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Conjugate Functions



Conjugate function — Definition

® The conjugate function of f : R” — R U {oo} is defined as
f*(s) :=sup (sTx — f(x))
xT

® Implicit definition via optimization problem



Conjugate function properties

® Let a,(s) = sTx — f(x) be affine function parameterized by z:
f(s) = sup az(s)

is supremum of family of affine functions

® Epigraph of f* is intersection of epigraphs of (below three) a,

epif*

\ / et

ag,(s)

az (s)

® f* convex: epigraph intersection of convex halfspaces epiay,
® f* closed: epigraph intersection of closed halfspaces epia,



Conjugate interpretation

® Conjugate f*(s) defines affine minorizer to f with slope s:

f(=)

sTa — f*(s)

¥

7f*9)/ (5’71)

where — f*(s) decides constant offset to get support
[ ] Why?

f (s) = bup (s x— f(z)) & f*(s) > stz — f(z) for all z
& f(x) > sTa — f*(s) forall x

® Maximizing argument x* gives support: f(z*) = sTa* — f*(s)
® We have f(z*) = sTz* — f*(s) if and only if s € Of(z*)



Consequence

® Conjugate of f and envf are the same, i.e., f* = (envf)*

f(@) envf(x)

\/\J sTa — f*(s) \/% ST — £5(s)

v
S,*l) 3771)

® Functions have same supporting affine functions

® Epigraphs have same supporting hyperplanes
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Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(-2,=1)




Example — Absolute value

e Compute conjugate of f(x) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis
|| 1*(s)

00 - X~ - -

(=2,-1)

Slope, s =—2 f*(s) = o0



Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)




Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)




Example — Absolute value

e Compute conjugate of f(x) = |z|
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Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(0, —1)
Slope, s =0 f*(s)
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Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(1, =1)

Slope, s =1 f*(s)



Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(1, =1)

Slope, s =1 f*(s) =0



Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(2, -1)

Slope, s =2 f*(s)



Example — Absolute value

e Compute conjugate of f(x) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(2, -1)

Slope, s =2 f*(s) = o0

o Conjugate is f*(s) = ¢[_1,17(s)



A nonconvex example

® Draw conjugate of f (f(xz) = oo outside points)
f(=)

(0,0.2)
(-1,0) (1,0)

10



A nonconvex example

® Draw conjugate of f (f(xz) = oo outside points)
f(=z) f7(s)

(0,02)
(=1,0) (1,0) A 02

® Draw all affine a,(s) and select for each s the max to get f*(s)
£ (s) = sup(sz — f(x)) = max(—s — 0,05 — 0.2,s — 0)

= max(—s, —0.2,s) = |s]

10



Example — Quadratic functions

Let g(z) = 227 Qx + pTz with Q positive definite (invertible)
® Gradient satisfies Vg(z) = Qxz +p
® Fermat's rule for g*(s) = sup, (s’ — 327 Qz — pTz):
0=s—-Qr—p & x=Q '(s—p)
®* So
9' () =5"Q 7 (s—p) —5(s —p)"QT'QQ (s —p) +»" Q7 (s — p)
=3(5-p)"Q ' (s —p)

11



Example — A piece-wise linear function

e Consider

—r—1 fa<-1

g(x) =40 if z € [—1,1]
z—1 ifx>1

e Subdifferential satisfies

1 ifr<—1 99(x)

[~1,0] ifz=—1 I
dg(x) =<0 if v € (—1,1)

0,1 ifa=1

1 ifx>1



Example cont’d

5

use g*(s) = sz — g(x) if s € dg(x):

x<—-1: s=-1,hence g*"(-1) = -1z — (-2 —1) =1
x=—1: s € [-1,0] hence g*(s) = —s — 0= —s

z € (—1,1): s=0hence ¢g*(0) =0z —0=0
x=1:s€[0,1] hence g*(s) =s—0=3s
z>1:s=1lhenceg*(l)=z—(z—-1)=1

® Thatis

7 (5) = {—s if s €[—1,0]

s ifsel0,1]

® For s < —1ands>1, g*(s) = oco:

¢ s<—l:iletx=t— —ocoand g*(s) > ((s+ 1)t+1) > 0
e s>1l:letz=t—o0and g*(s) > ((s—1)t+1) >

13



Example — Separable functions

® Let f(z) =) ., fi(x;) be a separable function, then

is also separable
® Proof:

fr(s)= SI;P(STJJ - Zfi(ﬂfz‘))
= Slip(Z(Sz‘!Ei — fi(w4)))

i=1

= Z sup(siz; — fi(2:))
i=1

= fis)
=1

14



Example — 1-norm

Let f(z) = ||lz|[v = X1, |=i| be the 1-norm
It is a separable sum of absolute values
Use separable sum formula and that | - [* = ¢ 3

Zf (s1) =D v-1(s ):{O if ma|si]) < 1

oo else
i=1

We have max;(|s;|) = |50, let

Boo(r) = {s: [|sllec <7}

be the infinity norm ball of radius r, then

(s) = tBo)(s)

is the indicator function for the unit infinity norm ball

15
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Biconjugate

® Biconjuate f** := (f*)* is conjugate of conjugate
f(x) = sup(z’s — f*(s))
S

® For every z, it is largest value of all affine minorizers

® Why?:
e 275 — f*(s): supporting affine minorizer to f with slope s

® f**(x) picks largest over all these affine minorizers evaluated at x

17



Biconjugate and convex envelope

® Biconjugate is closed convex envelope of f

ok
[ (z)
/
’
\ ;.
\ ///
7 €T
R\ -
~ N . -
SN “2d
N - _ -
=~ =7,
o -
- T T TNW T~ -~ s 7y
N s 7z
N0~ - > 77
- - TS~

o f** < fand f** = fif and only if f (closed and) convex

18



Biconjugate — Example

® Draw the biconjugate of f (f(x) = oo outside points)
f(x)

(0,02)
(-Lo) | (10

T

19



Biconjugate — Example

® Draw the biconjugate of f (f(x) = oo outside points)

f(=)

0,02)

(-Lo) | (10

[ (z)

K - - - - - -
A

xT

® Biconjugate is convex envelope of f

® We found before f*(s) =

® Therefore also 1, ;(s) =

|, and now (f*)*(z) = t[—1,1)(x)
s

(since f* = (env ) = (f*)* = )

19
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Fenchel-Young's inequality

® Going back to conjugate interpretation:

f(=)

sTa — f*(s)

s

(57 71)

® Fenchel-Youngs's inequality: f(z) > s”a — f*(s) for all 2, s
® Follows immediately from definition: f*(s) = sup,(s?x — f(x))

21



Fenchel-Young's equality

® When is do we have equality in Fenchel-Young?
f(@) = 2 — f*(s)

f(=)

Ta— f*(s)

L

(57 _1)

® Fenchel-Young's equality and equivalence:

‘f(a:*) = sTx* — f*(s) holds if and only if s € Of(x*)

22



Proof — Fenchel-Young’s equality

| f(x) = " — f*(s) holds if and only if s € Of (x) |

® s c Jf(x) if and only if (by defintion of subgradient)

f(y) > f(x)+ st (y — ) forall y
& sta — f(z) > sTy — f(y) forall y
= s'e— f(a) 2 sup (s"y = f(y)

\

& ste— f(x) > f*(s)

which is Fenchel-Young's inequality with inequality reversed

® Fenchel-Young's inequality always holds:
f(s) 2 sTa — f(a)

so we have equality if and only if s € 9f(x)

23



A subdifferential formula for convex f

Assume f closed convex, then 0f(z) = Argmax,(sTx — f*(s)) ‘

® Since f** = f, we have f(x) = sup,(z?s — f*(s)) and
s* € Argmax(2Ts — f*(s)) <= f(x) =2Ts" — f*(s)

—= s edf(x)

® The last equivalence is from previous slide

24



Subdifferential formulas for f*

® For general f, we have that

df*(s) = Argmax(sTx — f**(z))

x

by previous formula and since f* closed and convex

® For closed convex f, we have, since f = f**, that

01" (s) = Argmax(s”s — /(@)

25



Relation between 0f and 0f* — General case

‘5 € 0f (z) implies that = € 9f*(s) ‘

® Since f** < f and s € 9f(z), Fenchel-Young's equality gives:

0=f*(s)+ f(x) —sTax> f*(s)+ f*(x) —sTx >0

where last step is Fenchel-Young's inequality
® Hence f*(s) + f**(x) — sTx =0 and FY = z € 9f*(s)

26



Inverse relation between 0f and 0f* — Convex case

Suppose f closed convex, then s € 0f(z) < = € Jf*(s) ‘

® Using implication on previous slide twice and f** = f:
sedf(r) =2 €df(s)=s€df(z)=se€df(x)
® Another way to write the result is that for closed convex f:
aft =(9f)~"

(Definition of inverse of set-valued A: x € A™lu < u € Ax)

27



Example 1 — Relation between 0f and 0f*

® What is 0f* for below 0f7?

s € 0f(x)



Example 1 — Relation between 0f and 0f*

® What is 0f* for below 0f7?

s € 0f(x)

x € f*(s)

e Since f* = (0f)~ !, we flip the figure

28



Example 2 — Relation between 0f and 0f*

s € 0f(x)

x € df*(s)

® region with slope o in 9f(x) < region with slope < in 0f*(s)

® Implication: df o-strong monotone < 0 f*(s) o-cocoercive?
(Recall: o-cocoercivity < L-Lipschitz and monotone)

o

29
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Cocoercivity and strong monotonicity

df : R™ — 2%" maximal monotone and o-strongly monotone
<~
of* =V f*:R™ — R" single-valued and o-cocoercive

o-strong monotonicity: for all u € df(z) and v € 9f(y)
(u—0)T(x—-y) >0olz—yl3 (1)

or equivalently for all x € 9f*(u) and y € Of*(v)
Jf* is single-valued:

® Assume z € 9f"(u) and y € f*(u), then Ihs of (1) 0 and z =y
V f* is o-cocoercive: plug z = V f*(u) and y = V f*(v) into (1)
That f* has full domain follows from Minty's theorem

31



Duality correspondance

Let f: R™ — RU{oo}. Then the following are equivalent:

(i) f is closed and o-strongly convex
(i) Of is maximally monotone and o-strongly monotone
(i) Vf* is o-cocoercive
(iv) Vf* is maximally monotone and %—Lipschitz continuous
(v) f* is closed convex and satisfies descent lemma (is 1-smooth)

where Vf* : R" - R™ and f*:R"” - R
Comments:
® (i) < (ii) and (iii) < (iv) < (v): Previous lecture
e (ii) < (iii): This lecture
® Since f = f** the result holds with f and f* interchanged
® Full proof available on course webpage

32



Example — Proximal operator is 1-cocoercive

Assume g closed convex, then prox., is 1—cocoercive‘

® Prox definition prox.,(z) = argmin, (g(z) + %Hx —2|13)

® Letr =~g+ 3| - |13, then

prox,s(2) = argmin(g(2) + 55 [l - =[3)

= argmax(—yg(z) — zllo — 2[|3)

= argmax (2’ @ — (3|23 + 79(2)))
x

= argmax(z’z — r(z))

=Vr*(z)

where last step is subdifferential formula for r* for convex r

® Now, r is 1-strongly convex and Vr* = prox,

g

is 1-cocoercive

33



Example — Proximal operator for strongly convex g

Assume g is o-strongly convex, then prox_, is (1 + yo)-cocoercive

® Let 7 =g+ 3 - |13, and use prox. ,(z) = Vr*(2)

® 7 is (14 ~o)-strongly convex and Vr* is (1 + ~yo)-cocoercive

34
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Moreau decomposition — Statement

Assume g closed convex, then prox,(z) + prox,.(z) = 2

® When g scaled by v > 0, Moreau decomposition is
z = prox,,(z) + prox(,q« (2) = prox,,(z) + yprox, -1, (v 12)

(since prox gy« = YProx,—i,. 0 v~ 11d)

® Don't need to know g* to compute prox., -

36



Moreau decomposition — Proof

® letu=z—=x

® Fermat's rule: = = prox,(z) if and only if

0€dg(z)+z—=z

(I A

=

z—x € 0g(x)

u € dg(x)

x € 09" (u)

z—u € 99" (u)
0€dg"(u)+u—=z

if and only if u = prox,.(z) by Fermat's rule

® Using z = = + u, we get

z = +u = prox,(z) + prox,.(z)

37



Optimality Conditions and Duality

38
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Composite optimization problem

® Consider primal composite optimization problem
minimize f(Lz) 4+ g(x)

where f, g closed convex and L is a matrix

® We will derive primal-dual optimality conditions and dual problem

40



Primal optimality condition

Let f:R™ =R, g: R* = R, L € R™*" with f, g closed convex
and assume CQ, then:

minimize f(Lz) + g(z)
is solved by x* € R™ if and only if x* satisfies

0 c LTof(Lz*) 4 dg(x*)

® Optimality condition implies that vector s exists such that
se LTof(La*) and — s € dg(x™)

® So CQ implies a subgradient exists for both functions at solution

41



Primal-dual optimality condition 1

® Introduce dual variable u € 9f(Lx), then optimality condition

0 ¢ LT of(Lx) +0g(x)
N——
1

is equivalent to
je df(La)
—LT ) e dg(x)

® This is a necessary and sufficient primal-dual optimality condition

® (Primal-dual since involves primal = and dual p variables)

42



Primal-dual optimality condition 2

® Primal-dual optimality condition

p € of(Lx)
—L"p € dg(x)

® Using subdifferential inverse:
we of(Lx) = Lx € 0f*(p)
gives equivalent primal dual optimality condition

Lz € 0f"(p)
—L"p € dg(x)

43



Dual optimality condition

® Using subdifferential inverse on other condition
—L"p € 9g(x) — z € dg*(—LT )
gives equivalent primal dual optimality condition

Lx € 0f* ()
z € dg" (=L p)
® This is equivalent to that:
0€df*(u) = Lag"(—L"p)
N————’

which is a dual optimality condition since it involves only

44



Dual problem

® The dual optimality condition
0 € df* (1) — LOg" (L™ 1)
is a sufficient condition for solving the dual problem
minimize f*(p) + ¢*(=L" 1)

® Have also necessity under CQ on dual, which is mild

45



Why dual problem?

® Sometimes easier to solve than primal

® Only useful if primal solution can be obtained from dual

46



Solving primal from dual

Assume f, g closed convex and CQ holds
Assume optimal dual p known: 0 € f*(u) — LAg*(—L7T i)
Optimal primal = must satisfy any and all primal-dual conditions:

€ Of(Lx) Lz € 0f*(n)
—L"p € dg(x) —L*p € dg(x)
p € of(Lx) Lz € 0f*(p)

x € 9g*(=L"p) x € 99" (=L p)

If one of these uniquely characterizes z, then must be solution:

® " is differentiable at — L7 for dual solution s

® f* is differentiable at dual solution p and L invertible
e ...

47



Optimality conditions — Summary

Assume f, g closed convex and that CQ holds
Problem min, f(Lx) + g(x) is solved by x if and only if

0¢€ LTof(Lx) + dg(x)

Primal dual necessary and sufficient optimality conditions:

p € of(Lx) Lz € 0f*(p)
—L"p e dg(x) —L"p e dg(x)
w € of (L) Lz € 0f*(n)

x € dg* (L") x € dg*(—L" 1)

Dual optimality condition
0€df*(u) — Lag*(—L"p)

solves dual problem min,, f*(u) + g* (=L 1)

48
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Concave dual problem

We have defined dual as convex minimization problem
minimize f* (1) + g* (=L p)
I
Dual problem can be written as concave maximization problem:

maximize — f*(u) — g* (=L 1)
o
Same solutions but optimal values minus of each other
Concave formulation gives nicer optimal value comparisons

To compare, we let the primal and dual optimal values be

p* =inf(f(L2) +g(z))  and  d*=sup(—f"(u) —g"(~L" 1))

o

50



Weak duality

‘ Weak duality always holds meaning p* > d* ‘

® \We have by Fenchel-Young's inequality for all p and «:

)+ 9" (L") > p" La — f(La) + (=L" )"z — g(x)
= —f(Lz) — g(x)

® Negate, maximize lhs over y, minimize rhs over z, to get

d* = sip(*f*(u) —g" (L") < inf(f(Lx) + g(z)) = p”

51



Strong duality

Assume f, g closed convex, solution z* exists, and CQ
then strong duality holds meaning p* = d*

® Dual p* and primal x* solutions exist such that
w* e df(Lx¥) and — LT p* € 9g(z*)
® \We have by Fenchel-Young's equality:

p* = f(La") + g(z7)
= (W) La* = f*(u) + (LT p*) """ (- L")
— —f*(ﬂ*) —g*(—LTM*) = d*

52



Dual problem gives lower bound

® Consider again concave dual problem with optimal value

d* = sip(*f*(u) —g" (L")

® We know that for all dual variables i
p*=d > —f () — 9" (~L"p)

® So can find lower bound to p* by evaluating dual objective
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