Assignment 1

Handin solutions to these problems within two weeks, using the Canvas system

1. Simulating Brownian Motion Consider standard Brownian motion $w(t)$, where $w(0)=0$ with independent increments $d w=w(t+d t)-w(t) \in N(0, d t)$. Write code to generate $N=10^{5}$ trajectories sampled at a rate $h=0.1,0.01$ and 0.001 for $t=[0, h, 2 h, \ldots, T]$.
From theory we should have $x(T) \in N(0, T)$. Verify that your simulations give this distribution, by e.g. plotting a histogram and calculating the mean and variance of $x(T)$. You can use $T=1$. Verify that the result does not depend on h. Interpret the results.
Extra: Also plot the running maximum $M(t):=\max _{s \in[0, t]} w(s)$. Can you guess the distribution of $M(t)$? Challenge: Prove your guess.

2. Simulating a stochastic differential equation Generate discrete-time simulations of the continuous time stochastic differential equation

$$
d x=-x(t) d t+d w, \quad x(0)=0
$$

where as before $d w \in N(0, d t)$ ("a stable first order system driven by white noise with unit incremental variance"). Generate a large number, e.g. $N=10^{5}$, of discrete-time approximate trajectories $x_{h}(k h)$, using

$$
x_{h}(k h+h)=x_{h}(k h)+d x
$$

using a small value for $h=d t$, e.g. $h=0.001$, and final time $T=1$. Verify numerically that $x(1) \in N(0, p)$. Can you guess p (the variance of $x(1)$ obtained in the limit when $h \rightarrow 0)$?

3. Let x and y be Gaussian distributed with $\left[\begin{array}{c}x \\ y\end{array}\right] \in N\left(\left[\begin{array}{c}m_{x} \\ m_{y}\end{array}\right],\left[\begin{array}{cc}\Sigma_{x x} & \Sigma_{x y} \\ \Sigma_{x y}^{T} & \Sigma_{y y}\end{array}\right]\right)$

a. Prove that the distribution of x conditioned on a measurement y is given by

$$
x \mid y \in N(m, \Sigma), \quad \text { where } \quad\left\{\begin{array}{l}
m=m_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-m_{y}\right) \\
\Sigma=\Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{x y}^{T}
\end{array}\right.
$$

b. Express the same result using the information matrix instead, where

$$
\left[\begin{array}{cc}
I_{x x} & I_{x y} \\
I_{x y}^{T} & I_{y y}
\end{array}\right]:=\left[\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{T} & \Sigma_{y y}
\end{array}\right]^{-1}
$$

c. Let $w(t)$ be Brownian motion with unit incremental variance. Assume we know $w\left(t_{1}\right)$ and $w\left(t_{2}\right)$. Describe the conditional distribution of $w(t)$ given $w\left(t_{1}\right)$ and $w\left(t_{2}\right)$, where $t_{1}<t<t_{2}$. (The result can be used to generate fast code for zooming in on part of a Wiener process.)
4. Assume $x(t)$ is standard Brownian motion, with $x(0)=0$ and unit incremental variance, and consider $x_{i}:=x\left(t_{i}\right)$ with $0<t_{1}<t_{2} \ldots<t_{n}$.
a. Prove that $E\left(x_{i} x_{j}\right)=\min \left(t_{i}, t_{j}\right)$ and conclude that the covariance function is

$$
C=\left[\begin{array}{cccc}
t_{1} & t_{1} & \ldots & t_{1} \\
t_{1} & t_{2} & \ldots & t_{2} \\
\vdots & \vdots & & \vdots \\
t_{1} & t_{2} & \ldots & t_{n}
\end{array}\right]
$$

The distribution function of x is hence given by

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{(\operatorname{det}(2 \pi C))^{1 / 2}} \exp \left(-\frac{1}{2} x^{T} C^{-1} x\right)
$$

Show also that

$$
\operatorname{det}(C)=t_{1}\left(t_{2}-t_{1}\right) \ldots\left(t_{n}-t_{n-1}\right)
$$

b. Find a formula for the information matrix $I:=C^{-1}$. Hint: It turns out to be symmetric and have tri-diagonal structure (Can you understand why?). Another hint: You might want to prove and use the formula

$$
I_{i j}=-E\left[\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \log p(x)\right]
$$

