
Linear and Combinatorial Optimization 2020
LECTURE 10

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Overview

1 Algorithm complexity

2 Problem classification

3 Algorithm complexity for min cost flow problems and related problems

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 2/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

Definition

A problem is decidable if there is an algorithm that solves the problem in finite
time.

Example

The travelling salesman problem is decidable, for example through exhaustive
search.

In fact, all combinatorial optimization problems are decidable, since their
feasible set is always finite.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 3/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

We can talk about two different concepts of complexity for a given
algorithm:

Time complexity: How long does it take to run the algorithm?
and how does this time grow when the size of the problem gets
larger (→∞)?

Memory complexity: How much memory does the algorithm need? and how
does the memory size grow when the size of the problem gets
larger (→∞)?

Since it takes time to uses memory, the memory complexity is in general not
worse than the time complexity. We will only talk about time complexity for
this reason.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 4/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

When measuring the time complexity, the ordo notation is useful. n represents
the size of the problem (e.g. the number of indata entries).

Definition (Little ordo)

f (n) = o(g(n)) as n→∞ if

f (n)

g(n)
→ 0 as n→∞.

Example

n2 = o(n3) as n→∞ and

nk = o(2n) for every (fixed) k .

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 5/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

Definition (Big Ordo)

f (n) = O(g(n)) as n→∞ if

f (n)

g(n)
is bounded for n ≥ 1.

Example

2n2 + n + 3 = O(n2) as n→∞.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 6/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

We will make the following simplifying assumptions when talking about
(theoretical) time complexity:

Basic assumption: All sorts of operations require unit time.

We let

n be the size of the problem (i.e. the size of the matrix A in an LP problem),

f (n) be the time it takes to solve the problem with the algorithm for a
problem of size n.

Note that it is the worst case scenario that is (usually) considered, and so
f (n) is the largest time it could take to solve a problem of size n, using the
given algorithm.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 7/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

We consider different classes of algorithm, depending on how long time it
takes to solve them. The most important such classes are:

Polynomial time algorithms: f (n) = O(nk) for some (fixed) k .

Exponential time algorithms: f (n) = 2O(n) as n→∞, which means that
there exists a function g , defined on the positive integers, such
that f (n) = 2g(n) and g(n) = O(n) as n→∞.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 8/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Algorithm complexity

There are two related types of problems which are relevant to us. These are

Optimization problems: Find a feasible x∗ which is optimal.
Example: LP.

Feasibility problems: Does there exist a feasible solution?
Example: LI (Linear Inequalities)

From the point of view of time complexity, LP and LI are equivalent:

LP ⇒ LI: Solve LI by considering LP with any objective function (e.g.
z ≡ 0).

LI ⇒ LP: Consider the dual problem. Solve the primal and dual problem
simultaneously as an LI problem. Note that the sizes of these
problems are of the same order. Feasible solution ⇒ Primal
and dual solutions are optimal.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 9/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem classification

The feasibility version of a problem is usually studied when determining a
problem’s degree of complexity.

Class P: A feasibility problem is in class P if there exists a polynomial
time algorithm for finding its solution.

Class NP: There exists a polynomial time algorithm for checking whether
a point is a (feasible) solution.

Clearly P ⊆ NP (since an algorithm for solving a problem must have a way
of checking that it has found a solution).

The question then arises whether there are problems that are in NP but not
in P. Nobody knows the answer to this question, and there is a prize of
$1,000,000 for solving the problem. You can read more about the
Millennium Prize problems.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 10/32

https://en.wikipedia.org/wiki/P_versus_NP_problem

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP completeness

Certain problems are related so that if there is a fast algorithm for one
problem in the class, one can convert the problem so that also the other
problems of the same class can be solved by an algorithm of the same
complexity.

For this to be useful, the complexity for converting one of the problems to
another has to be at least as good (big O) as the complexity of the
algorithm that was found.

There is a class of problems of particular interest, called NP-complete
problems which are the hardest problem in NP. This class has the property
that if one of its problems can be solved in polynomial time, then all of them
can be solved in polynomial time. On the other hand, nobody knows if they
can be solved in polynomial time or not (i.e. it is not known if they belong
to P).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 11/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP-completeness

To define the NP-complete problems,
we first define another class of prob-
lems: the NP-hard problems.

Definition

A problem H is NP-hard if every
problem in NP can be reduced in
polynomial time to H.

A problem is NP-complete if it
belongs to NP and is NP-hard.

There are two different scenarios
depending on whether or not P = NP.
Most experts believe that P 6= NP (left
part of the figure).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 12/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP-completeness

Example (Examples of NP-complete problems)

The decision version of the travelling salesman problem is NP-complete.(By
the decision version of TSP we mean the problem of finding a certain path
with total length less than or equal to a given number.)

The optimization version of TSP is NP-hard but not NP-complete in
general, but

TSP where the edge lengths are assumed to be integers is NP-complete.

The Knapsack Problem is NP-complete.

0–1 Linear Programming is NP-complete.

Integer linear programming is NP-complete.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 13/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP-completeness

Theorem

The simplex method is not a polynomial time algorithm:

For every d > 1, there is an LP problem with 2d equations, 3d variables and
integer coefficients of size ≤ 4 such that the simplex method will need
2d − 1 iterations to find the optimum.

Furthermore, for every pivoting rule in the simplex algorithm, it is possible to
construct a problem which takes exponential time to solve with the simplex
algorithm.

On the other hand, the simplex method still perform well in practice for most
problems. Remember that algorithm complexity is about the time it takes to
solve a problem in the worst case.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 14/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP-completeness

Question: Does LP belong to NP?
Answer: Yes, it is easy to check that the linear inequalities are satisfied.

Let m = O(d) and n = O(d) as d →∞, where m is the number of
inequality constraints and n is the number of variables.

The number of operations needed for checking that a solution is feasible and
optimal is:

Primal inequalities: m × (n + (n − 1) + 1) = 2mn = O(d2),
Dual inequalities: n × (m + (m − 1) + 1) = 2mn = O(d2),
Dual obj.≤ Primal obj.: n + m + (n + m − 1) + 1 = 2(n + m) = O(d).

Totally there are O(d2) operations, and hence there is a polynomial time
algorithm for verifying that a solution is optimal (and feasible).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 15/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Problem reduction and NP-completeness

To summarize, we have seen that

the simplex method is not a polynomial time algorithm, but

LP belongs to the class NP.

This does not show that P 6= NP, since there are other algorithms for LP
which are of polynomial time. Some of these are:

The ellipsoid method (Khachiyan, 1979): The first polynomial time
algorithm found for LP. Only of theoretical importance since the algorithm
takes too long for practical problems to be useful. It is O(n4).

Karmarkar’s algorithm (Karmarkar, 1984): This was the first polynomial
time algorithm that was practically useful for solving actual problems. It is
rather complicated to learn and it is O(n3.5) as n→∞.

Central path algorithms (popular since the 1990’s): The best
algorithms seem to be O(n3).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 16/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The ellipsoid method

We will present the idea of the ellipsoid method.

The algorithm solves the feasibility problem, so first the LP problem has to
be rephrased as a feasibility problem using the primal together with the dual.

We will consider a general feasibility problem of Linear Programming, i.e. a
problem of Linear Inequalities.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 17/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The ellipsoid method

Algorithm idea:

1 Start with a large ellipsoid which contains
the feasible set.

2 Is the centre of the ellipsoid feasible?

If yes, then stop.
If no, then construct a hyperplane through
this point so that half of the ellipsoid
contains the feasible set. This is possible
because of convexity.

3 Compute the ellipsoid with the smallest
volume containing this half ellipsoid.

4 Repeat 2. and 3. until some stopping
criterion is fulfilled.

In the ellipsoid method, a
sequence of ellipsoids is
constructed.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 18/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

We start by writing the LP problem in standard form and then adding slack
variables:

maximize cTx

subject to{Ax + xs = b

x, xs ≥ 0.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 19/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

Algorithm idea:

1 Log barrier trick: The purpose of this step is to keep the variables away
from the boundary. Instead of optimizing the original objective function, we
optimize

maximize cTx + µ
n∑

j=1

log xj + µ

m∑
i=1

log xs,i .

µ is a parameter that is fixed in each step of the algorithm. Initially it is
large, and it will be reduced later. Intuitively, the added terms terms
penalize points which are close to the boundary of the feasible set (since
log x → −∞ as x → 0).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 20/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

2. Lagrange multipliers take care of the equality constraints: Let

L(x, xs, y) = cTx + µ

n∑
j=1

log xj + µ

m∑
i=1

log xs,i + yT(b− Ax− xs).

Here, yT is a row vector of Lagrange multipliers y1, . . . , ym, one for each
equality constraint. We have now got an unconstrained optimization
problem to solve, which should be easier than what we had before.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 21/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

3. When L(x, xs, y) is maximal, then the partial derivatives with respect to xj ,
xs,i and yi vanish (j = 1, . . . , n, i = 1, . . . ,m). We compute all these
derivatives. Taking the gradient with respect to the xj variables, we obtain

c + µ

1/x1
...

1/xn

− ATy = 0.

We let the vector above with entries µ · 1/xj be denoted by ys, i.e.
xjys,j = µ for j = 1, . . . , n. The above equations can then be written in the
simpler form

ATy − ys = c.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 22/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

3. (cont.) Taking the gradient with respect to the xs variables, we obtain

µ

1/xs,1
...

1/xs,m

− y = 0 ⇐⇒

y1xs,1 = µ,

...

ymxs,m = µ.

Finally, we take the gradient with respect to the y variables, and obtain the
equations

b− Ax− xs = 0.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 23/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

3. (cont.) To summarize, the equations that arise from putting all the partial
derivatives to 0 are

Ax + xs = b,

AT y − ys = c,
y1xs,1 =µ,

...

ymxs,m =µ

and

x1ys,1 =µ,

...

xnys,n =µ.

The conditions involving µ are called µ-complementary slackness because of
the resemblance of the CS conditions.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 24/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Central path methods

4. Solve the system of equations numerically,
for example with Newton’s method for a
large µ. Then decrease µ and use the
optimal solution of the previous step as a
starting point for the next iteration.
The optimal solution for each µ lies on a
path which is called the central path.
Decrease µ↘ 0 (without attaining 0). The
sequence will converge to an optimal solution
of the original problem. Note that the
µ-complementary slackness conditions will
look more and more like complementary
slackness.

The optimal solutions lie on the
central path for each µ. The
analytic center corresponds to
µ =∞.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 25/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Minimum cost flow problems

The minimum cost flow problem is the problem of shipping fixed amounts (bi)
in a network where each edge is assigned not only a capacity cij but also a
(shipping) cost aij . For this problem, each node is either a source (i.e. no
inflow), a sink (i.e. no outflow) or an intermediate node (i.e inflow =
outflow), and there can be more than one source or sink. For each node, the
source/sink strength is given as a number bi with the property that bi > 0 if
node i is a sink, bi < 0 if node i is a source, and bi = 0 if node i is an
intermediate node. A requirement for the existence of a feasible solution is
that

∑n
i=1 bi = 0. The minimization problem is

minimize
∑n

i=1

∑n
j=1 aijxij

subject to
{∑n

j=1 xji −
∑n

j=1 xij = bi , i = 1, . . . , n,

0 ≤ xij ≤ cij , i , j = 1, . . . , n.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 26/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

Complexity for min cost flow problems

Min cost flow problems can be solved with the simplex method, or

a version of the simplex method which is adapted for networks. (See e.g.
Holmgren’s book, p. 313–317). The complexity of the best such algorithm
seems to be O(VE logV log(VC)), where V is the number of nodes
(vertices), E is the number of edges and C is the maximum cost of any edge.

By the Kruskaal–Hoffman theorem, the simplex method will find an integer
solution if the indata has integer entries.

Other problems that we have seen can be put in the framework of min cost
flow problems, and so these problems belong to P too.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 27/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The transportation problem

The transportation problem as a minimum
cost flow problem

The figure shows the resulting graph
when the transportation problem is
viewed as a minimal cost flow
problem.

The edges between node Fi and node
Fj have capacities ∞ and costs cij
(the transportation costs given in the
transportation problem).

Since the min cost flow problem
belongs to P, the same is true for the
transportation problem.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 28/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The assignment problem

Since the assignment problem can be considered as a special case of a
transportation problem, and the transportation problem belongs to P, the
assignment problem belongs to P too.

The Hungarian algorithm as it was formulated originally in 1957 (by Kuhn,
based on the work by König and Egerváry) is O(n4), but there are
modifications of it (e.g. by Edmonds and Karp) that are O(n3).

In 2006 it was discovered that the assignment problem was solved already in
the 19th century by Jacobi. See some more information here.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 29/32

http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The shortest route problem

The shortest route problem can be viewed as a minimum cost flow problem
with all capacities being 0 and all b1 = −1 (the starting node) and bn = 1
(the end node).

The cost on each edge is given by the distance between the respective nodes.

Since the minimum cost flow problem belongs to P, so does the shortest
route problem.

The method that we discussed briefly in Lecture 9 is called Dijkstra’s
method, and this algorithm has complexity O(V 2), where V is the number
of nodes in the network.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 30/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The maximal flow problem

If we let all the costs aij of the minimum cost flow problem be 0 and also let
bi = 0 for i = 2, . . . , n, then the problem looks very similar to the maximal
flow problem.

The difference is that the flow f =
∑n

i=1 x1j is specified in the minimum cost
flow problem, but in the maximum flow problem, it is the objective function.

If we add an edge from sink to source in the max flow problem with cost −1,
and add the constraint that inflow = outflow also for node 1 and n, then the
objective function to be minimized in the minimum cost flow problem is
−xn1 = −

∑n
j=1 x1n. Moreover, the constraint sets of the two problems are

the same, so after converting to a maximization problem, we see that the
maximal flow problem can be reformulated as a minimum cost flow problem.

Since the minimum cost flow problem belongs to P, so does the maximum
flow problem.

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 31/32

Algorithm complexity

Problem classification

Algorithm complexity
for min cost flow
problems and related
problems

The maximal flow problem

Assuming that the capacities are all integers (or at least rational), the
Ford–Fulkerson method for the maximum flow problem is O(Ef), where E is
the number of edges and f is the value of the maximum flow.

A specialization of Ford–Fulkerson known as the Edmonds–Karp algorithm is
O(VE 2), where V is the number of vertices (nodes).

The difference of the two versions of the methods is the order of how nodes
are labelled (or rather: The Ford–Fulkerson doesn’t have a specified order,
whereas the Edmonds–Karp uses a breadth first search). For an example of
the worst case scenario of the Ford–Fulkerson method, see the Wikipedia
page (scroll down to the section ”Integral example”).

If the capacities are not rational, then the Ford–Fulkerson algorithm may not
terminate, and it may not even converge to a maximum flow. (See the same
Wikipedia page as above).

Sara Maad Sasane Linear and Combinatorial Optimization 21 February 2020 32/32

https://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm
https://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm

	Algorithm complexity
	Problem classification
	Algorithm complexity for min cost flow problems and related problems

