\beta^{-1} \|u_k\|_2 = 1e^{-6}$

- \bullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 700000 Residual norm: $\beta^{-1}||u_k||_2 = 8.4e^{-7}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 800000 Residual norm: $\beta^{-1}||u_k||_2 = 4.6e^{-7}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 900000 Residual norm: $\beta^{-1}||u_k||_2 = 3.9e^{-7}$

- ullet SVM polynomial features of degree 6, $\lambda=0.00001$
- Iteration number: 1000000 Residual norm: $\beta^{-1} \|u_k\|_2 = 3.4e^{-7}$

