Subdifferentials and Proximal Operators

Pontus Giselsson

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Gradients of convex functions

- Recall: A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \mathbb{R}^{n}$

- Function f has for all $x \in \mathbb{R}^{n}$ an affine minorizer that:
- has slope s defined by ∇f
- coincides with function f at x
- defines normal $(\nabla f(x),-1)$ to epigraph of f
- What if function is nondifferentiable?

Subdifferentials and subgradients

- Subgradients s define affine minorizers to the function that:

- coincide with f at x
- define normal vector $(s,-1)$ to epigraph of f
- can be one of many affine minorizers at nondifferentiable points x
- Subdifferential of $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ at x is set of vectors s satisfying

$$
\begin{equation*}
f(y) \geq f(x)+s^{T}(y-x) \quad \text { for all } y \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

- Notation:
- subdifferential: $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ (power-set notation $2^{\mathbb{R}^{n}}$)
- subdifferential at $x: \partial f(x)=\{s:(1)$ holds $\}$
- elements $s \in \partial f(x)$ are called subgradients of f at x

Relation to gradient

- If f differentiable at x and $\partial f(x) \neq \emptyset$ then $\partial f(x)=\{\nabla f(x)\}$:
- If f convex but not differentiable at $x \in \operatorname{int} \operatorname{dom} f$, then

$$
\partial f(x)=\operatorname{cl}(\operatorname{conv} S(x))
$$

where $S(x)$ is set of all s such that $\nabla f\left(x_{k}\right) \rightarrow s$ when $x_{k} \rightarrow x$

- In general for convex $f: \partial f(x)=\operatorname{cl}(\operatorname{conv} S(x))+N_{\operatorname{dom} f}(x)$

Subgradient existence - Convex setting

For finite-valued convex functions, a subgradient exists for every x

- In extended-valued setting, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be convex:
(i) Subgradients exist for all x in relative interior of $\operatorname{dom} f$
(ii) Subgradients sometimes exist for x on relative boundary of $\operatorname{dom} f$
(iii) No subgradient exists for x outside $\operatorname{dom} f$
- Examples for second case, boundary points of $\operatorname{dom} f$:

$x^{2}+\iota_{[-2,2]}(x)$
- No subgradient (affine minorizer) exists for left function at $x=1$

Subgradient existence - Nonconvex setting

- Function can be differentiable at x but $\partial f(x)=\emptyset$

- $x_{1}: \partial f\left(x_{1}\right)=\{0\}, \nabla f\left(x_{1}\right)=0$
- $x_{2}: \partial f\left(x_{2}\right)=\emptyset, \nabla f\left(x_{2}\right)=0$
- $x_{3}: \partial f\left(x_{3}\right)=\emptyset, \nabla f\left(x_{3}\right)=0$
- Gradient is a local concept, subdifferential is a global property

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Monotonicity of subdifferential

- Subdifferential operator is monotone:

$$
\left(s_{x}-s_{y}\right)^{T}(x-y) \geq 0
$$

for all $s_{x} \in \partial f(x)$ and $s_{y} \in \partial f(y)$

- Proof: Add two copies of subdifferential definition

$$
f(y) \geq f(x)+s_{x}^{T}(y-x)
$$

with x and y swapped

- $\partial f: \mathbb{R} \rightarrow 2^{\mathbb{R}}$: Minimum slope 0 and maximum slope ∞

Monotonicity beyond subdifferentials

- Let $A: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ be monotone, i.e.:

$$
(u-v)^{T}(x-y) \geq 0
$$

for all $u \in A x$ and $v \in A y$

- If $n=1$, then $A=\partial f$ for some function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$
- If $n \geq 2$ there exist monotone A that are not subdifferentials

Maximal monotonicity

- Let the set $\operatorname{gph} \partial f:=\{(x, u): u \in \partial f(x)\}$ be the graph of ∂f
- ∂f is maximally monotone if no other function g exists with

$$
\operatorname{gph} \partial f \subset \operatorname{gph} \partial g,
$$

with strict inclusion

- A result (due to Rockafellar):
f is closed convex if and only if ∂f is maximally monotone

Minty's theorem

- Let $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$ and $\alpha>0$
- ∂f is maximally monotone if and only if range $(\alpha I+\partial f)=\mathbb{R}^{n}$

- Interpretation: No "holes" in gph ∂f

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Example - Absolute value

- The absolute value:

- Subdifferential
- For $x>0, f$ differentiable and $\nabla f(x)=1$, so $\partial f(x)=\{1\}$
- For $x<0, f$ differentiable and $\nabla f(x)=-1$, so $\partial f(x)=\{-1\}$
- For $x=0, f$ not differentiable, but since f convex:

$$
\partial f(0)=\operatorname{cl}(\operatorname{conv} S(0))=\operatorname{cl}(\operatorname{conv}(\{-1,1\})=[-1,1]
$$

- The subdifferential operator:

A nonconvex example

- Nonconvex function:

- Subdifferential
- For $x>b, f$ differentiable and $\nabla f(x)=1$, so $\partial f(x)=\{1\}$
- For $x<a, f$ differentiable and $\nabla f(x)=-1$, so $\partial f(x)=\{-1\}$
- For $x \in(a, b)$, no affine minorizer, $\partial f(x)=\emptyset$
- For $x=a, f$ not differentiable, $\partial f(x)=[-1,0]$
- For $x=b, f$ not differentiable, $\partial f(x)=[0,1]$
- The subdifferential operator:

Example - Separable functions

- Consider the separable function $f(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$
- Subdifferential

$$
\partial f(x)=\left\{s=\left(s_{1}, \ldots, s_{n}\right): s_{i} \in \partial f_{i}\left(x_{i}\right)\right\}
$$

- The subgradient $s \in \partial f(x)$ if and only if each $s_{i} \in \partial f_{i}\left(x_{i}\right)$
- Proof:
- Assume all $s_{i} \in \partial f\left(x_{i}\right):$

$$
f(y)-f(x)=\sum_{i=1}^{n} f_{i}\left(y_{i}\right)-f_{i}\left(x_{i}\right) \geq \sum_{i=1}^{n} s_{i}\left(y_{i}-x_{i}\right)=s^{T}(y-x)
$$

- Assume $s_{j} \notin \partial f\left(x_{j}\right)$ and $x_{i}=y_{i}$ for all $i \neq j$:

$$
f_{j}\left(y_{j}\right)-f_{j}\left(x_{j}\right)<s_{j}\left(y_{j}-x_{j}\right)
$$

which gives

$$
f(y)-f(x)=f_{j}\left(y_{j}\right)-f_{j}\left(x_{j}\right)<s_{j}\left(y_{j}-x_{j}\right)=s^{T}(y-x)
$$

Example - 1-norm

- Consider the 1-norm $f(x)=\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- It is a separable function of absolute values
- From previous examples, we conclude that the subdifferential is

$$
\partial f(x)=\left\{\left(s_{1}, \ldots, s_{n}\right):\left\{\begin{array}{ll}
s_{i}=-1 & \text { if } x_{i}<0 \\
s_{i} \in[-1,1] & \text { if } x_{i}=0 \\
s_{i}=1 & \text { if } x_{i}>0
\end{array}\right\}\right.
$$

Example - 2-norm

- Consider the 2-norm $f(x)=\|x\|_{2}=\sqrt{\|x\|_{2}^{2}}$
- The function is differentiable everywhere except for when $x=0$
- Divide into two cases; $x=0$ and $x \neq 0$
- Subdifferential for $x \neq 0: \partial f(x)=\{\nabla f(x)\}$:
- Let $h(u)=\sqrt{u}$ and $g(x)=\|x\|_{2}^{2}$, then $f(x)=(h \circ g)(x)$
- The gradient for all $x \neq 0$ by chain rule (since $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$):

$$
\nabla f(x)=\nabla h(g(x)) \nabla g(x)=\frac{1}{2 \sqrt{\|x\|_{2}^{2}}} 2 x=\frac{x}{\|x\|_{2}}
$$

Example cont'd - 2-norm

Subdifferential of $\|x\|_{2}$ at $x=0$
(i) educated guess of subdifferential from $\partial f(0)=\operatorname{cl}(\operatorname{conv} S(0))$

- recall $S(0)$ is set of all limit points of $\left(\nabla f\left(x_{k}\right)\right)_{k \in \mathbb{N}}$ when $x_{k} \rightarrow 0$
- let $x_{k}=t^{k} d$ with $t \in(0,1)$ and $d \in \mathbb{R}^{n} \backslash 0$, then $\nabla f\left(x_{k}\right)=\frac{d}{\|d\|_{2}}$
- since d arbitrary, $\left(\nabla f\left(x_{k}\right)\right)$ can converge to any unit norm vector
- so $S(0)=\left\{s:\|s\|_{2}=1\right\}$ and $\partial f(0)=\left\{s:\|s\|_{2} \leq 1\right\}$?
(ii) verify using subgradient definition $f(y) \geq f(0)+s^{T}(y-0)=s^{T} y$
- Let $\|s\|_{2}>1$, then for, e.g., $y=2 s$

$$
s^{T} y=2\|s\|_{2}^{2}>2\|s\|_{2}=f(y)
$$

so such s are not subgradients

- Let $\|s\|_{2} \leq 1$, then for all y :

$$
s^{T} y \leq\|s\|_{2}\|y\|_{2} \leq\|y\|_{2}=f(y)
$$

so such s are subgradients

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Strong convexity revisited

- Recall that f is σ-strongly convex if $f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$ is convex
- If f is σ-strongly convex then

$$
f(y) \geq f(x)+s^{T}(y-x)+\frac{\sigma}{2}\|x-y\|_{2}^{2}
$$

holds for all $x \in \operatorname{dom} \partial f, s \in \partial f(x)$, and $y \in \mathbb{R}^{n}$

- The function has convex quadratic minorizers instead of affine

- Multiple lower bounds at x_{2} with subgradients $s_{2,1}$ and $s_{2,2}$

Strong monotonicity

- If $f \sigma$-strongly convex function, then ∂f is σ-strongly monotone:

$$
\left(s_{x}-s_{y}\right)^{T}(x-y) \geq \sigma\|x-y\|_{2}^{2}
$$

for all $s_{x} \in \partial f(x)$ and $s_{y} \in \partial f(y)$

- Proof: Add two copies of strong convexity inequality

$$
f(y) \geq f(x)+s_{x}^{T}(y-x)+\frac{\sigma}{2}\|x-y\|_{2}^{2}
$$

with x and y swapped

- ∂f is σ-strongly monotone if and only if $\partial f-\sigma I$ is monotone
- $\partial f: \mathbb{R} \rightarrow 2^{\mathbb{R}}$: Minimum slope σ and maximum slope ∞

Strongly convex functions - An equivalence

The following are equivalent for $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$
(i) f is closed and σ-strongly convex
(ii) ∂f is maximally monotone and σ-strongly monotone

Proof:
(i) \Rightarrow (ii): we know this from before
(ii) \Rightarrow (i): (ii) $\Rightarrow \partial f-\sigma I=\partial\left(f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}\right)$ maximally monotone $\Rightarrow f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$ closed convex
$\Rightarrow f$ closed and σ-strongly convex

Smooth convex functions

- A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and β-smooth if

$$
\begin{aligned}
& f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|x-y\|_{2}^{2} \\
& f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
\end{aligned}
$$

hold for all $x, y \in \mathbb{R}^{n}$

- f has convex quadratic majorizers and affine minorizers

- Quadratic upper bound is called descent lemma

Cocoercivity of gradient

- Gradient of smooth convex function is monotone and Lipschitz

$$
\begin{array}{r}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0 \\
\|\nabla f(y)-\nabla f(x)\|_{2} \leq \beta\|x-y\|_{2}
\end{array}
$$

- $\nabla f: \mathbb{R} \rightarrow \mathbb{R}$: Minimum slope 0 and maximum slope β

- Actually satisfies the stronger $\frac{1}{\beta}$-cocoercivity property:

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{1}{\beta}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
$$

due to the Baillon-Haddad theorem

Smooth convex functions - An equivalence

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. The following are equivalent:
(i) ∇f is $\frac{1}{\beta}$-cocoercive
(ii) ∇f is maximally monotone and β-Lipschitz continuous
(iii) f is closed convex and satisfies descent lemma (is β-smooth)

Will later connect smooth convexity and strong convexity via conjugates

Smooth strongly convex functions

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable
- f is β-smooth and σ-strongly convex with $0<\sigma \leq \beta$ if

$$
\begin{aligned}
& f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|x-y\|_{2}^{2} \\
& f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{\sigma}{2}\|x-y\|_{2}^{2}
\end{aligned}
$$

hold for all $x, y \in \mathbb{R}^{n}$

- f has quadratic minorizers and quadratic majorizers

- We say that the ratio $\frac{\beta}{\sigma}$ is the condition number for the function

Gradient of smooth strongly convex function

- Gradient of β-smooth σ-strongly convex function f satisfies

$$
\begin{aligned}
\|\nabla f(y)-\nabla f(x)\|_{2} & \leq \beta\|x-y\|_{2} \\
(\nabla f(x)-\nabla f(y))^{T}(x-y) & \geq \sigma\|x-y\|_{2}^{2}
\end{aligned}
$$

so is β-Lipschitz continuous and σ-strongly monotone
$\bullet \nabla f: \mathbb{R} \rightarrow \mathbb{R}$: Minimum slope σ and maximum slope β

- Actually satisfies this stronger property:

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{1}{\beta+\sigma}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}+\frac{\sigma \beta}{\beta+\sigma}\|x-y\|_{2}^{2}
$$

for all $x, y \in \mathbb{R}^{n}$

Proof of stronger property

- f is σ-strongly convex if and only if $g:=f-\frac{\sigma}{2}\|\cdot\|_{2}^{2}$ is convex
- Since f is β-smooth g is $(\beta-\sigma)$-smooth
- Since g convex and $(\beta-\sigma)$-smooth, ∇g is $\frac{1}{\beta-\sigma}$-cocoercive:

$$
(\nabla g(x)-\nabla g(y))^{T}(x-y) \geq \frac{1}{\beta-\sigma}\|\nabla g(x)-\nabla g(y)\|_{2}^{2}
$$

which by using $\nabla g=\nabla f-\sigma I$ gives
$(\nabla f(x)-\nabla f(y))^{T}(x-y)-\sigma\|x-y\|_{2}^{2} \geq \frac{1}{\beta-\sigma}\|\nabla f(x)-\nabla f(y)-\sigma(x-y)\|_{2}^{2}$
which by expanding the square and rearranging is equivalent to

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{1}{\beta+\sigma}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}+\frac{\sigma \beta}{\beta+\sigma}\|x-y\|_{2}^{2}
$$

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Fermat's rule

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, then x minimizes f if and only if $0 \in \partial f(x)$

- Proof: x minimizes f if and only if

$$
f(y) \geq f(x)=f(x)+0^{T}(y-x) \quad \text { for all } y \in \mathbb{R}^{n}
$$

which by definition of subdifferential is equivalent to $0 \in \partial f(x)$

- Example: several subgradients at solution, including 0

Fermat's rule - Nonconvex example

- Fermat's rule holds also for nonconvex functions
- Example:

- $\partial f\left(x_{1}\right)=0$ and $\nabla f\left(x_{1}\right)=0$ (global minimum)
- $\partial f\left(x_{2}\right)=\emptyset$ and $\nabla f\left(x_{2}\right)=0$ (local minimum)
- For nonconvex f, we can typically only hope to find local minima

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Subdifferential calculus rules

- Subdifferential of sum $\partial\left(f_{1}+f_{2}\right)$
- Subdifferential of composition with matrix $\partial(g \circ L)$

Subdifferential of sum

If f_{1}, f_{2} closed convex and relint $\operatorname{dom} f_{1} \cap \operatorname{relint} \operatorname{dom} f_{2} \neq \emptyset$:

$$
\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}
$$

- One direction always holds: if $x \in \operatorname{dom} \partial f_{1} \cap \operatorname{dom} \partial f_{2}$:

$$
\partial\left(f_{1}+f_{2}\right)(x) \supseteq \partial f_{1}(x)+\partial f_{2}(x)
$$

Proof: let $s_{i} \in \partial f_{i}(x)$, add subdifferential definitions:

$$
f_{1}(y)+f_{2}(y) \geq f_{1}(x)+f_{2}(x)+\left(s_{1}+s_{2}\right)^{T}(y-x)
$$

i.e. $s_{1}+s_{2} \in \partial\left(f_{1}+f_{2}\right)(x)$

- If f_{1} and f_{2} differentiable, we have (without convexity of f)

$$
\nabla\left(f_{1}+f_{2}\right)=\nabla f_{1}+\nabla f_{2}
$$

Subdifferential of composition

$$
\begin{aligned}
& \text { If } f \text { closed convex and relint } \operatorname{dom}(f \circ L) \neq \emptyset: \\
& \qquad \partial(f \circ L)(x)=L^{T} \partial f(L x)
\end{aligned}
$$

- One direction always holds: If $L x \in \operatorname{dom} f$, then

$$
\partial(f \circ L)(x) \supseteq L^{T} \partial f(L x)
$$

Proof: let $s \in \partial f(L x)$, then by definition of subgradient of f :
$(f \circ L)(y) \geq(f \circ L)(x)+s^{T}(L y-L x)=(f \circ L)(x)+\left(L^{T} s\right)^{T}(y-x)$
i.e., $L^{T} s \in \partial(f \circ L)(x)$

- If f differentiable, we have chain rule (without convexity of f)

$$
\nabla(f \circ L)(x)=L^{T} \nabla f(L x)
$$

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Composite optimization problems

- We consider optimization problems on composite form

$$
\underset{x}{\operatorname{minimize}} f(L x)+g(x)
$$

where $f: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}, g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, and $L \in \mathbb{R}^{m \times n}$

- Can model constrained problems via indicator function
- This model format is suitable for many algorithms

A sufficient optimality condition

$$
\begin{align*}
& \text { Let } f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}} \text {, and } L \in \mathbb{R}^{m \times n} \text { then: } \\
& \qquad \begin{array}{l}
\text { minimize } f(L x)+g(x) \\
\text { is solved by every } x \in \mathbb{R}^{n} \text { that satisfies } \\
\qquad 0 \in L^{T} \partial f(L x)+\partial g(x)
\end{array} \tag{1}
\end{align*}
$$

- Subdifferential calculus inclusions say:

$$
0 \in L^{T} \partial f(L x)+\partial g(x) \subseteq \partial((f \circ L)(x)+g(x))
$$

which by Fermat's rule is equivalent to x solution to (1)

- Note: (1) can have solution but no x exists that satisfies (2)

A necessary and sufficient optimality condition

Let $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume relint $\operatorname{dom}(f \circ L) \cap$ relint $\operatorname{dom} g \neq \emptyset$ then:

$$
\begin{equation*}
\operatorname{minimize} f(L x)+g(x) \tag{1}
\end{equation*}
$$

is solved by $x \in \mathbb{R}^{n}$ if and only if x satisfies

$$
\begin{equation*}
0 \in L^{T} \partial f(L x)+\partial g(x) \tag{2}
\end{equation*}
$$

- Subdifferential calculus equality rules say:

$$
0 \in L^{T} \partial f(L x)+\partial g(x)=\partial((f \circ L)(x)+g(x))
$$

which by Fermat's rule is equivalent to x solution to (1)

- Algorithms search for x that satisfy $0 \in L^{T} \partial f(L x)+\partial g(x)$

A comment on constraint qualification

- The condition

$$
\text { relint } \operatorname{dom}(f \circ L) \cap \text { relint } \operatorname{dom} g \neq \emptyset
$$

is called constraint qualification and referred to as CQ

- It is a mild condition that rarely is not satisfied

solution
no $C Q$

Evaluating subgradients of convex functions

- Obviously need to evaluate subdifferentials to solve

$$
0 \in L^{T} \partial f(L x)+\partial g(x)
$$

- Explicit evaluation:
- If function is differentiable: ∇f (unique)
- If function is nondifferentiable: compute element in ∂f
- Implicit evaluation:
- Proximal operator (specific element of subdifferential)

Outline

- Subdifferential and subgradient - Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Proximal operators

Proximal operator - Definition

- Proximal operator of g defined as:

$$
\operatorname{prox}_{\gamma g}(z)=\underset{x}{\operatorname{argmin}}\left(g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2}\right)
$$

where $\gamma>0$ is a parameter

- Evaluating prox requires solving optimization problem
- For convex g, prox is well-defined and single-valued
- Why? Objective is strongly convex \Rightarrow argmin exists and is unique

Prox is generalization of projection

- Recall the indicator function of a set C

$$
\iota_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { otherwise }\end{cases}
$$

- Then

$$
\begin{aligned}
\operatorname{prox}_{\iota_{C}}(z) & =\underset{x}{\operatorname{argmin}}\left(\frac{1}{2}\|x-z\|_{2}^{2}+\iota_{C}(x)\right) \\
& =\underset{x}{\operatorname{argmin}}\left(\frac{1}{2}\|x-z\|_{2}^{2}: x \in C\right) \\
& =\underset{x}{\operatorname{argmin}}\left(\|x-z\|_{2}: x \in C\right) \\
& =\Pi_{C}(z)
\end{aligned}
$$

- Projection onto C equals prox of indicator function of C

Prox computes a subgradient

- Fermat's rule on prox definition: $x=\operatorname{prox}_{\gamma g}(z)$ if and only if

$$
0 \in \partial g(x)+\gamma^{-1}(x-z) \quad \Leftrightarrow \quad \gamma^{-1}(z-x) \in \partial g(x)
$$

Hence, $\gamma^{-1}(z-x)$ is element in $\partial g(x)$

- A subgradient $\partial g(x)$ where $x=\operatorname{prox}_{\gamma g}(z)$ is computed

Prox is 1 -cocoercive

- For convex g, the proximal operator is 1-cocoercive:

$$
(x-y)^{T}\left(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y)\right) \geq\left\|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y)\right\|_{2}^{2}
$$

- Proof
- Combine monotonicity of ∂g, that for all $z_{u} \in \partial g(u), z_{v} \in \partial g(v)$:

$$
\left(z_{u}-z_{v}\right)^{T}(u-v) \geq 0
$$

- with Fermat's rule on prox that evalutes subgradients of g :

$$
\begin{array}{lll}
u=\operatorname{prox}_{\gamma g}(x) & \text { if and only if } & \gamma^{-1}(x-u) \in \partial g(u) \\
v=\operatorname{prox}_{\gamma g}(y) & \text { if and only if } & \gamma^{-1}(y-v) \in \partial g(v)
\end{array}
$$

- which gives, by letting $z_{u}=\gamma^{-1}(x-u)$ and $z_{v}=\gamma^{-1}(y-v)$:

$$
\begin{aligned}
& \gamma^{-1}((x-u)-(y-v))^{T}(u-v) \geq 0 \\
& \Leftrightarrow \quad\left(x-\operatorname{prox}_{\gamma g}(x)-\left(y-\operatorname{prox}_{\gamma g}(y)\right)\right)^{T}\left(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\right) \geq 0 \\
& \Leftrightarrow \quad(x-y)^{T}\left(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\right) \geq\left\|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\right\|_{2}^{2}
\end{aligned}
$$

Prox is (firmly) nonexpansive

- We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

$$
\left\|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

which was shown using Cauchy-Schwarz inequality

- Actually the stronger firm nonexpansive inequality holds

$$
\begin{aligned}
\left\|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\right\|_{2}^{2} \leq & \|x-y\|_{2}^{2} \\
& -\left\|x-\operatorname{prox}_{\gamma g}(x)-\left(y-\operatorname{prox}_{\gamma g}(y)\right)\right\|_{2}^{2}
\end{aligned}
$$

which implies nonexpansiveness

- Proof:
- take 1-cocoercivity and multiply both sides by 2 :

$$
2(x-y)^{T}\left(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y)\right) \geq 2\left\|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y)\right\|_{2}^{2}
$$

- use the following equality with $u=\operatorname{prox}_{\gamma g}(x)$ and $v=\operatorname{prox}_{\gamma g}(y)$:

$$
(x-y)^{T}(u-v)=\frac{1}{2}\left(\|x-y\|_{2}^{2}+\|u-v\|_{2}^{2}-\|x-y-(u-v)\|_{2}^{2}\right)
$$

Proximal operator - Separable functions

- Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $g(x)=\sum_{i=1}^{n} g_{i}\left(x_{i}\right)$ be separable, then

$$
\operatorname{prox}_{\gamma g}(z)=\left(\operatorname{prox}_{\gamma g_{1}}\left(z_{1}\right), \ldots, \operatorname{prox}_{\gamma g_{n}}\left(z_{n}\right)\right)
$$

decomposes into n individual proxes

- Why? Since also $\|\cdot\|_{2}^{2}$ is separable:

$$
\begin{aligned}
\operatorname{prox}_{\gamma g}(z) & =\underset{x}{\operatorname{argmin}}\left(g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2}\right) \\
& =\underset{x}{\operatorname{argmin}}\left(\sum_{i=1}^{n}\left(g_{i}\left(x_{i}\right)+\frac{1}{2 \gamma}\left(x_{i}-z_{i}\right)^{2}\right)\right)
\end{aligned}
$$

which gives n independent optimization problems

$$
\underset{x_{i}}{\operatorname{argmin}}\left(g_{i}\left(x_{i}\right)+\frac{1}{2 \gamma}\left(x_{i}-z_{i}\right)^{2}\right)=\operatorname{prox}_{\gamma g_{i}}\left(z_{i}\right)
$$

Proximal operator - Example 1

- Consider the function g with subdifferential ∂g :

$$
g(x)=\left\{\begin{array}{ll}
-x & \text { if } x \leq 0 \\
0 & \text { if } x \geq 0
\end{array} \quad \partial g(x)= \begin{cases}-1 & \text { if } x<0 \\
{[-1,0]} & \text { if } x=0 \\
0 & \text { if } x>0\end{cases}\right.
$$

- Graphical representations

- Fermat's rule for $x=\operatorname{prox}_{\gamma g}(z)$:

$$
0 \in \partial g(x)+\gamma^{-1}(x-z)
$$

Proximal operator - Example 1 cont'd

- Let $x<0$, then Fermat's rule reads

$$
0=-1+\gamma^{-1}(x-z) \quad \Leftrightarrow \quad x=z+\gamma
$$

which is valid $(x<0)$ if $z<-\gamma$

- Let $x=0$, then Fermat's rule reads

$$
0 \in[-1,0]+\gamma^{-1}(0-z)
$$

which is valid $(x=0)$ if $z \in[-\gamma, 0]$

- Let $x>0$, then Fermat's rule reads

$$
0=0+\gamma^{-1}(x-z) \quad \Leftrightarrow \quad x=z
$$

which is valid $(x>0)$ if $z>0$

- The prox satisfies

$$
\operatorname{prox}_{\gamma g}(z)= \begin{cases}z+\gamma & \text { if } z<-\gamma \\ 0 & \text { if } z \in[-\gamma, 0] \\ z & \text { if } z>0\end{cases}
$$

Proximal operator - Example 2

Let $g(x)=\frac{1}{2} x^{T} P x+q^{T} x$ with P positive semidefinite

- Gradient satisfies $\nabla g(x)=P x+q$
- Fermat's rule for $x=\operatorname{prox}_{\gamma g}(z)$:

$$
\begin{aligned}
0=\nabla g(x)+\gamma^{-1}(x-z) & \Leftrightarrow 0=P x+q+\gamma^{-1}(x-z) \\
& \Leftrightarrow(I+\gamma P) x=z-\gamma q \\
& \Leftrightarrow x=(I+\gamma P)^{-1}(z-\gamma q)
\end{aligned}
$$

- So $\operatorname{prox}_{\gamma g}(z)=(I+\gamma P)^{-1}(z-\gamma q)$

Computational cost

- Evaluating prox requires solving optimization problem

$$
\operatorname{prox}_{\gamma g}(z)=\underset{x}{\operatorname{argmin}}\left(g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2}\right)
$$

- Prox often more expensive to evaluate than gradient
- Example: Quadratic $g(x)=\frac{1}{2} x^{T} P x+q^{T} x$:

$$
\operatorname{prox}_{\gamma g}(z)=(I+\gamma P)^{-1}(z-\gamma q), \quad \nabla g(z)=P z+q
$$

- But typically cheap to evaluate for separable functions
- Prox often used for nondifferentiable and separable functions

