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Convex sets — Definition

® A set C is convex if for every z,y € C and 0 € [0,1]:
bxr+(1—-0)yeC

® “Every line segment that connect any two points in C'is in C"

Nonconvex Convex

Nonconvex Nonconvex

® Will assume that all sets are nonempty and closed



Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

e Convex combinations of x,

., xy are all points = of the form

z=0121 + 03290 + ...+ Oy

where 01 + ...+ 0, =

=1 and 91 > 0
® Convex hull: set of all convex combinations of points in .S
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Affine sets

® Take any two points z,y € V: V is affine if full line in V:

X

Lines and planes are affine sets

® Definition: A set V is affine if for every z,y € V and o € R:
ar+(1l-—a)yeV (1)

hence convex this holds in particular for o € [0, 1]



Affine hyperplanes

Affine hyperplanes in R™ are affine sets that cut R™ in two halves

Dimension of affine hyperplane in R™ is n — 1 (If s # 0)
All affine sets in R™ of dimension n — 1 are hyperplanes

Mathematical definition:
hsy :={x e R": sTy = r}

where s € R™ and r € R, i.e., defined by one affine function

Vector s is called normal to hyperplane



Halfspaces

® A halfspace is one of the halves constructed by a hyperplane

® Mathematical definition:
H,,={recR":s'e <r}

® Halfspaces are convex, and vector s is called normal to halfspace



Polytopes

® A polytope is intersection of halfspaces and hyperplanes

® Mathematical representation:
C={reR":s]ox<r foric{l,...,m} and
sTa=riforic{m+1,..p}}

® Polytopes convex since intersection of convex sets



Cones

o Aset Kisaconeifforallz€e Kanda>0: ar e K
® |f x is in cone K, so is entire ray from origin passing through x:

T

® Examples:

Cone Cone Not cone
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Convex cones

® Cones can be convex or nonconvex:

Nonconvex cone Convex cone

® Convex cone examples:
® Linear subspaces {x € R" : Az = 0} (but not affine subspaces)
® Halfspaces based on linear (not affine) hyperplanes {z : s7z < 0}
® Positive semi-definite matrices
{X € R™"™ : X symmetric and 27 Xz > 0 for all z € R"}
® Nonnegative orthant {z € R" : z > 0}
Second order cone {(z,r) € R" xR : ||z|]2 <7}
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Sublevel sets

® Suppose that g : R” — R is a real-valued function
® The (0th) sublevel set of g is defined as

S:={zeR":g(z) <0}

® Example: construction giving 1D interval S = [a, b]

g()

T

® S is a convex set if g is a convex function

® S is not necessarily nonconvex although g is

12



Sublevel sets — Examples

® | evelset of convex quadratic function

{r € R": 22T Pz + qTx + r < 0}, with P positive definite
® Norm balls {z € R" : ||z|| — r < 0}
® Second-order cone {(z, r) eER"XR: |lzl|s —r <0}
® Halfspaces {zr € R" : ¢’z —r <0}
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Convexity preserving operations

® Intersection (but not union)

e Affine image and inverse affine image of a set
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Intersection and union

Intersection C = CiNCy means x € Cif x € C; and x € Cy
Union C =CiUCymeansz € Cifx € Cyorxz € Cy

o €88

Intersection Union

Intersection of any number of, e.g., infinite, convex sets is convex

Union of convex sets need not be convex
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Image sets and inverse image sets

® Let L(x) = Az + b be an affine mapping defined by
® matrix A € R™*"
® vector b € R™

® Let C be a convex set in R™ then the image set of C' under L
{Az+b:2z € C}

is convex

® let D be a convex set in R™ then the inverse image of D under L
{z: Az +be D}

is convex
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Ways to conclude convexity

® Use convexity definition
® Show that set is sublevel set of a convex function

® Show that set constructed by convexity preserving operations
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Example — Nonnegative orthant

® Nonnegative orthant is set C' = {x e R" : z > 0}
® Prove convexity from definition:

® let x > 0 and y > 0 be arbitrary points in C
® Forall 8 € [0,1]:

x>0 and (1-0)y>0
® All convex combinations therefore also satisfy
Oz + (1—0)y >0

i.e., they belongs to C' and the set is convex
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Example — Positive semidefinite cone

The positive semidefinite (PSD) cone is
{X e R™": X symmetric} ((|{X € R"*": 27Xz >0 for all z € R"}
This can be written as the following intersection over all z € R™

{X e R™*"™ : X symmetric} m {(X eR™"™: 27Xz >0}
z€R™

which, by noting that 27 Xz = tr(27 X z2) = tr(227 X), is equal to

{X e R™*™: X symmetric} ﬂ {X e R tr(227 X) > 0}
zER™

where tr(227 X) > 0 is a halfspace in R"*" (except when z = ()
The PSD cone is convex since it is intersection of
® symmetry set, which is a finite set of (convex) linear equalities
® an infinite number of (convex) halfspaces in R™*"
Notation: If X belong to the PSD cone, we write X > 0
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Example — Linear matrix inequality

® |et us consider a linear matrix inequality (LMI) of the form
k
{zreR¥: A+ > 2B = 0}
i=1

where A and B; are fixed matrices in R"*"™

® Convex since inverse image of PSD cone under affine mapping
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Separating hyperplane theorem

® Suppose that C; D C R" are two non-intersecting convex sets
® Then there exists hyperplane with C' and D in opposite halves

Counter-example
Example D nonconvex

® Mathematical formulation: There exists s # 0 and r such that

sTe <y forallz € C

sTe>r forallz € D

® The hyperplane {x : sT2 = r} is called separating hyperplane
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A strictly separating hyperplane theorem

® Suppose that C, D C R"™ are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

® Then there exists hyperplane with strict separation

D={(z,y):y>2z"1,z>0}

C={(zy):y<0}

Example Counter example
C, D not compact

® Mathematical formulation: There exists s # 0 and r such that

sTe <7 forallz e C

sTe>r for all z € D
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Consequence — (' is intersection of halfspaces

‘a closed convex set C' is the intersection of all halfspaces that contain it

proof:

® let H be the intersection of all halfspaces containing C'

® = obviouslyz € C =z € H

® «<: assume z ¢ C, since C closed and convex and {z} compact
singleton, there exists a strictly separating hyperplane, i.e., ¢ & H:

& "
\_/




Supporting hyperplanes

® Supporting hyperplanes touch set and have full set on one side:

S \ |/

[VAIVAY>)

/1A

® We call the halfspace that contains the set supporting halfspace

® s is called normal vector to C at =

® Definition: Hyperplane {y : sTy = 7} supports C at x € bd C if

stx=r and sTy<rforallyeC
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Supporting hyperplane theorem

Let C' be a nonempty convex set and let € bd(C). Then there exists
a supporting hyperplane to C at z.

® Does not exist for all point on boundary for nonconvex sets

® Many supporting hyperplanes exist for points of nonsmoothness

W

o
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Normal cone operator

® Normal cone to C' at z € bd(C) is set of normals at

® Normal cone operator N¢ to C takes point input and returns set:
® 1 € bd(C)NC: set of normal vectors to supporting halfspaces
® 1 ¢ int(C): returns zero set {0}
® 1 & C: returns emptyset ()

® Mathematical definition: The normal cone operator to a set C' is

{s:sT(y—x)<0forallyeC} ifzeC
0 else

Ne(z) = {

i.e., vectors that form obtuse angle between s and all y —x, y € C
® For all x € C: the N¢ outputs a set that contains 0
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