
Lecture 6: Linear Quadratic Control

Optimal State Feedback uk = −Lxk
Optimal State Estimation x̂kpk−1 and x̂kpk
Optimal Output Feedback uk = −Lx̂kpk−1 and uk = −Lx̂kpk

Chapters 6,7,8
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Math Repetition

Suppose the matrix Q is symmetric: Q = QT . Then

Q > 0 means that xTQx > 0 for any x ,= 0
True iff all eigenvalues of Q are positive.
We say that Q is positive definite.

Q ≥ 0 means that xTQx ≥ 0 for any x
True iff all eigenvalues of Q are non-negative.
We say that Q is positive semidefinite.
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Math Repetition

The trace of a matrix is the sum of all diagonal elements:

trace Q =
n∑

i

Qii

A useful property of the matrix trace:

trace ABC = trace CAB = trace BCA

Parseval’s formula: Suppose that fk and �k have finite energy
and that their Z-transforms are F(z) and G(z), respectively.
Then

∞∑

0

f ∗k�k =

∫ 2π

0

F(eiω )∗G(eiω )dω/2π
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A General Optimization Setup

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

disturbances w

The objective is to find a controller that optimizes the transfer
matrix Gzw(z) from disturbances w to controlled outputs z.
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First problem: State Feedback

Plant

Controller

� �

�

-

u

z = (x,u) x0

state measurement x

Minimize
∞∑

0

(
xTk Q1xk + 2x

T
k Q12uk + u

T
k Q2uk

)

subject to xk+1 = Axk + Buk, x0 given

Note: We assume uc = 0 in this lecture
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Dynamic programming, Richard E. Bellman 1957

k k+ 1 N

An optimal trajectory on the time in-
terval [k,N] must be optimal also
on each of the subintervals [k, k+1]
and [k+ 1,N].
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Dynamic programming in linear quadratic control

k k+ 1 N

An optimal trajectory on the time interval [k, k+ 1] must be optimal also on

each of the subintervals [k, k+ 1] and [k+ 1,N].

Let xTSkx be the optimal cost on the time interval [k,∞]:

xTSkx = min
u

N∑

k


x
u



T Q1 Q12
QT12 Q2





x
u


 with xk = x
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Dynamic programming in linear quadratic control

xk = x, xk+1 = Axk + Buk

xTSkx = min
u

N
∑

k









x

u









T 







Q1 Q12
QT12 Q2

















x

u









= min
u

{









x

u









T 







Q1 Q12
QT12 Q2

















x

u








+

N
∑

k+1









x

u









T 







Q1 Q12
QT12 Q2

















x

u









}

= min
u

{









x

u









T 







Q1 Q12
QT12 Q2

















x

u








+

(

Ax + Bu
)T

Sk+1

(

Ax + Bu
)

}

by definition of S. This gives Bellman’s equation :

xTSkx = min
u


x
u



T  Q1 Q12
QT12 Q2





x
u


+

(
Ax + Bu

)T
Sk+1

(
. . .

)
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Completion of squares

The scalar case: Suppose c > 0.

ax2 + 2bxu+ cu2 = x

(
a−
b2

c

)
x +

(
u+
b

c
x

)
c

(
u+

b

c
x

)

is minimized by u = − b
c
x. The minimum is

(
a− b2/c

)
x2.

The matrix case: Suppose Qu > 0. Then

xTQxx + 2x
TQxuu+ u

TQuu

= xT(Qx − QxuQ
−1
u Q

T
xu)x + (u+ Q

−1
u Q

T
xux)

TQu(u+ Q
−1
u Q

T
xux)

is minimized by u = −Q−1u Q
T
xux.

The minimum is xT(Qx − QxuQ−1u Q
T
xu)x.
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The Riccati Equation

Completion of squares in Bellman’s equation gives

xTSkx = min
u
xTQ1x + 2x

TQ12u+ u
TQ2u+

(
Ax + Bu

)T
Sk+1

(
. . .

)

= xT
(
Q1 + A

TSk+1A− (A
TSk+1B + Q12)(Q2 + B

TSk+1B)
−1(. . .)T

)

with minimum attained for

u = −(Q2 + B
TSk+1B)

−1(ATSk+1B + Q12)
T x

The equation

Sk = Q1 + A
TSk+1A− (A

TSk+1B + Q12)(Q
−1
2 + BTSk+1B)(. . .)

T

is called the discrete time Riccati equation
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Jocopo Francesco Riccati, 1676–1754
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Linear Quadratic Optimal Control

Problem ( N = ∞):

Minimize
∞∑

0

(
xTk Q1xk + 2x

T
k Q12uk + u

T
k Q2uk

)

subject to xk+1 = Axk + Buk, x0 given

Solution: Assume (A, B) controllable. Then there is a unique
S > 0 solving the Riccati equation

S = Q1 + A
TSA− (ATSB + Q12)(Q2 + B

TSB)−1(ATSB + Q12)
T

The optimal control law is u = −Lx with

L = (Q2 + B
TSB)−1(ATSB + Q12)

T

The minimal value is xT0 Sx0.

Remark: The feedback gain L does not depend on x0
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Example: First order system

For xk+1 = xk + uk, x0 given,

Minimize
∞∑

0

(
x2k + ρu2k

)

Riccati equation S = 1+ S−
S2

ρ + S
[ S =

1

2
+

√
1

4
+ ρ

Controller L =
1

1
2
+

√
1
4
+ ρ
, u = −Lx

Closed loop xk+1 = (1− L)xk

Optimal cost
∞∑

0

(
x2 + ρu2

)
dt = xT0 Sx0

What values of ρ give the fastest response? Why?
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Theorem: Stability of the closed-loop system

Assume that

Q =


 Q1 Q12
QT12 Q2




is positive definite and that there exists a positive-definite
steady-state solution S to the algebraic Riccati equation. Then
the optimal controller uk = −Lxk gives an asymptotically stable
closed-loop system xk+1 = (A− BL)xk.

Proof sketch: If xk ,= 0 then

xTk+1Sxk+1 − x
T
k Sxk = −


xk
uk



T Q1 Q12

QT12 Q2





xk
uk


 < 0

Hence xTk Sxk is decreasing and tends to zero as k→∞.
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LQ design in Matlab

DLQR Linear-quadratic regulator design for discrete-time systems.

[K,S,E] = DLQR(A,B,Q,R,N) calculates the optimal gain matrix K

such that the state-feedback law u[n] = -Kx[n] minimizes the

cost function

J = Sum {x’Qx + u’Ru + 2*x’Nu}

subject to the state dynamics x[n+1] = Ax[n] + Bu[n].

The matrix N is set to zero when omitted. Also returned are the

Riccati equation solution S and the closed-loop eigenvalues E:

-1

A’SA - S - (A’SB+N)(R+B’SB) (B’SA+N’) + Q = 0, E = EIG(A-B*K).
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Prediction and filtering

* Wiener (1949) Stationary I/O case

* Kalman and Bucy (1960) Time-varying state-space

Estimate x(k+m) given {y(i), u(i) p i ≤ k}
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Rudolf Kalman, (born 1930)

Recipient of the 2008 Charles Stark Draper Prize from the
US National Academy of Engineering "for the devlopment and
dissemination of the optimal digital technique (known as the
Kalman Filter) that is pervasively used to control a vast array of
consumer, health, commercial and defense products.”
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Norbert Wiener, 1894–1964
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Problem Formulation

Given the system

xk+1 = Axk + Bvk,

yk = Cxk + ek

where v and e are white noise with

E

[
vk
ek

] [
vk
ek

]T
=

[
Qv Qve
QTve Qe

]

Want to minimize EpM(x − x̂)p2. Solution (indepent of M ):

x̂kpk−1 = E(xp measurements up to time k-1)

x̂kpk = E(xp measurements up to time k)
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Optimal Filtering and Prediction

The filtered state estimate x̂kpk and predicted state x̂k+1pk can
be obtained in a two step procedure

Error update:

x̂kpk = x̂kpk−1 + κ (yk − Cx̂kpk−1)

Time update:
x̂k+1pk = Ax̂kpk + Buk

where the stationary solution is (if Qve = 0)

κ = PCT(Qe + CPC
T )−1

where P = cov(x − x̂kpk−1) is found from the Riccati equation

P = APAT + Qv − APC
T(Qe + CPC

T)−1CPAT
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Matlab - Optimal Kalman Filters

DLQE Kalman estimator design for discrete-time systems.

Given the system

x[n+1] = Ax[n] + Bu[n] + Gw[n] {State equation}

y[n] = Cx[n] + Du[n] + v[n] {Measurements}

with unbiased process noise w[n] and measurement noise v[n]

with covariances

E{ww’} = Q, E{vv’} = R, E{wv’} = 0 ,

[M,P,Z,E] = DLQE(A,G,C,Q,R) returns the gain matrix M such

that the discrete, stationary Kalman filter with observation

and time update equations

x[n|n] = x[n|n-1] + M(y[n] - Cx[n|n-1] - Du[n])

x[n+1|n] = Ax[n|n] + Bu[n]

produces an optimal state estimate x[n|n] of x[n] given y[n] and

the past measurements. The resulting Kalman estimator can be

formed with DESTIM.

Also returned are the steady-state error covariances

P = E{(x[n|n-1] - x)(x[n|n-1] - x)’} (Riccati solution)

Z = E{(x[n|n] - x)(x[n|n] - x)’} (Error covariance)

and the estimator poles E = EIG(A-A*M*C).
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Example – GPS tracking

Position measurements + noise with 5 meter standard deviation

−50 0 50 100 150 200
−50

0

50

100

150

200

250

Clearly this is not the true path, can we improve the estimate?

Assume this motion model for coordinates x, y

x(k+ 1) = x(k) + hvx(k)

vx(k+ 1) = vx(k) + noise

y(k+ 1) = y(k) + hvy(k)

vy(k+ 1) = vy(k) + noise
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Example – GPS tracking

ygps = xtrue + gps_accuracy*randn(size(xtrue));

% The Kalman filter (matlab notation)

I = eye(2);

A = [I h*I; 0*I I];

G = [0*I;I];

C = [I 0*I];

Q = qv*I; % tuning parameter

R = gps_accuracy^2*I;

[M,P,Z,E] = dlqe(A,G,C,Q,R);

K=A*M;

kalman1 = ss(A-K*C,K,C,0*I,h);

% Some plotting

time = (0:2*N)*h;

xpred = lsim(kalman1, ygps,time)’;
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Example – Results
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gps
kalman1
true trajectory

Trade off between rapid tracking and good noise reduction

High Qv/Qe: Rapid tracking
Low Qv/Qe: Good noise reduction
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Prediction Accuracy
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No Direct Term
Direct Term

Best qv tradeoff between tracking speed vs noise reduction

Direct term in filter gives some performance improvement.

Smoothing would give even better results.
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Smoothing

Performance with fixed lag smoothing (horizon 5) x̂kpk+5

−20 0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250
Smoothing with horizon 5

Improvement of about 10% in standard deviation

Automatic Control LTH Predictive Control, Lecture 6



Output feedback

Plant
�

Estimator
-

�

−L
�

-

�

[
v

e

]

u x̂y

z

Plant:

{
xk+1 = Axk + Buk + vk

yk = Cxk + ek

Controller:





x̂k+1pk = Ax̂kpk−1 + Buk + K [yk − Cx̂kpk−1] (K = Aκ )

uk = −Lx̂kpk−1 no direct term, or

uk = −Lx̂kpk direct term

Minimizes Epzp2 = E
(
xTQ1x + 2x

TQ12u+ u
TQ2u

)

when v, e are white uncorrelated noise
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The idea of separation

The state feedback control law is independent of the noise
covariance

The Kalman filter minimizes EpMx̃p2 independently of M

This makes it possible to optimize the control law
u(t) = −Lx̂(t) and the estimator separately.
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Duality between control and estimation

Optimal control State estimation

A AT

B CT

Q1 Qv
Q2 Qe
Q12 Qve
S P

L KT
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The Resulting Controller (if Qve = 0)

U = −L(qI − A1)
−1KY no direct term

U = −Lq(qI − A0)
−1κ Y direct term

where

A1 = A− BL − KC no direct term

A0 = (I − κC)(A − BL) direct term

where κ = PCT(Qe + CPC
T)−1 and K = Aκ

Automatic Control LTH Predictive Control, Lecture 6



Output feedback - Analysis

Plant
�

Estimator
-

�

−L
�

-

�

v

u x̂y

z

Plant:

{
xk+1 = Axk + Buk + vk

yk = Cxk + ek

Controller:

{
x̂k+1pk = Ax̂kpk−1 + Buk + K [yk − Cx̂kpk−1]

uk = −Lx̂kpk−1
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Closed loop dynamics

Eliminate u and y:

xk+1 = Axk − BLx̂k + vk

x̂k+1pk = Ax̂kpk−1 − BLx̂kpk−1 + K [Cxk − Cx̂kpk−1] + K ek

Introduce x̃ = x − x̂
[
xk+1
x̃k+1pk

]
=

[
A− BL BL

0 A− KC

] [
xk
x̃kpk−1

]
+

[
vk

vk − K ek

]

Two kinds of closed loop poles

Process poles: 0 = det(zI − A+ BL)

Observer poles: 0 = det(zI − A+ KC)

May also use observer with direct term, x̂kpk
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Summary: Linear Quadratic Gaussian Control (LQG)

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

disturbances w

For a linear plant, minimize a quadratic function of the map
from disturbance w to controlled variable z

Minimize trace
∫ 2π
0
QGzw(e

iω )Gzw(e
iω )∗dω

Two interpretations of this criterion...
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Impulse response interpretation of LQG

Let �zw(k) be the impulse response corresponding to the
transfer function Gzw(z). Then

trace
1

2π

∫ 2π

0

QGzw(e
iω )Gzw(e

iω )∗dω = trace
∞∑

0

Q�zw(k)�zw(k)∗

so LQG control minimizes the impulse response “energy”.
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Stochastic interpretation of LQG

Plant

Controller-

�

V (s)� ��

y

v wz

u

qzq2Q = E(z
TQz) = trace

1

2π

∫ ∞

−∞

QGzw(e
iω )Gzw(e

iω )∗dω

is the weighted output variance when the input v has spectral density
Φv(ω ) = V (iω )V (iω )∗. Hence the output variance can be minimized
by defining Gzw(iω ) = Gzv(iω )V (iω ) and solving the LQG problem

Minimize trace
∫ ∞

−∞

QGzw(e
iω )Gzw(e

iω )∗dω
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