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Scaled gradient method

• We consider problems

minimize
x

f(x)

where f : Rn → R is continuously differentiable

• We consider scaled gradient methods

xk+1 = xk − γkH−1k ∇f(xk)

where Hk is a symmetric positive definite scaling matrix

• Have seen that scaling can improve convergence
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Selecting Hk

• The scaled gradient method is

xk+1 = argmin
y

(f(xk) +∇f(xk)T (y − x) + 1
2γk
‖y − xk‖2Hk

)

= argmin
y

(f(xk) +
1

2γk
‖y − (xk − γkH−1k ∇f(xk))‖

2
Hk

)

= xk − γkH−1k ∇f(xk)

• Hk should capture (some) second-order (Hessian) information

• Examples:
• Hk = I is identity matrix (gives proximal gradient method)
• Hk = diag(h) is fixed diagonal matrix with diagonal h
• Hk = H is fixed full or structured matrix
• Hk = ∇2f(xk) is true Hessian (Newton method)
• Hk is from (limited memory) quasi-Newton

• More on this later, we first show convergence
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Assumptions

• Similar assumptions as for proximal gradient method:

(i) f : Rn → R is continuously differentiable (not necessarily convex)
(ii) ∀xk, xk+1, it exists βk ∈ [η, η−1], ρI � Hk � ρ−1I, η, ρ ∈ (0, 1):

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2
‖xk − xk+1‖2Hk

which means f is “locally βk smooth w.r.t. ‖ · ‖Hk

(iii) A minimizer exists (and p? = minx(f(x) + g(x)) is optimal value)
(iv) Algorithm parameters γk ∈ [ε, 2

βk
− ε], where ε > 0

• Assumption on f satisfied with βkHk = βI if f β-smooth
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Convergence

Using

(a) Upper bound assumption on f , i.e., Assumption (ii)

(b) Algorithm update: xk+1 − xk = γkH
−1
k ∇f(xk)

gives

f(xk+1)
(a)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖2Hk

(b)

≤ f(xk)− γk∇f(xk)TH−1k ∇f(xk) +
βkγ

2
k

2 ‖H
−1
k ∇f(xk)‖

2
Hk

= f(xk)− γk(1− βkγk
2 )‖∇f(xk)‖2H−1

k

≤ f(xk)− δ‖∇f(xk)‖2H−1
k

where we used: γk ∈ [ε, 2
βk
− ε] implies γk(1− βkγk

2 ) ≥ δ > 0
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Lyapunov inequality

• Subtract p? from both sides to get Lyapunov inequality

f(xk+1)− p?︸ ︷︷ ︸
Vk+1

≤ f(xk)− p?︸ ︷︷ ︸
Vk

− δ‖∇f(xk)‖2H−1
k︸ ︷︷ ︸

Rk

• Consequences:
• Function values converge (not necessarily to p?)
• Rk is summable and, since δ > 0, we have ‖∇f(xk)‖

H−1
k
→ 0

• Rk summable also implies

min
i∈{0,...,k}

‖∇f(xi)‖2H−1
k
≤ f(x0)− p?

δ(k + 1)

• Comment: The above analysis can also include proxHk
γkg

term
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Selecting algorithm parameters

• How to select βk, γk and Hk?

• Start with βk and γk, given Hk
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Choose βk and γk

• Convergence based on assumption that βk known that satisfies

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk − xk+1‖2Hk

call this descent condition (DC)

• This descent condition generalizes the previous where Hk = I

• If Hk = H and f βH -smooth w.r.t. ‖ · ‖H ; βk = βH works since

f(y) ≤ f(x) +∇f(x)T (y − x) + βH

2 ‖x− y‖
2
H

for all x, y
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Choose βk and γk – Backtracking

• Same backtracking as before, but with generalized DC

• Backtracking, choose κ > 1, βk,0 ∈ [η, η−1], let lk = 0, and loop:

1. choose γk ∈ [ε, 2
βk,l
− ε]

2. compute xk+1 = xk − γkH−1
k ∇f(xk)

3. if descent condition (DC) satisfied
set k ← k + 1 // increment algorithm counter

set l̄k ← lk // store final backtrack counter

break backtrack loop
else

set βk,lk+1 ← κβk,lk // increase backtrack parameter

set lk ← lk + 1 // increment backtrack counter

end

• Note that larger βk,lk gives smaller step-length upper bound

• Initialization of βk,0 depends on choice of Hk

• Works also with scaled proximal steps with proxHk
γkg
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Backtracking – Convergence

• For convergence, need to verify that (DC):

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk − xk+1‖2Hk

will hold within finite number of backtracking steps

• Assume and recall that
• f : Rn → R is β-smooth
• βk ∈ [η, η−1], ρI � Hk � ρ−1I, η, ρ ∈ (0, 1):

which gives

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + β
2 ‖xk − xk+1‖22

≤ f(xk) +∇f(xk)T (xk+1 − xk) + β
2ρ‖xk − xk+1‖2Hk

i.e, (DC) satisfied whenever βk ≥ β
ρ (maybe before)
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Newton’s method

• Newton’s method given by iteration (Hk = ∇2f(xk))

xk+1 = xk − γk∇2f(xk)
−1∇f(xk)

where f : Rn → R is twice continuously differentiable

• Propeties:
• Sometimes quadratic local convergence if γk = 1
• Unit step-size γk = 1 may diverge far from solution
• Need backtracking to converge globally

• Note: ∇2f(xk) must be positive definite, i.e., ∇2f(x) � 0:
• always true if problem strictly convex
• if not, add εI with ε > 0 such that Hk = ∇2f(xk) + εI � 0

(no local quadratic convergence, but still very fast)
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Assumptions

• Assumptions

(i) f : Rn → R is twice continuously differentiable
(ii) f is σ-strongly convex and β-smooth

(iii) ∇2f is L-Lipschitz continuous
(iv) A minimizer exists (and p? = minx(f(x) + g(x)) is optimal value)
(v) Algorithm parameters γk, will be chosen from backtracking

• Assumption (iii) implies that

f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2‖x− y‖

2
∇2f(x) +

L
6 ‖x− y‖

3
2

for all x, y (note similarity to β-smoothness, ∇f is β-Lipschitz)
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Newton method analysis

Will show:

• An example with divergence if γk = 1

• Quadratic convergence with γk = 1 close to solution

• Backtracking condition will eventually accept γk = 1
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Newton method divergence – Example

• Consider the smooth function f(x) =
√
1 + x2

• It is strictly convex, 1-smooth, and ∇2f is 1-Lipschitz
• Gradient method with γk = 1 works
• The gradient and second derivative satisfy

∇f(x) = x√
1 + x2

∇2f(x) =
1

(1 + x2)3/2

• The Newton update with γk = 1 becomes

xk+1 = xk −∇2f(xk)
−1∇f(xk) = xk − xk(1 + x2k) = −x3k = −xk(xk)2

which diverges if |x0| > 1 and converges if |x0| < 1

f(x)

x

x0x1
x2

x3

x0 = 1.05

f(x)

x

x0x1 x2x3

x0 = 0.9
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Quadratic convergence (1/2)

• We will show that ‖xk+1 − x?‖2 ≤ L
2σ‖xk − x

?‖22
• Using

(a) that ∇f(x?) = 0
(b) that

(∇f(x?)−∇f(xk)) =

∫ 1

0

(∇2f(xk + t(x? − xk))(x? − xk))dt

(c) and that
∫ 1

0
adt = a to conclude

xk − x? = ∇2f(xk)−1

∫ 1

0

∇2f(xk)(xk − x?)dt

gives

xk+1 − x? = xk −∇2f(xk)−1∇f(xk)− x?

= xk − x? +∇2f(xk)−1(∇f(x?)−∇f(xk))

= xk − x? +∇2f(xk)−1

∫ 1

0

(∇2f(xk + t(x? − xk))(x? − xk))dt

= ∇2f(xk)−1

∫ 1

0

(∇2f(xk + t(x? − xk)−∇2f(xk))(x? − xk))dt
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Quadratic convergence (2/2)

We continue by taking the norm of both sides of the equality

‖xk+1 − x?‖2

=

∥∥∥∥∇2f(xk)−1

∫ 1

0

(∇2f(xk + t(x? − xk)−∇2f(xk))(x? − xk))dt

∥∥∥∥
2

≤ ‖∇2f(xk)−1‖2
∥∥∥∥∫ 1

0

(∇2f(xk + t(x? − xk)−∇2f(xk))(x? − xk))dt

∥∥∥∥
2

≤ 1
σ

∫ 1

0

‖∇2f(xk + t(x? − xk)−∇2f(xk)‖2‖x? − xk‖2dt

≤ L
σ

∫ 1

0

t‖x? − xk‖22dt

= L
2σ
‖x? − xk‖22

where we have used

• Cauchy-Schwarz inequality twice
• that ∇2f is L-Lipschitz continuous

• that
∫ 1

0
tdt = 1/2
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Local convergence

• We have shown that ‖xk+1 − x?‖2 ≤ L
2σ‖xk − x

?‖22
• Why is this only local convergence? Assume, e.g.,

‖xk − x?‖2 = 2 and L
2σ = 2

then ‖xk+1 − x?‖2 ≤ 8, and we cannot conclude convergence

• If ‖xk − x?‖2 ≤ 2σ
L ( 12 )

2k , we have R-quadratic convergence:

‖xk+1 − x?‖2 ≤
L

2σ

(
2σ

L

(
1

2

)2k
)2

=
2σ

L

(
1

2

)2k+1

with rate 1
2 , and we need ‖x0−x?‖2 ≤ 2σ

L ( 12 )
20 to start induction

• If we cannot start close enough, we need backtracking

• (Much more sophisticated analysis of Newton’s method exists)
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Backtracking

• We let
• the initial backtracking parameter for every k satisfy βk,0 ∈ (1, 2)
• l̄k be the final backtrack iteration with accepted βk,l̄k• and set γk = βk,0/βk,l̄k = 1

κl̄k
, where κ is backtrack increment

with consequence that γk = 1 if accepted in first step, l̂k = 0

• The descent condition is in backtracking iteration lk, if accepted:

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
βk,lk

2 ‖xk+1 − xk‖2∇2f(xk)

= f(xk)− γk(1−
γkβk,lk

2 )‖∇f(xk)‖2∇2f(xk)−1

= f(xk)− γk(1− βk,0

2 )‖∇f(xk)‖2∇2f(xk)−1

= f(xk)− γkα‖∇f(xk)‖2∇2f(xk)−1

where we have defined α ∈ (0, 0.5) = 1− βk,0

2

• We use this and instead backtrack directly on γk,lk = 1
κlk
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Unit step-size

• We will show that γk = 1 is eventually accepted, so we get

xk+1 = xk −∇2f(xk)
−1∇f(xk)

• By L-Lipschitz continuity of ∇2f we conclude for γk = 1:

f(xk+1)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + 1
2
‖xk − xk+1‖2∇2f(xk) + L

6
‖xk − xk+1‖32

≤ f(xk)− γk(1− γk
2

)‖∇f(xk)‖2∇2f(xk)−1 + L
6
‖xk − xk+1‖32

≤ f(xk)− 1
2
‖∇f(xk)‖2∇2f(xk)−1 + L

6
‖∇2f(xk)−1∇f(xk)‖32

≤ f(xk)− 1
2
‖∇f(xk)‖2∇2f(xk)−1 + L

6σ3/2 ‖∇f(xk)‖3∇2f(xk)−1

where we used ∇2f(xk) ≤ 1
σ I due to σ-strong convexity of f
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Unit step-size

• Now, assume that the gradient condition (GC)

‖∇f(xk)‖∇2f(xk)−1 ≤ 6σ3/2

L ( 12 − α)

holds, then we can continue the inequality as

f(xk+1) ≤ f(xk)− 1
2
‖∇f(xk)‖2∇2f(xk)−1 + L

6σ3/2 ‖∇f(xk)‖3∇2f(xk)−1

f(xk)− 1
2
‖∇f(xk)‖2∇2f(xk)−1 + ( 1

2
− α)‖∇f(xk)‖2∇2f(xk)−1

≤ f(xk)− α‖∇f(xk)‖2∇2f(xk)−1

this guarantees that backtracking condition holds if (GC) holds

• Backtracking analysis implies

‖∇f(xk)‖∇2f(xk)−1 → 0

as k →∞, so (GC) will eventually be satisfied
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Quasi-Newton methods

• Mimic Newton’s method but with less computational effort

• Approximate Hessian by Hk ≈ ∇2f(xk) to get

xk+1 = xk − γkH−1k ∇f(xk)

where f : Rn → R is twice continuously differentiable

• Select γk using backtracking (as in Newton’s method)

• Many schemes for finding Hk, will cover BFGS1

1 BFGS: Broyden-Fletcher-Goldfarb-Shanno
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Secant condition

• Consider quadratic approximation of the function f

f̂xk
(x) = f(xk) +∇f(xk)T (x− xk) + 1

2‖xk − x‖
2
Hk

• Gradients coincide at xk: ∇f̂xk
(xk) = ∇f(xk)

• Secant condition: Let Hk be such that

∇f̂xk
(xk−1) = ∇f(xk−1),

which is satisfied when secant condition holds:

Hk(xk − xk−1) = ∇f(xk)−∇f(xk−1)

Proof: differentiate f̂xk
(w.r.t x) and evaluate at xk−1

(∇f(xk−1),−1) (∇f(xk),−1)

f̂xk (x)

xkxk−1

x
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Quasi-Newton update

• Define sk = xk − xk−1 and yk = ∇f(xk)−∇f(xk−1), then

Hksk = yk

is secant condition
• Quasi-Newton: select Hk such that secant condition satisfied

• Hk contains
• n2 variables in general case
• n(n+ 1)/2 variables if Hk is also enforced to be symmetric

• secant condition contains only n constraints ⇒ underdetermined
• Select Hk “close” to Hk−1 subject to,

• secant condition holds
• possible symmetry enforcing constraint Hk = HT

k

minimize
Hk

D(Hk, Hk−1)

subject to Hksk = yk // secant condition

Hk = HT
k // symmetry constraint

where D measures distance between Hk and Hk−1

• Often initialized as H0 = I

27



Different choices of D

• A method called Broyden method is obtained by
• D(Hk, Hk−1) = ‖Hk −Hk−1‖2F
• without symmetry constraint

where
• Hk not necessarily symmetric and positive definite

• A method called BFGS is obtained by
• D(Hk, Hk−1) = tr(H−1

k−1Hk)− log det(H−1
k−1Hk)− n

• with symmetry constraint

where
• Cost called relative entropy
• Hk is symmetric and positive definite (under some assumptions)

• BFGS is preferred over Broyden for smooth minimization
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The BFGS Hessian inverse update formula

• Solving BFGS problem gives Hessian inverse H−1k = Bk update:

Bk = (I − sky
T
k

yTk sk
)Bk−1(I −

yks
T
k

yTk sk
) +

sks
T
k

yTk sk

• Using inverse Bk is preferrable, since the algorithm becomes

xk+1 = xk − γkBk∇f(xk)

and the matrix inversion is avoided

• Cheaper than Newton’s method, but requires storing Bk ∈ Rn×n
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Evaluating direction

Let (B+ = Bk, B = Bk−1, s = sk, y = yk), then B+g satisfies

B+g = (I − s yT

yT s
)B (g − y s

T g

yT s︸︷︷︸
α

)

︸ ︷︷ ︸
q︸ ︷︷ ︸
p︸ ︷︷ ︸

β

+s
sT g

yT s︸︷︷︸
α

= p− sβ + sα = p+ s(α− β)

where

α =
sT g

yT s
∈ R q = g − yα ∈ Rn p = Bq ∈ Rn β =

yT p

yT s
∈ R
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Implicit form BFGS

• Instead of storing Bk, we store all sl and yl for l = {1, . . . , k}
• Recursively use previous update k times to get:

1. Let q = ∇f(xk)
2. For l = k, . . . , 1 do

(a) Compute αl =
sTl q

yT
l
sl

(b) Update q = q − αlyl

3. Let p = B0q
4. For l = 1, . . . , k do

(a) Let βl =
yTl p

yT
l
sl

(b) Update p = p+ (αl − βl)sl

where final p = Bk∇f(xk)
• Memory requirement: 2nk, grows with iteration k

• Inefficient implementation for BFGS, but used for LBFGS
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LBFGS – Limited memory BFGS

• LBFGS is implicit BFGS but look only m step back in history

• Algorithm cuts loops in two-loop procedure to be of length m

1. Let q = ∇f(xk)
2. For l = k, . . . , k −m+ 1 do

(a) Compute αl =
sTl q

yT
l
sl

(b) Update q = q − αlyl

3. Let p = B0
kq

4. For l = k −m+ 1, . . . , k do

(a) Let βl =
yTl p

yT
l
sl

(b) Update p = p+ (αl − βl)sl

where final p is direction: xk+1 = xk − γkp
• Common initialization: B0

k = λkI for some λk > 0

• Often very small m ∈ {3, . . . , 10} performs very well

• Memory requirement: 2nm (compared to n2 for BFGS)
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Example – Logistic regression

• Logistic regression with θ = (w, b):

minimize
θ

N∑
i=1

log(1 + ew
Tφ(xi)+b)− yi(wTφ(xi) + b) + λ

2 ‖w‖
2
2

on the following data set (from logistic regression lecture)
• Polynomial features of degree 6, Tikhonov regularization λ = 0.01
• Number of decision variables: 28
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Algorithms

Compare the following algorithms, all with backtracking:

1. Gradient method

2. Gradient method with fixed diagonal scaling

3. Gradient method with fixed full scaling

4. Newton’s method

5. BFGS

6. Limited-memory BFGS with buffer size m = 3
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Fixed scaling methods

• Logistic regression gradient and Hessian satisfy

∇f(θ) = XT (σ(Xθ)− Y ) + λw ∇2f(θ) = XTσ′(Xθ)X + λIw

where σ is the (vector-version of) sigmoid, and Iw(w, b) = w

• The gradient of the sigmoid is 0.25-Lipschitz continuous

• Gradient method with fixed full scaling (3.) uses

Hk = H = 0.25XTX + λIw

• Gradient method with fixed diagonal scaling (2.) uses

Hk = H = diag(0.25XTX + λIw)
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Standard gradient method with backtracking (GM)
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Gradient method with diagonal scaling (GM DS)

GM
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Gradient method with full matrix scaling (GM FS)

GM
GM DS
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

Newtons method with backtracking (NM)
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GM FS
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

BFGS with backtracking (BFGS)
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Example – Numerics

Logistic regression polynomial features of degree 6, λ = 0.01

LBFGS with backtracking and buffer length m = 3 (LBFGS)

GM
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Comments

• We have only compared number of iterations

• Iteration cost in Newton and BFGS much higher than for GM

• Iteration cost for LBFGS similar to for GM

• LBFGS performs very well for smooth problems
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