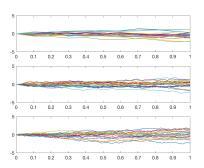
Assignment 1

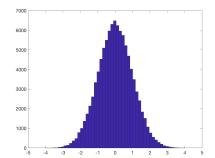
Handin solutions to these problems within two weeks, using the Canvas system

1. Simulating Brownian Motion Consider standard Brownian motion w(t), where w(0) = 0 with independent increments $dw = w(t+dt) - w(t) \in N(0, dt)$. Write code to generate $N = 10^5$ trajectories sampled at a rate h = 0.1, 0.01 and 0.001 for t = [0, h, 2h, ..., T].

From theory we should have $x(T) \in N(0,T)$. Verify that your simulations give this distribution, by e.g. plotting a histogram and calculating the mean and variance of x(T). You can use T=1. Verify that the result does not depend on h. Interpret the results.

Extra: Also plot the running maximum $M(t) := \max_{s \in [0,t]} w(s)$. Can you guess the distribution of M(t)? Challenge: Prove your guess.





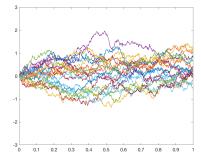
2. Simulating a stochastic differential equation Generate discrete-time simulations of the continuous time stochastic differential equation

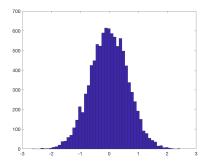
$$dx = -x(t)dt + dw, \qquad x(0) = 0,$$

where as before $dw \in N(0, dt)$ ("a stable first order system driven by white noise with unit incremental variance"). Generate a large number, e.g. $N = 10^5$, of discrete-time approximate trajectories $x_h(kh)$, using

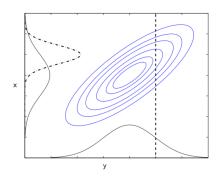
$$x_h(kh+h) = x_h(kh) + dx$$

using a small value for h=dt, e.g. h=0.001, and final time T=1. Verify numerically that $x(1) \in N(0,p)$. Can you guess p (the variance of x(1) obtained in the limit when $h \to 0$)?





3. Let x and y be Gaussian distributed with $\begin{bmatrix} x \\ y \end{bmatrix} \in N \left(\begin{bmatrix} m_x \\ m_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_{yy} \end{bmatrix} \right)$



a. Prove that the distribution of x conditioned on a measurement y is given by

$$x \mid y \in N(m, \Sigma), \text{ where } \begin{cases} m = m_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - m_y) \\ \Sigma = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T \end{cases}$$

b. Express the same result using the information matrix instead, where

$$\begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy}^T & I_{yy} \end{bmatrix} := \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_{yy} \end{bmatrix}^{-1}$$

- c. Let w(t) be Brownian motion with unit incremental variance. Assume we know $w(t_1)$ and $w(t_2)$. Describe the conditional distribution of w(t) given $w(t_1)$ and $w(t_2)$, where $t_1 < t < t_2$. (The result can be used to generate fast code for zooming in on part of a Wiener process.)
- **4.** Assume x(t) is standard Brownian motion, with x(0) = 0 and unit incremental variance, and consider $x_i := x(t_i)$ with $0 < t_1 < t_2 ... < t_n$.
 - **a.** Prove that $E(x_i x_j) = \min(t_i, t_j)$ and conclude that the covariance function is

$$C = \begin{bmatrix} t_1 & t_1 & \dots & t_1 \\ t_1 & t_2 & \dots & t_2 \\ \vdots & \vdots & & \vdots \\ t_1 & t_2 & \dots & t_n \end{bmatrix}.$$

The distribution function of x is hence given by

$$p(x_1, x_2, \dots, x_n) = \frac{1}{(\det(2\pi C))^{1/2}} \exp\left(-\frac{1}{2}x^T C^{-1}x\right).$$

Show also that

$$\det(C) = t_1(t_2 - t_1) \dots (t_n - t_{n-1}).$$

b. Find a formula for the information matrix $I := C^{-1}$. Hint: It turns out to be symmetric and have tri-diagonal structure (Can you understand why?). Another hint: You might want to prove and use the formula

$$I_{ij} = -E \left[\frac{\partial^2}{\partial x_i \partial x_j} \log p(x) \right].$$