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Graphs and networks

A graph consists of

nodes that are points (in the plane)
edges that connect the nodes.

A loop is an edge that connects a node to itself.

A graph with 7 nodes and 9 edges. Note that there is a loop at node number 5.
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Graphs and networks

A path is an ordered set of edges joining one node to another.

A graph is said to be connected if there is a path joining any two nodes of
the graph.

A cycle is a path joining a a node to itself (possibly passing some other nodes

The path 1→ 4→ 5→ 6, joining node 1 to node 6 is highlighted.
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Graphs and networks

A directed graph or a digraph, is a graph where each edge is equipped with a
direction (indicated with an arrow).

A digraph
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Graphs and networks

A network is a connected, directed graph where each edge has been assigned
a non-negative number – a capacity.
The capacity represents the maximum amount that may pass along an edge
(e.g. water in a pipe, data traffic, etc.). The capacity of an edge from node
i to node j is represented by a number cij , i , j = 1, . . . , n.

A network
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Graphs and networks

Definition

A flow in a network can be represented by xij such that 0 ≤ xij ≤ cij , where

there is a special note, called the source S , such that
∑n

i=1 xi1 = 0, where
we have assumed that the source node has number 1. This means that all
flow comes from S .

there is a special node, called the sink T , such that
∑n

j=1 xnj = 0, where we
have assumed that the sink node has number n. This means that all flow
goes to T .

For all other nodes (k = 2, . . . , n − 1),
∑n

i=1 xik =
∑n

j=1 xkj , i.e. inflow =
outflow.
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The maximal flow problem

In the maximal flow problem, we maximize the value of the flow which is the
sum of all x1j , (or equivalently, the sum of all xin). The problem can be
formulated as the LP problem

maximize
∑n

k=1 x1k ,

subject to



∑n
i=1 xi1 = 0,∑n
j=1 xnj = 0,∑n
i=1 xik =

∑n
j=1 xkj , k = 2, . . . , n − 1,

0 ≤ xij ≤ cij , i , j = 1, . . . , n.

The problem can be solved with the simplex method, but there are also
other, more efficient, special algorithms.

We will learn one of these algorithms, the Ford–Fulkersson algorithm.
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The maximal flow problem

Definition

Given a flow xij in a network,

the net flow from node i to node j is given by x̂ij = xij − xji , and

the excess capacities are the numbers

dij = cij − xij + xij = cij − x̂ij .

Note that x̂ij = −x̂ji .

Example

If cij = 4, cij = 0 and x̂ij = 1, then we have dij = 3 and dji = 1. The meaning
of cji = 0 is that no flow can go from node j to node i .
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The Ford–Fulkersson algorithm

1 Start with a flow (for example xij = 0 for i , j = 1, . . . , n), and compute all
the excess capacities. Then we start labelling the nodes as follows, starting
from the source S . Start by letting N1 = {1}. For each node that can be
reached from node 1 by an edge with positive excess capacity, do the
following:

Label these nodes by (ek , pk), where ek = d1k (the excess capacity from node
1 = S to node k) and pk = 1 (the number of the node that led to node k).
Replace N1 by N1 ∪ {k}.
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The Ford–Fulkersson algorithm

Example

We assume that we have the following network with capacities cij . Starting
with the flow xij , the excess capacities are equal to the capacities:

Original network with all dij = cij

The first step in the algorithm completed.
The nodes 2 and 3 are labelled and
N1 = {1, 2, 3}.
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The Ford–Fulkersson algorithm

2. For each node in N1, we label the nodes k /∈ N1 that can be reached from a
node m such that m ∈ N1 and dmk > 0 as follows:

Label node k by (ek , pk), where ek = min(dmk , em) (the minimum of the excess
capacities of the edges in the path from S to node k via node m) and pk = m
(the node that led to node k).
Replace N1 by N1 ∪ {k}.

3. Continue to add nodes as long as possible. When no more nodes can be
added, we are in one of the following situations:

a) The sink is unlabelled, or
b) The sink is labelled.

Let us do these steps for our example before proceeding with the general
algorithm.
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Ford–Fulkersson algorithm

Example (Cont.)

From step 1 we have N1 = {1, 2, 3}, and from N1 we can reach all the
remaining nodes (Node 4 and 5 can be reached from node 2 and node 6 can
be reached from node 3.) We get new labels as in the figure below, and
N1 = {1, 2, 3, 4, 5, 6}, i.e. we are in case b).

All the nodes have been labelled.
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Ford–Fulkersson algorithm

Now we continue with the general algorithm.

3. (Cont.) If case a) holds, then the flow is optimal, as we will prove soon. If
case b) holds, then there is a path from source to sink with excess capacity
en (where n is the number of the sink). We can find the path using pn and
backtracking through the whole path. Add en to all the xij in this path and
compute new excess capacities using this new flow. Start again from 1.

Example (Cont.)

In our example, n = 6, and e6 = 2 which shows that there is a path from S
to T whose edges all have excess capacity ≥ 2. As p6 = 3 and p3 = 1, we
find that the path is 1→ 3→ 6.

Adding 2 to all the edges of that path, we obtain the network with excess
capacities as on the next slide.
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The Ford–Fulkersson algorithm

Example (Cont.)

The network with updated excess
capacities

Note that the excess capacities
corresponding to the edges which has
the same direction as the arrow are
written to the left of (or above) the
arrow, and the excess capacities
corresponding to edges in the
opposite direction is written to the
right of (or below) the arrow.

We’ll start labelling the nodes on the
next slide.
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The Ford–Fulkersson algorithm

Example (Cont.)

New labels are put on the nodes

The nodes 2 and 3 are labelled first, and
then 4 and 5 (which both can be reached
from node 2) and then 6 (which can be
reached from node 4).

We are in case b), and a path from S to T
that we have found is 1→ 2→ 4→ 6.

Since e6 = 4, the flow can be increased by 4
along that path, and new excess capacities
can be computed. We do this in the next
slide as well as labelling the nodes.
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The Ford–Fulkersson algorithm

Example (Cont.)

We have found the path 1→ 2→ 5→ 6
with e6 = 4. Increase the flow along that
path by 4 and compute new excess
capacities:

We have found the path 1→ 3→ 5→ 6
with e6 = 2. Increase the flow along that
path by 2 and compute new excess
capacities:
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The Ford–Fulkersson algorithm

Example (Cont.)

We did not manage to label the T node,
so we are in case a).

Since we cannot find a path from S
to T , we suspect that we have found
the maximal flow with value
2 + 4 + 4 + 2 = 12.

That the flow is indeed optimal
follows from the Max flow–Min cut
theorem, which we will see after
some definitions that will be needed
for stating the theorem.
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The max flow–min cut theorem

Definition

A cut in a network is a set of directed
edges such that every path from
source to sink contains at least one
edge from the set.

The capacity of a cut is the sum of
the capacities of the edges in that
cut. {3→ 6, 4→ 6, 5→ 6} is a cut with

capacity 2 + 6 + 5 = 13, but
{1→ 3, 2→ 5} is not a cut.
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The max flow–min cut theorem

Theorem (Max flow–min cut)

The maximum value of a flow in a network is the minimum of the capacities
of all cuts in the network.

Proof 1 (Sketch).

Write the problem as an LP problem and check that the min cut problem is
the dual of the max flow problem. The result follows from the strong duality
theorem.
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The max flow–min cut theorem

Direct proof.

1 The value of a flow in a network is always ≤ than the capacity of any cut.

For a given path, the flow along this path cannot exceed the capacity of an arc
of the path that belongs to the cut.
As a flow is the sum of such paths from S to T , its value cannot exceed the
capacity of the cut.

2 In particular, the value of the maximal flow is less than the value of the
minimum cut.

3 We will show that they are in fact equal, by constructing a flow and a cut
with whose value/capacity is equal. This will be done by using the set N1 in
the final step of the Ford–Fulkersson algorithm.
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The max flow–min cut theorem

Proof (Cont.)

4. Suppose that we found a flow such that the Ford–Fulkersson algorithm
terminates without the sink being labelled. As in the algorithm, we have

N1 = {S} ∪ {labelled nodes},N2 = {unlabelled nodes}.

Note that T ∈ N2. Let

A = {edges from N1 to N2}.

Then A is a cut, since S ∈ N1 and T ∈ N2, and so it is clear that any path
from S to T has to pass A.
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The max flow–min cut theorem

Proof (Cont.)

5. Now we will show that the capacity of A is equal to the value of the flow.
We have ∑n

i=1 xik =
∑n

j=1 xkj , j = 2, . . . , n − 1.

Since dij = cij − xij + xji , it follows that∑n
j=1 dij =

∑n
j=1 cij −

∑n
j=1 xij +

∑n
j=1 xji︸ ︷︷ ︸

=0 for i=2,...,n−1

.

For the source node (i = 1), we have∑n
j=2(c1j − d1j) =

∑n
j=2 x1j ,

since xj1 = 0 for the source.
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The max flow–min cut theorem

Proof (Cont.)

6. Summing the two last equalities for i ∈ N1, we obtain∑
i∈N1

∑n
j=1(cij − dij) =

∑n
j=2 x1j ,

which is the value of the flow. If both i and j belong to N1, then
cij − dij = x̂ij and cji − dji = x̂ji cancel out, while if i ∈ N1 and j ∈ N2, then
dij = 0, and so the flow can be expressed as∑n

j=2 x1j =
∑

i∈N1

∑
j∈N2

(cij − dij) =
∑

i∈N1

∑
j∈N2

cij ,

i.e. the capacity of the cut A.
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Proof (Cont.)

Proof (Cont.)

7. We have proved that our flow is equal to the capacity of our cut. Since all
flows have value which is less than or equal to the capacity of any cut, this
shows that these are the max flow and min cut, respectively, and that they
are equal.
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The shortest route problem

The problem.

Given a graph or a directed graph with distances on each edge, what is the
shortest distance between two particular nodes?

We fix the starting node, which we will call the origin. We give the idea for a
simple algorithm, in which we will need the following procedure, depending on
a parameter a (the maximum allowed distance):

Form the set Nr consisting of the origin and all nodes that can be reached
from the origin by a shortest route of length at most a, and let the set Nu

consist of all other nodes.

Initially (when a = 0), Nr consists only of the origin. Then, as we increase a,
we transfer nodes from Nu to Nr until Nu = ∅ or the destination node belongs
to Nr .
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The shortest route problem

Example

What is the shortest distance between
node 1 and node 4?

We choose node 1 as the origin, and
let a = 0. Initially, Nr = {1} and
Nu = {2, 3, 4, 5}.
a is increased to 4. Then Nr = {1, 5}
and Nu = {2, 3, 4}.
a is increased to 5. Then
Nr = {1, 2, 5} and Nu = {3, 4}.
a is increased to 6. Then
Nr = {1, 2, 4, 5} and Nu = {3}.
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The shortest route problem

Example (Cont.)

We have reached the destination node 4, and the distance from the origin is
6.

Both the shortest route problem and the transportation problem can be seen
as special cases of a minimal cost flow problem:

Minimize the cost from source to sink of a fixed total amount of transported
goods, when in addition to the distances between nodes, there are also
maximum capacities that each edge can take.

Sara Maad Sasane Linear and Combinatorial Optimization 18 February 2020 28/40



Graphs and networks

The maximal flow
problem

The shortest route
problem

The Vigenère cipher –
Theory for Lab 2

The shortest route problem

The figure below shows the resulting graph when the transportation problem
is viewed as a minimal cost flow problem.

The transportation problem as a minimum cost flow problem
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The Vigenère cipher

In Lab session 2, one of the topics will be the
Vigenère cipher. Here is some background
information.

The Vigenère cipher is a method of encrypting
alphabetic text by using a series of interwoven Caesar
ciphers based on the letters of a keyword. I will
explain how it works, but first a bit of history.

The Vigenère cipher was originally described by
Giovan Battista Bellaso in 1553, but the scheme was
later misattributed to Blaise de Vigenère (another
16th century cryptographer) in the 19th century, and
thus acquired its present name.

Blaise de Vigenère, 1523
– 1596
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The Vigenère cipher

Though the cipher is easy to understand and implement, for three centuries
it resisted all attempts to break it, and it was considered unbreakable.

Many people have tried to implement encryption schemes that are essentially
Vigenère ciphers.

Friedrich Kasiski was the first to publish a general method of deciphering a
Vigenère cipher in 1863, although versions of it had been solved before that.
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The Vigenère cipher

The key is a short string, for example
’HELLO’.

At encryption and decryption, the key is
written periodically below the text. Each
letter in the key gives the number of (cyclic)
shifts for the above letter in the alphabet:

a→ b → c → · · · → y → z → a . . .

A means no shift, B one step, C two steps,
etc.

A Vigenère table (see figure) can be used for
doing this more easily.

A Vigenère table or a Tabula
recta can be of use for
encryption/decryption when the
key is known
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The Vigenère cipher

Example

Alphabet: abcdefghijklmnopqrstuvwxyz

Original text: thistextshouldbeencrypted

Secret key: HELLOHELLOHELLOHELLOHELLO

Encrypted text: altdhlbedvvywopliynfftepr

When sending a message, only the submitter and the receiver both have
access to the secret key beforehand, while the message is accessible to
everybody.

Now, imagine that a third party wants to get access to the secret message.
They then have to find the secret keyword (assuming that they know that a
Vigenère cipher has been used), since they already have access to the
encrypted message.
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The Vigenère cipher

Let us put ourselves in the shoes of the third party that wants to solve the
cipher.

The first thing to do is to try to find the length of the key word. There are
methods for this, e.g. Kasiski examination or the Friedman test (kappa test).
We will not cover this, since it has nothing to do with optimization, but you
can google for information if you are interested.

When the length of the key word has been found (or guessed), we can use
optimization and frequency analysis to find the key word.
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The Vigenère cipher

We assume that the length of the key word is n. We will now try to find the
key word. Note that the number of possible keywords with an alphabet of
length 26 is 26n. This is the number of feasible points in the optimization
problem.

If the first letter of the key word is a, then letter number 1 + nk for every
k = 0, 1, . . . is the same in the encrypted text as in the original text.

If the first letter of the key word is b, then letter number 1 + nk for every
k = 0, 1, . . . is shifted one step, etc. (Similar relationships for all letters in
the alphabet and all letters in the keyword.)

This gives a relationship between the probabilities of letter number i in the
key word and products of probabilities of certain letters in the unencrypted
text.
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The Vigenère cipher

Example

For our example with a 25 letter long text and with a password of length 5,
we can compute a probability for each feasible keyword, like for example

P(key = ’abcde’) =P(text = ’akradlacarvxulllhwkbfscmn’)

etc. Note that there are 265 possible keywords since this alphabet has 26
letters, and we don’t want to check all of these. We use frequency analysis on
the encrypted text to estimate probabilities like the ones on the right hand
side.
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The Vigenère cipher

Example (Cont.)

By using trigram statistics which are frequences of three consecutive letters in
a text (of a given language), we estimate the probability of the right hand side
according to:

P(text = ’akradlacarvxulllhwkbfscmn’)

Let us first estimate the probability that the original text starts with the three
letters ’akr’:

P(text = ’akr...’) ≈ frequency of the trigram ’akr’

in English text

We denote the frequency of the trigram ’akr’ by T (’akr’), etc.
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The Vigenère cipher

Example (Cont.)

Next, we estimate the probability that the first four letters of the original text
are ’akra’:

P(text = ’akra...’) ≈ P(text = ’akr...’)·
· P(text(4) = ’a’|text(2) = ’k’ and text(3) = ’r’)

≈ T (’akr’) · T (’kra’)

P(text(2) = ’k’ and text(3) = ’r’)

≈ T (’akr’) · T (’kra’)

B(’kr’)
,

using conditional probability and only considering letters one or two steps
back. In the last row, we have used the notation B(’kr’) for the frequency of
the bigram ’kr’ in English text.
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The Vigenère cipher

Example (Cont.)

In the same way, we can compute the probability that the text starts with
’akrad’ by computing

P(text = ’akrad...’) ≈ P(text = ’akra...’)·
· P(text(5) = ’d’|text(3) = ’r’ and text(4) = ’a’)

≈ T (’akr’) · T (’kra’)

B(’kr’)
· T (’rad’)

B(’ra’)

=
T (’akr’)T (’kra’)T (’rad’)

B(’kr’)B(’ra’)

We can continue and get a probability for the whole text. We will get the
product of all the trigram frequencies of the (candidate for the) original text
in the numerator and the product of all the bigrams except the first one in the
denominator.
Sara Maad Sasane Linear and Combinatorial Optimization 18 February 2020 39/40



Graphs and networks

The maximal flow
problem

The shortest route
problem

The Vigenère cipher –
Theory for Lab 2

The Vigenère cipher

We will work with logarithms of the probabilities rather than the probabilities
themselves, and so we take logarithms of both sides of the final formula.
The multiplication/division turns into addition/subtraction. This gives us
the objective function of the maximization problem.

The reason for using logarithms is that it is computationally easier to add
than to multiply and also because the probabilities involved will be very
small, and so if many such probabilities were multiplied together, the
computational error would be too large.

The logarithms of the trigram and digram frequencies are stored in a table
that the Matlab functions used in the lab have access to when computing
the value of the objective function.
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