Scaled gradient methods Newton and quasi-Newton methods

Pontus Giselsson

Outline

• Scaled gradient method

- Backtracking
- Newton's method
- Quasi-Newton methods
- A numerical example

Scaled gradient method

We consider problems

$$\min_{x} \inf f(x)$$

where $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable

• We consider scaled gradient methods

$$x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k)$$

where H_k is a symmetric positive definite scaling matrix

• Have seen that scaling can improve convergence

Selecting H_k

• The scaled gradient method is

$$\begin{aligned} x_{k+1} &= \operatorname*{argmin}_{y} (f(x_{k}) + \nabla f(x_{k})^{T} (y - x) + \frac{1}{2\gamma_{k}} \|y - x_{k}\|_{H_{k}}^{2}) \\ &= \operatorname*{argmin}_{y} (f(x_{k}) + \frac{1}{2\gamma_{k}} \|y - (x_{k} - \gamma_{k} H_{k}^{-1} \nabla f(x_{k}))\|_{H_{k}}^{2}) \\ &= x_{k} - \gamma_{k} H_{k}^{-1} \nabla f(x_{k}) \end{aligned}$$

- H_k should capture (some) second-order (Hessian) information
- Examples:
 - $H_k = I$ is identity matrix (gives proximal gradient method)
 - $H_k = \mathbf{diag}(h)$ is fixed diagonal matrix with diagonal h
 - $H_k = H$ is fixed full or structured matrix
 - $H_k = \nabla^2 f(x_k)$ is true Hessian (Newton method)
 - H_k is from (limited memory) quasi-Newton
- More on this later, we first show convergence

Assumptions

- Similar assumptions as for proximal gradient method:
 - (i) $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable (not necessarily convex)
 - (*ii*) $\forall x_k, x_{k+1}$, it exists $\beta_k \in [\eta, \eta^{-1}], \rho I \preceq H_k \preceq \rho^{-1}I, \eta, \rho \in (0, 1)$:

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} ||x_k - x_{k+1}||_{H_k}^2$$

which means f is "locally β_k smooth w.r.t. $\|\cdot\|_{H_k}$

- (*iii*) A minimizer exists (and $p^* = \min_x (f(x) + g(x))$ is optimal value)
- (*iv*) Algorithm parameters $\gamma_k \in [\epsilon, \frac{2}{\beta_k} \epsilon]$, where $\epsilon > 0$
- Assumption on f satisfied with $\beta_k H_k = \beta I$ if $f \beta$ -smooth

Convergence

Using

(a) Upper bound assumption on f, i.e., Assumption (ii) (b) Algorithm update: $x_{k+1} - x_k = \gamma_k H_k^{-1} \nabla f(x_k)$ gives

$$f(x_{k+1}) \stackrel{(a)}{\leq} f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_{k+1} - x_k\|_{H_k}^2$$

$$\stackrel{(b)}{\leq} f(x_k) - \gamma_k \nabla f(x_k)^T H_k^{-1} \nabla f(x_k) + \frac{\beta_k \gamma_k^2}{2} \|H_k^{-1} \nabla f(x_k)\|_{H_k}^2$$

$$= f(x_k) - \gamma_k (1 - \frac{\beta_k \gamma_k}{2}) \|\nabla f(x_k)\|_{H_k^{-1}}^2$$

$$\leq f(x_k) - \delta \|\nabla f(x_k)\|_{H_k^{-1}}^2$$

where we used: $\gamma_k \in [\epsilon, \frac{2}{\beta_k} - \epsilon]$ implies $\gamma_k (1 - \frac{\beta_k \gamma_k}{2}) \ge \delta > 0$

Lyapunov inequality

• Subtract p^{\star} from both sides to get Lyapunov inequality

$$\underbrace{f(x_{k+1}) - p^{\star}}_{V_{k+1}} \le \underbrace{f(x_k) - p^{\star}}_{V_k} - \underbrace{\delta \|\nabla f(x_k)\|_{H_k^{-1}}^2}_{R_k}$$

- Consequences:
 - Function values converge (not necessarily to p^{*})
 - R_k is summable and, since $\delta > 0$, we have $\|\nabla f(x_k)\|_{H_h^{-1}} \to 0$
 - R_k summable also implies

$$\min_{i \in \{0,\dots,k\}} \|\nabla f(x_i)\|_{H_k^{-1}}^2 \le \frac{f(x_0) - p^*}{\delta(k+1)}$$

• Comment: The above analysis can also include $\operatorname{prox}_{\gamma_k q}^{H_k}$ term

Outline

- Scaled gradient method
- Backtracking
- Newton's method
- Quasi-Newton methods
- A numerical example

Selecting algorithm parameters

- How to select β_k , γ_k and H_k ?
- Start with β_k and γ_k , given H_k

Choose β_k and γ_k

• Convergence based on assumption that β_k known that satisfies

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_k - x_{k+1}\|_{H_k}^2$$

call this descent condition (DC)

- This descent condition generalizes the previous where $H_k = I$
- If $H_k = H$ and $f \ \beta_H$ -smooth w.r.t. $\| \cdot \|_H$; $\beta_k = \beta_H$ works since

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta_H}{2} ||x - y||_H^2$$

for all x, y

Choose β_k and γ_k – Backtracking

- Same backtracking as before, but with generalized DC
- Backtracking, choose $\kappa > 1$, $\beta_{k,0} \in [\eta, \eta^{-1}]$, let $l_k = 0$, and loop:

1. choose
$$\gamma_k \in [\epsilon, \frac{2}{\beta_{k,l}} - \epsilon]$$

- 2. compute $x_{k+1} = x_k \gamma_k H_k^{-1} \nabla f(x_k)$
- 3. if descent condition (DC) satisfied

set $k \leftarrow k+1$ // increment algorithm counter set $\bar{l}_k \leftarrow l_k$ // store final backtrack counter break backtrack loop

else

set $\beta_{k,l_k+1} \leftarrow \kappa \beta_{k,l_k}$ // increase backtrack parameter set $l_k \leftarrow l_k+1$ // increment backtrack counter end

- Note that larger β_{k,l_k} gives smaller step-length upper bound
- Initialization of $\beta_{k,0}$ depends on choice of H_k
- Works also with scaled proximal steps with $\operatorname{prox}_{\gamma_k q}^{H_k}$

Backtracking – Convergence

• For convergence, need to verify that (DC):

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_k - x_{k+1}\|_{H_k}^2$$

will hold within finite number of backtracking steps

- Assume and recall that
 - $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth
 - $\beta_k \in [\eta, \eta^{-1}], \ \rho I \preceq H_k \preceq \rho^{-1} I, \ \eta, \rho \in (0, 1):$

which gives

$$f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta}{2} \|x_k - x_{k+1}\|_2^2$$

$$\le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta}{2\rho} \|x_k - x_{k+1}\|_{H_k}^2$$

i.e, (DC) satisfied whenever $\beta_k \geq \frac{\beta}{\rho}$ (maybe before)

Outline

- Scaled gradient method
- Backtracking
- Newton's method
- Quasi-Newton methods
- A numerical example

Newton's method

• Newton's method given by iteration $(H_k = \nabla^2 f(x_k))$

$$x_{k+1} = x_k - \gamma_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

where $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is twice continuously differentiable

- Propeties:
 - Sometimes quadratic local convergence if $\gamma_k = 1$
 - Unit step-size $\gamma_k = 1$ may diverge far from solution
 - Need backtracking to converge globally
- Note: $\nabla^2 f(x_k)$ must be positive definite, i.e., $\nabla^2 f(x) \succ 0$:
 - always true if problem strictly convex
 - if not, add *ϵI* with *ϵ* > 0 such that *H_k* = ∇² *f*(*x_k*) + *ϵI* ≻ 0 (no local quadratic convergence, but still very fast)

Assumptions

• Assumptions

- (i) $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable
- (ii)~~f is $\sigma\text{-strongly convex and}~\beta\text{-smooth}$
- (*iii*) $\nabla^2 f$ is *L*-Lipschitz continuous
- $(iv)~~{\rm A}$ minimizer exists (and $p^{\star}=\min_x(f(x)+g(x))$ is optimal value)
 - (v) Algorithm parameters γ_k , will be chosen from backtracking
- Assumption (*iii*) implies that

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} \|x - y\|_{\nabla^2 f(x)}^2 + \frac{L}{6} \|x - y\|_2^3$$

for all x, y (note similarity to β -smoothness, ∇f is β -Lipschitz)

Newton method analysis

Will show:

- An example with divergence if $\gamma_k = 1$
- Quadratic convergence with $\gamma_k = 1$ close to solution
- Backtracking condition will eventually accept $\gamma_k=1$

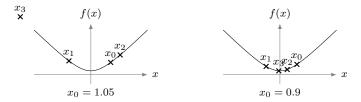
Newton method divergence – Example

- Consider the smooth function $f(x) = \sqrt{1 + x^2}$
- It is strictly convex, 1-smooth, and $\nabla^2 f$ is 1-Lipschitz
- Gradient method with $\gamma_k = 1$ works
- The gradient and second derivative satisfy

$$\nabla f(x) = \frac{x}{\sqrt{1+x^2}}$$
 $\nabla^2 f(x) = \frac{1}{(1+x^2)^{3/2}}$

• The Newton update with $\gamma_k = 1$ becomes

$$\begin{aligned} x_{k+1} &= x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k) = x_k - x_k (1+x_k^2) = -x_k^3 = -x_k (x_k)^2 \\ \text{which diverges if } |x_0| > 1 \text{ and converges if } |x_0| < 1 \end{aligned}$$



Quadratic convergence (1/2)

- We will show that $||x_{k+1} x^*||_2 \leq \frac{L}{2\sigma} ||x_k x^*||_2^2$
- Using
 - (a) that $\nabla f(x^{\star}) = 0$
 - (b) that

$$(\nabla f(x^*) - \nabla f(x_k)) = \int_0^1 (\nabla^2 f(x_k + t(x^* - x_k))(x^* - x_k)) dt$$

(c) and that $\int_0^1 a dt = a$ to conclude

$$x_k - x^* = \nabla^2 f(x_k)^{-1} \int_0^1 \nabla^2 f(x_k) (x_k - x^*) dt$$

gives

$$\begin{aligned} x_{k+1} - x^* &= x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k) - x^* \\ &= x_k - x^* + \nabla^2 f(x_k)^{-1} (\nabla f(x^*) - \nabla f(x_k)) \\ &= x_k - x^* + \nabla^2 f(x_k)^{-1} \int_0^1 (\nabla^2 f(x_k + t(x^* - x_k))(x^* - x_k)) dt \\ &= \nabla^2 f(x_k)^{-1} \int_0^1 (\nabla^2 f(x_k + t(x^* - x_k) - \nabla^2 f(x_k))(x^* - x_k)) dt \end{aligned}$$

Quadratic convergence (2/2)

We continue by taking the norm of both sides of the equality

$$\begin{aligned} \|x_{k+1} - x^{\star}\|_{2} \\ &= \left\| \nabla^{2} f(x_{k})^{-1} \int_{0}^{1} (\nabla^{2} f(x_{k} + t(x^{\star} - x_{k}) - \nabla^{2} f(x_{k}))(x^{\star} - x_{k})) dt \right\|_{2} \\ &\leq \|\nabla^{2} f(x_{k})^{-1}\|_{2} \left\| \int_{0}^{1} (\nabla^{2} f(x_{k} + t(x^{\star} - x_{k}) - \nabla^{2} f(x_{k}))(x^{\star} - x_{k})) dt \right\|_{2} \\ &\leq \frac{1}{\sigma} \int_{0}^{1} \|\nabla^{2} f(x_{k} + t(x^{\star} - x_{k}) - \nabla^{2} f(x_{k})\|_{2} \|x^{\star} - x_{k}\|_{2} dt \\ &\leq \frac{L}{\sigma} \int_{0}^{1} t \|x^{\star} - x_{k}\|_{2}^{2} dt \\ &= \frac{L}{2\sigma} \|x^{\star} - x_{k}\|_{2}^{2} \end{aligned}$$

where we have used

- Cauchy-Schwarz inequality twice
- that $\nabla^2 f$ is L-Lipschitz continuous
- that $\int_0^1 t dt = 1/2$

Local convergence

- We have shown that $||x_{k+1} x^{\star}||_2 \leq \frac{L}{2\sigma} ||x_k x^{\star}||_2^2$
- Why is this only local convergence? Assume, e.g.,

$$\|x_k - x^\star\|_2 = 2 \qquad \text{and} \qquad \frac{L}{2\sigma} = 2$$

then $||x_{k+1} - x^{\star}||_2 \le 8$, and we cannot conclude convergence

• If $||x_k - x^*||_2 \leq \frac{2\sigma}{L}(\frac{1}{2})^{2^k}$, we have R-quadratic convergence:

$$\|x_{k+1} - x^{\star}\|_{2} \leq \frac{L}{2\sigma} \left(\frac{2\sigma}{L} \left(\frac{1}{2}\right)^{2^{k}}\right)^{2} = \frac{2\sigma}{L} \left(\frac{1}{2}\right)^{2^{k+1}}$$

with rate $\frac{1}{2},$ and we need $\|x_0-x^\star\|_2 \leq \frac{2\sigma}{L}(\frac{1}{2})^{2^0}$ to start induction

- If we cannot start close enough, we need backtracking
- (Much more sophisticated analysis of Newton's method exists)

Backtracking

- We let
 - the initial backtracking parameter for every k satisfy $\beta_{k,0} \in (1,2)$
 - \bar{l}_k be the final backtrack iteration with accepted β_{k,\bar{l}_k}
 - and set $\gamma_k=\beta_{k,0}/\beta_{k,\bar{l}_k}=\frac{1}{\kappa l_k}$, where κ is backtrack increment

with consequence that $\gamma_k=1$ if accepted in first step, $\hat{l}_k=0$

• The descent condition is in backtracking iteration l_k , if accepted:

$$f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_{k,l_k}}{2} ||x_{k+1} - x_k||_{\nabla^2 f(x_k)}^2$$

= $f(x_k) - \gamma_k (1 - \frac{\gamma_k \beta_{k,l_k}}{2}) ||\nabla f(x_k)||_{\nabla^2 f(x_k)^{-1}}^2$
= $f(x_k) - \gamma_k (1 - \frac{\beta_{k,0}}{2}) ||\nabla f(x_k)||_{\nabla^2 f(x_k)^{-1}}^2$
= $f(x_k) - \gamma_k \alpha ||\nabla f(x_k)||_{\nabla^2 f(x_k)^{-1}}^2$

where we have defined $\alpha \in (0,0.5) = 1 - \frac{\beta_{k,0}}{2}$

• We use this and instead backtrack directly on $\gamma_{k,l_k}=\frac{1}{\kappa^{l_k}}$

Unit step-size

• We will show that $\gamma_k = 1$ is eventually accepted, so we get

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

• By L-Lipschitz continuity of $\nabla^2 f$ we conclude for $\gamma_k = 1$:

$$f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{1}{2} \|x_k - x_{k+1}\|_{\nabla^2 f(x_k)}^2 + \frac{L}{6} \|x_k - x_{k+1}\|_2^3 \leq f(x_k) - \gamma_k (1 - \frac{\gamma_k}{2}) \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 + \frac{L}{6} \|x_k - x_{k+1}\|_2^3 \leq f(x_k) - \frac{1}{2} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 + \frac{L}{6} \|\nabla^2 f(x_k)^{-1} \nabla f(x_k)\|_2^3 \leq f(x_k) - \frac{1}{2} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 + \frac{L}{6\sigma^{3/2}} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^3$$

where we used $\nabla^2 f(x_k) \leq \frac{1}{\sigma} I$ due to $\sigma\text{-strong convexity of } f$

Unit step-size

• Now, assume that the gradient condition (GC)

$$\|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}} \le \frac{6\sigma^{3/2}}{L}(\frac{1}{2}-\alpha)$$

holds, then we can continue the inequality as

$$\begin{aligned} f(x_{k+1}) &\leq f(x_k) - \frac{1}{2} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 + \frac{L}{6\sigma^{3/2}} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^3 \\ f(x_k) - \frac{1}{2} \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 + (\frac{1}{2} - \alpha) \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 \\ &\leq f(x_k) - \alpha \|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}}^2 \end{aligned}$$

this guarantees that backtracking condition holds if (GC) holds

• Backtracking analysis implies

$$\|\nabla f(x_k)\|_{\nabla^2 f(x_k)^{-1}} \to 0$$

as $k \to \infty$, so (GC) will eventually be satisfied

Outline

- Scaled gradient method
- Backtracking
- Newton's method
- Quasi-Newton methods
- A numerical example

Quasi-Newton methods

- · Mimic Newton's method but with less computational effort
- Approximate Hessian by $H_k \approx \nabla^2 f(x_k)$ to get

$$x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k)$$

where $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is twice continuously differentiable

- Select γ_k using backtracking (as in Newton's method)
- Many schemes for finding H_k , will cover BFGS¹

Secant condition

• Consider quadratic approximation of the function f

$$\hat{f}_{x_k}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} \|x_k - x\|_{H_k}^2$$

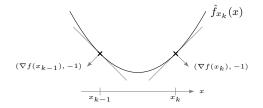
- Gradients coincide at x_k : $\nabla \hat{f}_{x_k}(x_k) = \nabla f(x_k)$
- Secant condition: Let H_k be such that

$$\nabla \hat{f}_{x_k}(x_{k-1}) = \nabla f(x_{k-1}),$$

which is satisfied when secant condition holds:

$$H_k(x_k - x_{k-1}) = \nabla f(x_k) - \nabla f(x_{k-1})$$

Proof: differentiate \hat{f}_{x_k} (w.r.t x) and evaluate at x_{k-1}



Quasi-Newton update

• Define
$$s_k = x_k - x_{k-1}$$
 and $y_k = \nabla f(x_k) - \nabla f(x_{k-1})$, then $H_k s_k = y_k$

is secant condition

- Quasi-Newton: select H_k such that secant condition satisfied
 - H_k contains
 - n^2 variables in general case
 - n(n+1)/2 variables if H_k is also enforced to be symmetric
 - secant condition contains only n constraints \Rightarrow underdetermined
 - Select H_k "close" to H_{k-1} subject to,
 - secant condition holds
 - possible symmetry enforcing constraint $H_k = H_k^T$

 $\begin{array}{ll} \underset{H_k}{\operatorname{minimize}} & D(H_k, H_{k-1}) \\ \text{subject to} & H_k s_k = y_k & \textit{// secant condition} \\ & H_k = H_k^T & \textit{// symmetry constraint} \end{array}$

where D measures distance between H_k and H_{k-1}

• Often initialized as $H_0 = I$

Different choices of D

- A method called Broyden method is obtained by
 - $D(H_k, H_{k-1}) = ||H_k H_{k-1}||_F^2$
 - without symmetry constraint

where

- H_k not necessarily symmetric and positive definite
- A method called BFGS is obtained by
 - $D(H_k, H_{k-1}) = \operatorname{tr}(H_{k-1}^{-1}H_k) \log \det(H_{k-1}^{-1}H_k) n$
 - with symmetry constraint

where

- Cost called *relative entropy*
- *H_k* is symmetric and positive definite (under some assumptions)
- BFGS is preferred over Broyden for smooth minimization

The BFGS Hessian inverse update formula

• Solving BFGS problem gives Hessian inverse $H_k^{-1} = B_k$ update:

$$B_{k} = (I - \frac{s_{k}y_{k}^{T}}{y_{k}^{T}s_{k}})B_{k-1}(I - \frac{y_{k}s_{k}^{T}}{y_{k}^{T}s_{k}}) + \frac{s_{k}s_{k}^{T}}{y_{k}^{T}s_{k}}$$

• Using inverse B_k is preferrable, since the algorithm becomes

$$x_{k+1} = x_k - \gamma_k B_k \nabla f(x_k)$$

and the matrix inversion is avoided

• Cheaper than Newton's method, but requires storing $B_k \in \mathbb{R}^{n \times n}$

Evaluating direction

Let $(B_+ = B_k, B = B_{k-1}, s = s_k, y = y_k)$, then B_+g satisfies

where

$$\alpha = \frac{s^T g}{y^T s} \in \mathbb{R} \qquad q = g - y \alpha \in \mathbb{R}^n \qquad p = Bq \in \mathbb{R}^n \qquad \beta = \frac{y^T p}{y^T s} \in \mathbb{R}$$

Implicit form BFGS

- Instead of storing B_k , we store all s_l and y_l for $l = \{1, \ldots, k\}$
- Recursively use previous update k times to get:
 - 1. Let $q = \nabla f(x_k)$ 2. For $l = k, \dots, 1$ do (a) Compute $\alpha_l = \frac{s_l^T q}{y_l^T s_l}$ (b) Update $q = q - \alpha_l y_l$ 3. Let $p = B_0 q$ 4. For $l = 1, \dots, k$ do (a) Let $\beta_l = \frac{y_l^T p}{y_l^T s_l}$ (b) Update $p = p + (\alpha_l - \beta_l) s_l$ where final $p = B_k \nabla f(x_k)$
- Memory requirement: 2nk, grows with iteration k
- Inefficient implementation for BFGS, but used for LBFGS

LBFGS – Limited memory BFGS

- LBFGS is implicit BFGS but look only $m\ {\rm step}\ {\rm back}\ {\rm in}\ {\rm history}$
- $\bullet\,$ Algorithm cuts loops in two-loop procedure to be of length m
 - 1. Let $q = \nabla f(x_k)$ 2. For l = k, ..., k - m + 1 do (a) Compute $\alpha_l = \frac{s_l^T q}{y_l^T s_l}$ (b) Update $q = q - \alpha_l y_l$ 3. Let $p = B_k^0 q$ 4. For l = k - m + 1, ..., k do (a) Let $\beta_l = \frac{y_l^T p}{y_l^T s_l}$ (b) Update $p = p + (\alpha_l - \beta_l)s_l$ where final p is direction: $x_{k+1} = x_k - \gamma_k p$ Common initialization: $B^0 = \gamma_l I$ for some $\gamma_l > 0$
- Common initialization: $B_k^0 = \lambda_k I$ for some $\lambda_k > 0$
- Often very small $m \in \{3, \dots, 10\}$ performs very well
- Memory requirement: 2nm (compared to n^2 for BFGS)

Outline

- Scaled gradient method
- Backtracking
- Newton's method
- Quasi-Newton methods
- A numerical example

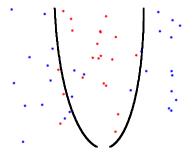
Example – Logistic regression

• Logistic regression with $\theta = (w, b)$:

 $\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \log(1 + e^{w^T \phi(x_i) + b}) - y_i(w^T \phi(x_i) + b) + \frac{\lambda}{2} \|w\|_2^2$

on the following data set (from logistic regression lecture)

- Polynomial features of degree 6, Tikhonov regularization $\lambda=0.01$
- Number of decision variables: 28



Algorithms

Compare the following algorithms, all with backtracking:

- 1. Gradient method
- 2. Gradient method with fixed diagonal scaling
- 3. Gradient method with fixed full scaling
- 4. Newton's method
- 5. BFGS
- 6. Limited-memory BFGS with buffer size m=3

Fixed scaling methods

• Logistic regression gradient and Hessian satisfy

$$\nabla f(\theta) = X^T (\sigma(X\theta) - Y) + \lambda w \quad \nabla^2 f(\theta) = X^T \sigma'(X\theta) X + \lambda I_w$$

where σ is the (vector-version of) sigmoid, and $I_w(w,b)=w$

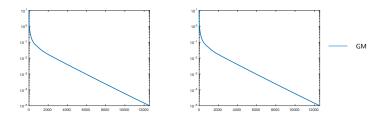
- The gradient of the sigmoid is 0.25-Lipschitz continuous
- Gradient method with fixed full scaling (3.) uses

$$H_k = H = 0.25X^T X + \lambda I_w$$

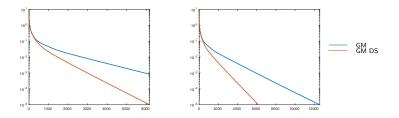
• Gradient method with fixed diagonal scaling (2.) uses

$$H_k = H = \mathbf{diag}(0.25X^T X + \lambda I_w)$$

- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Standard gradient method with backtracking (GM)



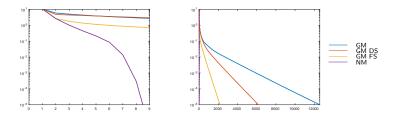
- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Gradient method with diagonal scaling (GM DS)



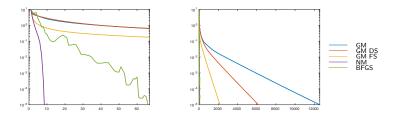
- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Gradient method with full matrix scaling (GM FS)



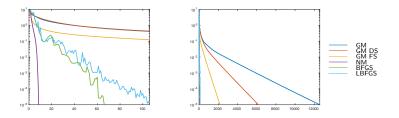
- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- Newtons method with backtracking (NM)



- \bullet Logistic regression polynomial features of degree 6, $\lambda=0.01$
- BFGS with backtracking (BFGS)



- Logistic regression polynomial features of degree 6, $\lambda=0.01$
- LBFGS with backtracking and buffer length m = 3 (LBFGS)



Comments

- We have only compared number of iterations
- Iteration cost in Newton and BFGS much higher than for GM
- Iteration cost for LBFGS similar to for GM
- LBFGS performs very well for smooth problems