
Linear and Combinatorial Optimization 2020
LECTURE 11



The shortest route
problem

Dynamic programming

Overview

1 The shortest route problem

2 Dynamic programming

Sara Maad Sasane Linear and Combinatorial Optimization 25 February 2020 2/29



The shortest route
problem

Dynamic programming

The shortest route problem

The problem.

Given a graph or a directed graph with distances on each edge, what is the
shortest distance between two particular nodes?

Example

We would like to travel from node 1 to
node 6 in the digraph in the figure to
the right, as quickly as possible. On
every edge, the time of travel is
marked. What route should we take,
and how long will it take?
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We formulate the shortest route problem as an LP problem: We are given a
digraph G = (V ,E ) with nodes V and edges E and costs cij if (i , j) ∈ V . The
variables are xij ∈ {0, 1}, and xij = 1 if and only if the edge from node i to
node j belongs to the route. The route should start in node s and end in node
t, and for the other nodes we should have that if one edge in the route ends in
node j , then another edge that leaves node j has to be part of the route too
(and vice versa). The problem is then

minimize
∑

(i ,j)∈E

cijxij

subject to


∑

j :(j ,i)∈E

xji −
∑

j :(i ,j)∈E

xij =


−1 if i = s

1 if i = t

0 otherwise, for all i ∈ V .

xij ≥ 0 (i , j) ∈ E .
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The shortest path problem

The reason why the last constraint is xij ≥ 0 and not xij ∈ {0, 1} is because of
the following theorem:

Theorem

If cij ≥ 0 for all (i , j) then the optimal solution (if it exists) satisfies
xij ∈ {0, 1}.

The problem for a graph instead of a digraph can be solved with the same
methods after forming a digraph from the graph by replacing each edge by
two edges of different direction.

The costs can be permitted to be negative when the graph is directed. For
undirected graphs with some negative costs, the solution is always
unbounded, and so for undirected graphs, we require the costs to be
nonnegative.
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The solution methods that we will see use the dual problem, and so we need
to formulate this first.
The number of constraints in the primal problem is the same as the number
of nodes, and so we denote the dual variables by yi , with the special names
ys and yt for the dual variables corresponding to the source and sink nodes,
respectively.
The dual problem is{

maximize yt − ys

subject to yj − yi ≤ cij , (i , j) ∈ E .

Just as for the transportation problem, one of the constraints in the primal
problem is redundant.
The consequence of this for the dual problem is that the solution is not
completely unique, but if we specify one of the dual variables (e.g. putting
ys = 0), then the rest of the dual variables will be uniquely determined.
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Dijkstra’s method

In our first encounter with the shortest route problem (see Lecture 9), we
had an informal solution method involving a distance d which we increased
in steps, while considering nodes that could be reached with a path of
maximum length d from the origin s.

It turns out that the values of this variable d is exactly the values of the dual
variables yj for the optimal solution. These are called the node prices.

We first prove that the value of the dual variable yk cannot be higher than
the length of any path from s to k .

For a path Psk from node s to node k , let c(Psk) denote the sum of all the
costs for edges belonging to Psk
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Theorem

If y is a feasible solution of the dual problem, and Psk is a path from node s
to node k , then c(Psk) ≥ yk .

Proof.

c(Psk) =
∑

(i ,j)∈Psk

cij ≥
∑

(i ,j)∈Psk

(yj − yi ) = yk − ys = yk ,

where we have used that the sum telescopes.

It follows that any path from s to k for which the cost is yk must be a
shortest path.
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Dijkstra’s algorithm

We will describe the same algorithm as we introduced in Lecture 9, but we
will be more detailed, so that the method becomes unambiguous and as
efficient as possible.

Besides yk being the node prices, we will also need the notation pk for the
predecessor index, and νk and qk will be the temporary node price and
predecessor index, respectively.

Recall that the idea of the algorithm is to use two sets of nodes Nr and Nu,
where Nr consists of the nodes that can be reached from s within an allowed
distance, while Nu are the nodes that cannot (yet) be reached.

Before the general algorithm, we will work through the example from
Lecture 9 with this new notation.
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Dijkstra’s algorithm

Example

What is the shortest distance
between node 1 and node 4?

We choose node s = 1 as the origin. Initially,
Nr = {1} and Nu = {2, 3, 4, 5}. For j ∈ Nu,
let νj =∞ (or some large number, e.g. the
sum of all the edge costs).

We label the nodes 2, 3 and 5 (that are
reachable from node 1) with temporary node
prices ν2 = 5, ν3 = 7 and ν5 = 4, and let
qj = 1 for j = 2, 3 and 5. Since
ν5 = minj∈Nu νj , we let y5 = 4 and p5 = 1.
Let Nr = {1, 5} and Nu = {2, 3, 4}.

Sara Maad Sasane Linear and Combinatorial Optimization 25 February 2020 10/29



The shortest route
problem

Dynamic programming

Dijkstra’s algorithm

Example (Cont.)

What is the shortest distance
between node 1 and node 4?

We can now (temporarily) label node 4 with
ν4 = 4 + 2 = 6 and q4 = 5. Since
ν2 = minj∈Nu νj = 5, we let y2 = 5 and
p2 = 1. We update Nr = {1, 2, 5} and
Nu = {3, 4}.
Node 3 ∈ Nu can be reached from node 2 (as
well as from node 1). Recall that ν3 = 7
since before, and now we compare it with 8,
which is larger so we don’t change ν3. We
have minj∈Nu νj = ν4 = 6, and so we let
y4 = 6 and p4 = q4 = 5. Let
Nr = {1, 2, 4, 5} and Nu = {3}.
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Example (Cont.)

What is the shortest distance
between node 1 and node 4?

Node 4 = t has been labelled with the
permanent node price 6, which is the shortest
distance from node 1 to node 4.

We can find a shortest path by following the
predecessor index: p4 = 5 and p5 = 1, which
tells us that an optimal path is 1→ 5→ 4.

Sara Maad Sasane Linear and Combinatorial Optimization 25 February 2020 12/29



The shortest route
problem

Dynamic programming

Dijkstra’s algorithm

In the examples, we followed the following rules, which defines Dijkstra’s
algorithm. We only need to specify the set of unreached nodes Nu, since
Nr = V \ Nu.

1 Let Nu = V \ {s} and ys = 0. For every j ∈ Nu, let νj be a large number (e
g
∑

(i ,j)∈E cij).

2 For nodes j such that (1, j) ∈ E , let νj = c1j . and qj = 1.

3 For k = argminj∈Nu
νj let yk = νk and pk = qk .

4 Let Nu = Nu \ {k}.
5 If t /∈ Nu (or Nu = ∅), then stop.

6 For every j ∈ Nu for which (k , j) ∈ E , if yk + ckj < νj , let qj = k and
νj = yk + ckj .

7 Repeat from 3.
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Dijkstra’s algorithm

The number of iterations in the algorithm can be at most |V |, the number
of nodes, and in every iteration the number of operations is at most
proportional to |V |. This shows that the complexity of Dijkstra’s algorithm
is O(|V |2) as |V | → ∞.

It is recommended that you go through the example again, and check that
the steps 1–6 were followed.
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Bellman’s equations

Dijkstra’s method is applicable if all the
cost are nonnegative.

Bellman’s method that we will see now is
applicable also when (some of) the costs
are negative, but instead it is required
that the digraph is acyclic.

In particular, the method is not
applicable to undirected graphs (which
always have cycles).

As an example, we will study the digraph
of quickest time as we saw earlier:

Example

Network for quickest path
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Bellman’s equations

If the digraph is acyclic, it is possible to renumber the nodes so that all
edges go from a node with a lower index to a node with a higher index.

It is then possible to label the nodes in order (with node prices and
predecessor indices), and temporary labels are not required.

We will demonstrate the method for the example before stating the general
algorithm.
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Example

Network for quickest path

We see that this digraph is
already labelled so that i < j for
every (i , j) ∈ E , so we don’t need
to renumber the nodes.

We start by letting y1 = 0, and continue
marking nodes with node prices and
predecessor indices.

We get y2 = 5 and p2 = 1.

y3 = min(8, 5 + 2) = 7 and p3 = 2.

y4 = min(7 + 3, 5 + 6) = 10 and p4 = 3.

y5 = min(7 + 6, 10 + 2) = 12 and p5 = 4.

y6 = min(10 + 4, 12 + 3) = 14 and
p6 = 4.
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Example (Cont.)

All nodes have been marked, and we have found that the shortest time it
can take to go from node 1 to node 6 is 14.

We found that p6 = 4, p4 = 3, p3 = 2 and p2 = 1, and so an optimal path is
1→ 2→ 3→ 4→ 6.

Now we state the general algorithm:

1 Renumber the nodes so that i < j for all (i , j) ∈ E .

2 Let y1 = 0.

3 For j = 1, . . . , n, let k = argmini :(i ,j)∈E (yi + cij) and then let yj = yk + ckj
and pj = k .

The equations in step 3 are called Bellman’s equations.
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Bellman’s equations

The complexity of the algorithm is O(|V |2), assuming that a sorting
algorithm with the same complexity (or better) is used in step 1.

If the graph has cycles and some negative costs, neither Dijkstra’s algorithm
nor Bellman’s equations are applicable. For this situation, it is possible to
solve the problem with Ford’s method. See Holmgren’s book.

Note that the approach of Bellman’s equations is recursive: The nodeprices
were computed in order, and we used the results of the previous step when
computing the nodeprices for the next step.

We will now use the same idea for this and other problems when we
introduce Dynamic programming.
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Dynamic programming for the shortest route
problem

We will introduce dynamic programming using the same shortest route
problem solved with Bellman’s equations.

Example

We use the same graph as before, but organize it into levels (steps). We need
all arrows to go from a node in level j to a node in level j + 1, and for this
reason, we have introduced some new nodes and then renumbered all the
nodes.

The graph of quickest path organized for dynamic programming.
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Example

The nodes in each step are are denoted by sk and called states.

For each state, we compute the node price fk(sk).

The steering xk (in this example), is the set of possible nodes in step k − 1
that lead to a certain node in step k.

The optimal steering, x̂k(sk) is the best choice of steering to the node sk .

There is also a transfer function which for this example happens to be the
same as the optimal steering: Tk(sk) = x̂k .
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Example (Cont.)

The following table with sk , fk(sk), xk and x̂k(sk) can be computed:

Level States Node prices Steering Optimal
k sk fk(sk) {xk(sk)} steering x̂k(sk)

0 1 0 ∅ –

1 1 5 {1} 1
2 8 {1} 1

2 1 5 + 6 = 11 {1} 1
2 min(5 + 2, 8 + 0) = 7 {1, 2} 1

3 1 min(11 + 0, 7 + 3) = 10 {1, 2} 2
2 7 + 6 = 13 {2} 2

4 1 10 + 4 = 14 {1} 1
2 min(10 + 2, 13 + 0) = 12 {1, 2} 1

5 1 min(14 + 0, 12 + 3) = 14 {1, 2} 1
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Example (Cont.)

In the table, the recursive formula

fk(sk) = min
xk

(fk−1(xk) + ck(xk , sk))

was used to find the node prices, where the minimization is taken over all
possible steerings xk(sk).

The steering that gives the minimum above, is the optimal steering x̂k(sk).

We will now try a dynamic programming approach to the knapsack problem
as well.
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Dynamic programming for the knapsack problem

Example

The problem that we will solve is

maximize 7y1 + 2y2 + 4y3

subject to


2y1 + 3y2 + 2y3 ≤ 4,

y1, y2 ∈ {0, 1},
y3 ∈ {0, 1, 2}.

In general, the method will work on problems of the form

maximize
∑n

j=1 cjyj

subject to
{∑n

j=1 ajyj ≤ b,

0 ≤ yj ≤ uj , integers, j = 1, . . . , n.
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Dynamic programming for the knapsack problem

Example (Cont.)

We will use a network for the dynamic programming, where each variable
(item) makes one level. Level 0 will correspond to a slack item of no value.

State sk : The part of the RHS b to be used for the first k items
(variables) + slack.

Steering xk : The number (of copies) of item k that were chosen in step k − 1.

Transfer function sk−1: Tk(sk , xk) = sk − akxk (predecessor index)

Boundary constraints: f0(s0) = 0, s0 ≥ 0, sn = b (s0 is the slack.)

Constraints: 0 ≤ xk ≤ uk integers. 0 ≤ sk ≤ b, xk ≤ bsk/akc.
Objective function value: fk(sk) is the maximum value of a knapsack of size

sk using items 1, . . . , k .
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Example (Cont.)

Dynamic programming for the knapsack problem. The steps corresponds to the
variables/items + slack, and on the y -axis, we mark how much of the knapsack that
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Example (Cont.)

Each step correspond to a variable (item), except level 0 which corresponds
to a slack item (air).

The edges that are not marked have value 0.

Each node should be marked with a value and the steering. Fill in this
yourself!

The problem becomes that of maximizing the total value.

For example, the nodes in step 0 all have value 0, and steering 0, 1, 2, 3 and
4, respectively.

The nodes in step 1 have values 0, 0, 7, 7 and 7, while the steering for those
nodes are 0, 0, 1, 1, and 1, respectively. (0 if item 1 is not chosen, and 1 if
item 1 is chosen).
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Example

We label the nodes in step 2 as follows: Clearly, both node 0 and node 1
have value 0, and steering 0 (since no item 2 were chosen to reach these
nodes).

Node 2 and 3 in step 2 both have value 7 and steering 0, since they can only
be reached from node 2 and 3 of step 1 whose value are 7, via an edge of
value 0. Finally, node 4 has value max(7, 2) = 7 and steering 0.

The node in step 4 has value max(8, 7 + 4, 7) = 11 and steering 1 (since we
need to bring one copy of item 3 to achieve the optimum).

The optimum value of the knapsack is 11, and this is achieved if we bring
one copy of item 1, none of item 2 and one of item 3.
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In a previous lecture, I mentioned that the knapsack problem belongs to the
class of NP-complete problems.

Actually, that only applies to the decision version of the problem: Can a
value of at least f be achieved without exceeding the weight/size b?

The optimization version of the problem is NP-hard.

A dynamic programming for the knapsack problem is pseudopolynomial: The
algorithm is O(nb), where n is the number of items and b is the maximum
weight/size of the knapsack. So, in other words, we can solve all knapsack
problems with allowed knapsack sizes less than any fixed number b in
polynomial time (even in linear time), but there is no polynomial algorithm
without this bound on the knapsack size.
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