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Simulated annealing

A function with many local
minima

Simulated annealing is a heuristic method
which can be used to find a global optimum
for functions with many local maxima or
minima.

When trying to optimize such functions,
other algorithms (like e.g. local search) often
gets stuck at a local optimum.

It is not certain that an optimum will be
found with simulated annealing either, but it
works well in practice for many problems.
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Simulated annealing

A function defined on a graph.
The nodes are marked with the
function values, and the edges tell
us which points are neighbours.

This type of method can be used for
continuous or discrete optimization problems,
like for example a function defined on a
graph or a lattice.

We can start with a local search:

1 Pick a random point.
2 Go to a neighbour with a smaller value.
3 Repeat until this is not possible.
4 This procedure will find a local minimum, but

it may not be a global minimum.
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Simulated annealing

Simulated annealing is an approximate method which aims to overcome the
problem of getting trapped at a local minimum.
The idea comes from physics:

Fine crystals in a solid of low energy.
First melt the solid by increasing the temperature.
Then cool the liquid slowly so that it crystallizes.
The energy is minimized. Too fast cooling leads to imperfections (corresponding
to a local minimum).

Optical annealing of a misoriented grain. See
http://physics.nyu.edu/grierlab/anneal7b/
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Simulated annealing

Simulated annealing with a fast
cooling schedule (left) and a slow
cooling schedule (right) for an
optimization problem involving
swapping pixels in an image.

Annealing means solidifying.

The analogue of the perfect chrystalized
structure is the global minimum that we wish
to find in the optimization problem.

A feasible solution corresponds to a state of
the physical system.

The objective function corresponds to the
energy.

There is a control parameter c , which
corresponds to the temperature.
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Simulated annealing

Algorithm idea:

1 Pick c (the temperature) and L (the number of steps for each value of c).

2 Let k = 0 and pick a random point x0 (= xk).

3 Generate a new point x (e.g. a neighbour of xk).

4 Should we accept x as our xk+1?

Yes (always) if f (x) ≤ f (xk),

Yes with probability exp
(

f (xk )−f (x)
c

)
if f (xk) < f (x).

5 Repeat steps 3 and 4 L times.

6 Update (decrease) c and possibly change L.

7 Stop if some stopping criterion is satisfied (the system is said to be frozen).
Otherwise, start over from step 3 using the last obtained solution as a
starting point.
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Simulated annealing

Note that in step 4, an improvement is always accepted while a worse
solution is sometimes accepted, with a probability that depends on how
much much worse the solution is, and the cooling parameter c .

The aim is to escape local minimum traps.

Simulated annealing is an approximate algorithm that works well in practice
for some problems.

There is a theoretical result that says that when c → 0, a global minimum is
reached with probability 1 (=almost surely in probability language), but
reaching this global minimum may take longer than going through all points
in the feasible set and comparing the values.

Sara Maad Sasane Linear and Combinatorial Optimization 28 February 2020 8/30



Simulated annealing

Genetic algorithms

Applications of linear
programming: L1

regression

Piecewise linear
optimization

Genetic algorithms

Genetic algorithms belong to another type of heuristic algorithms designed
with the aim of finding a global minimum of a complicated function with
many local minima, when the search space is very large.

Just as with simulated annealing, the inspiration comes from nature, but this
time from biology/evolution.

The ingredients are:

Natural selection,
Reproduction,
Mutation.

In genetic algorithms, one works with a whole generation of feasible points
at once. These are called individuals or chromosomes.
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Genetic algorithms

Example (The knapsack problem)

Use a binary encoding. In the knapsack problem, there are n items, and each
item gets assigned the number (a gene) 0 or 1 (depending if the items should
be taken or not). If for example there are 7 items, then a possible
chromosome (individual) is 1001011. A chromosome can be randomly
generated. If it is not feasible (if the weight/size is too high), then we throw
it away and pick another random one.

Example (Travelling salesman)

Here we use permutation encoding. 157382469 represents a tour of 9 cities.
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Genetic algorithms

A population consists of a small number N of chromosomes, chosen from
the large search space. Usually N ≈ 30, but what works well depends on the
problem.

Reproduction is done by crossover. Choose two parents from the population.

Ex. with binary encoding: 1011010 and 0110101. If single crossover is used,
then a crossover point is selected, and genes are swapped at that location. If
the crossover point is 4, the offspring of the above chromosomes will be
1011101 and 0110010, i.e. the first four genes of the offspring come from
one of the parents and the rest come from the other parent.
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Genetic algorithms

If permutation encoding is used, then a possible corrover rule is the following
(done in an example with crossover point 5): With parents 123456789 and
453689721, let the 5 first genes of the offspring come from one of the
parents, and the rest are taken in order from the other parent if they are not
already present in the five first genes of the offspring). With this rule, the
offspring of the above parents will be 123456897 and 453681279.

The offspring is kept in a new generation.
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Genetic algorithms

Mutation: Make rare random changes.

For example with binary encoding: With a small probability, change 0 to 1 and 1
to 0.
For example, with permutation encoding, 2 genes are chosen randomly (with a
small probability) and exchanged.

Elitism: It is usually a good idea to save the best individuals as they are.
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Genetic algorithms

We give an outline of the idea of a basic genetic algorithm.

1 Generate a random generation of N chromosomes.

2 Evaluate the fitness (i.e. objective function value) of each chromosome in
the population.

3 Select chromosomes accordning to some rule where “better” chromosomes are
more likely to be selected.
Crossover: Form new offspring of selected parents using crossover with some
crossover probability.
Mutation: With a mutation probability for each gene, mutate the new offspring.
Place the offspring in a new population.

4 Replace: Use the new generation for a further run of the algorithm.

5 Continue (i.e. repeat from 2) until some stopping criterion is satisfied (e.g.
no imporvement in the mean for several generations).
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Genetic algorithms

The outline of a genetic algorithm

The method is easy to implement but hard
to analyze.

Convergence of genetic algorithms tend to be
slow.

Here is a list of applications of genetic
algorithms in many different fields in
engineering, economics, linguistics, etc.

To try out simulated annealing and/or a
genetic algorithm yourself, you can do the
optional computer exercise.
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Regression – line fitting

We consider the problem of fitting a line to a set of given data points
(xj , yj), j = 1, . . . , n.

The most common way of doing this is to use least squares. This is simple
to do, and it is also preferred if the errors are normally distributed. With this
assumption, the least squares line is the maximum likelihood estimator.

If the errors cannot be assumed to be normally distributed, other norms can
be considered instead of the L2 norm that is used in the least squares
method.
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Least squares – L2 regression

The least squares line is the line for which
the sum of the squared distances is
minimized.

The problem is to find the
parameters k and m such that the
sum of the squared distances (in the
y direction) from the data points to
the line y = kx + m is minimized:

min
k,m∈R

m∑
j=1

(yj − kxj −m)2.

Note that finding the optimal k and
m is equivalent to finding the “best”
line.
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Least squares – L2 regression

There is a closed formula for finding k and m. To find it, just differentiate
the expression on the previous slide with respect to k and m, and set the
derivatives to 0. You will obtain a linear system that can be solved.

Convexity implies that the solution is a minimizer.

The least squares fitted line is sensitive to outliers.

If the assumption on normally distributed errors is not satisfied, it may be
better to use L1 regression, which is less sensitive to outliers.
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Least sum of distances – L1 regression

In L1 regression, we solve the minimization problem

min
k,m∈R

n∑
j=1

|yj − kxj −m|. (1)

The difference from least squares is that we sum the distances from the
points to the line (still in the y direction), without squaring them first.

Unlike the situation for least squares, there is no closed formula for the
minimizer, but we can rewrite the problem as an LP problem, and solve it
efficiently using the simplex method.
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Least sum of distances – L1 regression

In order to write the minimization problem as an LP problem, we introduce
new variables tj , j = 1, . . . , n, i.e. one for each data point.

Clearly, (1) is equivalent to

minimize
n∑

j=1

tj

subject to


−tj = yj − kxj −m or tj = yj − kxj −m,

k ,m ∈ R (unrestricted),

tj ≥ 0, j = 1, . . . , n.

(2)

Problem (2) is also not an LP problem, and so we will rewrite it one more
time.
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Least sum of distances – L1 regression

Theorem

The L1 regression minimization problem (1) is equivalent to the LP problem

minimize
n∑

j=1

tj

subject to


−tj ≤ yj − kxj −m ≤ tj , j = 1, . . . , n,

k ,m ∈ R (unrestricted),

tj ≥ 0, j = 1, . . . , n,

(3)

in the sense that, (k0,m0) is an optimal solution of (1) if and only if there
exist tj ≥ 0, j = 1, . . . , n, such that (k0,m0, t1, . . . , tn) is optimal for (3).
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Least sum of distances – L1 regression

Proof.

We will prove that (2) ⇔ (3), since we have already seen that (1) and (2) are
equivalent.

⇒) Suppose that (k∗,m∗, t∗1 , . . . , t
∗
n) minimizes (2). Clearly, (k∗,m∗, t∗1 , . . . , t

∗
n)

is a feasible point for (3). We will now show that it is optimal. We argue by
contradiction, and suppose that this is not the case. Then there exists a
point (k ,m, t1, . . . , tn) which is feasible for (3), and has a smaller objective
value. It must satisfy −tj < yj − kxj −m < tj for some j , since otherwise it
would be feasible for (2) with a strictly smaller objective value than the value
of the minimizer (k∗,m∗, t∗1 , . . . , t

∗
n), a contradiction. But then tj could be

reduced (and hence reducing the objective value) while (k ,m, t1, . . . , tn) still
remains in the feasible set of (3). Hence (k ,m, t1, . . . , tn) cannot be a
minimizer for (3), and we have reached a contradiction.
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Least sum of distances – L1 regression

Proof (Cont.)

⇐) Suppose that (k0,m0, t1, . . . , tn) is a minimizer for (3). If we can show that
it belongs to the feasible set of (2), then it will be a minimizer for (2) as
well, since the feasible set of (2) is a subset of the feasible set of (3).
Hence, we would need to prove that tj = |yj − k0 −m0| for j = 1, . . . , n.
Again, we argue by contradiction, and assume that |yj − k0 −m0| < tj for
some j . But then tj could be reduced to obtain a feasible point of (3) with a
lower objective value. This is a contradiction, and hence (k0,m0, t1, . . . , tn)
is feasible (and optimal) for (2) as well.
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Least sum of distances – L1 regression

We have showed that the L1 regression problem is equivalent to

minimize
n∑

j=1

tj

subject to


−xjk −m − tj ≤ −yj , j = 1, . . . , n,

xjk + m − tj ≤ yj , j = 1, . . . , n,

k,m ∈ R (unrestricted),

tj ≥ 0, j = 1, . . . , n,

(4)

It can be put in standard form by replacing k and m by the four new
variables k+, k−, m+ and m−, where the relationship between the old and
new variables are k = k+ − k− and m = m+ −m−.
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Least sum of squares – L1 regression

The resulting LP problem on standard form is
maximize cTU

subject to
[
−X X −1 1 −I
X −X 1 −1 −I

]
U ≤

[
−Y
Y

]
,

(5)

where U = [k+, k−,m+,m−, t1, . . . , tn]T, cT = [0, 0, 0, 0,−1T], X and Y are
the column vectors with entries xi and yi (i = 1, . . . , n), respectively, 1 is a
column vector of length n whose entries are all 1 and I is an identity matrix of
size n.
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Least sum of squares – L1 regression

Example

Let’s try this out for the data set
that we saw in the figure earlier:

The data points are (1, 6), (2, 5),
(3, 7) and (4, 10).

To find the L1 regression line, we
need to solve the LP problem given
on the next slide.

In general, there will be 2n
constraints and n + 4 variables if
there are n data points, for the LP
problem on standard form.

The least squares line is the line for which
the sum of the squared distances is
minimized.
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Least sum of squares – L1 regression

Example

The LP problem on standard form is

maximize
[
0 0 0 0 −1 −1 −1 −1

]
U

subject to

−1 1 −1 1 −1 0 0 0
−2 2 −1 1 0 −1 0 0
−3 3 −1 1 0 0 −1 0
−4 4 −1 1 0 0 0 −1

1 −1 1 −1 −1 0 0 0
2 −2 1 −1 0 −1 0 0
3 −3 1 −1 0 0 −1 0
4 −4 1 −1 0 0 0 −1


U ≤



−6
−5
−7
−10

6
5
7

10


,

U ≥ 0.
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Example

The L1 regression and least squares lines. The L1 regression line is much less sensitive
to outliers.
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Piecewise linear optimization

A convex piecewise linear function

Using the same idea, it is possible to rewrite
any convex, piecewise linear minimization
problem as an LP problem.

A convex piecewise linear minimization
problem is a problem whose feasible set is a
convex polyhedron and whose objective
function is convex and piecewise linear.

A convex piecewise linear function can be
written on the form

f (x) = max
i=1,...,m

(aTi x + bi ).
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Piecewise linear optimization

By introducing a new variable t, the optimization problem of minimizing

f (x) = max
i=1,...,m

(aTi x + bi )

subject to some linear inequality and equality constraints, is equivalent to

minimize t,

subject to
{
aTi x + bi ≤ t, i = 1, . . . ,m,

+ the original constraints.

Note that this is an LP problem with m additional constraints and one extra
variable.
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