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In integer linear programming, we study linear optimization problems with an
integer constraint added:

maximize z = cTx,

subject to
{
Ax = b,

x ≥ 0, x ∈ Zn.
,

How does ILP differ from LP?
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How does LP differ from ILP?

We can start by solving the corresponding LP problem, which is obtained
from (ILP) by removing the integer constraint. If we are lucky, then the
optimal solution to this LP problem belongs to Zn. Then the obtained
solution must also be optimal for (ILP).

What if the optimal solution of (LP) does not belong to Zn? What do we
do? One guess one might have is to round off too the closest feasible point.
Unfortunately this does not always work.

Sometimes, the special structure of the problem can be used to guarantee
that (LP) has an integer optimal solution.
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Theorem (Kruskaal–Hoffman)

Suppose that A contains only 0’s, 1’s and −1’s and that b has integer entries.
Then (LP) has an optimal integer solution, which is an extreme point of the
feasible set.

The theorem implies that if A and b are as in the theorem, then we can
solve (ILP) with the simplex method.

Note that no assumptions are made on c, but the maximum value may not
be an integer unless c has only integer entries.
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Example (The transportation problem)

A manufacturer has m factories and n warehouses. Warehouse number j
demands dj of a product. Factory number i can supply si of the same
product. The shipping cost from factory number i to warehouse number j is
cij . Determine the amount xij that should be shipped from factory number i
to warehouse number j in order to minimize the shipping cost.
We assume that

m∑
i=1

si ≥
n∑

j=1

dj (total supply ≥ total demand).
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Example (The transportation problem, Cont.)

The transportation problem can then be formulated as the LP problem

minimize z =
m∑
i=1

n∑
j=1

cijxij ,

subject to



n∑
j=1

xij ≤ si , i = 1, . . . ,m,

m∑
i=1

xij ≥ dj j = 1, . . . , n,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

xij ∈ Zn, i = 1, . . . ,m, j = 1, . . . , n.
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Example (The transportation problem, Cont.)

If we rewrite this problem into an ILP in standard form, then we will see that
A has only the entries 1, 0 and −1.

If sj and dj are integers, then (LP) and (ILP) have the same solution. We
can solve the problem with the simplex method.

On the other hand, there are special algorithms developed for this problem.
We will learn the transportation algorithm later in this course.
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Example (The knapsack problem)

A hiker is packing for a field trip and has to decide what to bring. She can
carry at most k kg. She chooses between n items. Assign values cj to the
items, with the most important item having the highest value. Let aj be the
weight of item number j. The problem can then be phrased as maximization
of the total value subject to weight limitation, i.e.

maximize z =
∑n

j=1 cjxj ,

subject to



∑n
j=1 ajxj ≤ k , where

xj =

{
0 (if item j is chosen)

1 (if item j is not chosen),

j = 1, . . . , n.

.
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Example (The knapsack problem, Cont.)

This type of problem, where the variables only take values 0 and 1 is called a
zero–one programming problem.

For this problem we won’t automatically get an integer solution when solving
with the simplex method even if k is an integer. (The Kruskaal–Hoffman
theorem is not applicable unless all the aj ’s are 1.)

We can handle general ILP’s with the cutting plane method (which we will
do today) or the branch and bound method (which we will do next time).
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Start by solving the corresponding LP problem (which is called the LP
relaxation problem) by removing the x ∈ Zn-constraint and solving with the
simplex method. If, by chance, the optimal solution x0 belongs to Zn, then
x0 is also a solution of (ILP). (Why?)
If x0 /∈ Zn, we have a situation as in the figure, that the optimal solution is
not a lattice point.

The optimal solution of (LP) is not feasible for (ILP).Sara Maad Sasane Linear and Combinatorial Optimization 4 February 2020 11/23
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In this situation, we add an extra constraint (a cutting plane) in such a way
that this solution is removed, but without removing any integer solutions.
We will show in an explicit example how to construct a cutting plane.

The cutting plane removes the fractional solution found with the simplex method,
but keeps all the lattice points within the feasible set.
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Example (p. 265)

Assume that we ended up with the following system after applying the simplex
method. (The original problem must have integer coefficients to start with,
but after running the simplex method, this may no longer be the case.)

x1 x1 + + 1
8x3 − 1

8x4 = 17
4

x2 x2 − 1
12x3 + 5

12x4 = 19
6

z 1
8x3 + 15

8 x4 + z = 161
4

As you can see, x1 and x2 are basic variables, x3 and x4 are nonbasic variables.
x1 = 17

4 , x2 = 19
6 , x3 = x4 = 0 is optimal for (LP) but not feasible for (ILP).
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Example (Cont.)

We add a cutting plane as follows:

Choose one of the rows with a noninteger RHS. We’ll take the first row.
Write it as

x1 + 0 · x3 − 1 · x4︸ ︷︷ ︸
A∈Z (integer part)

+
1

8
x3 +

7

8
x4︸ ︷︷ ︸

B≥0 (fractional part)

= 4 + 1
4 .

Note that we round the coefficients down in A so that b−1
8c = −1 for

example.

B carries all the fractional part, and so B ≥ +1
4 . (Possible values for B are

1
4 , 1 + 1

4 , 2 + 1
4 , . . . )

This means that we can safely add the constraint

1
8x3 + 7

8x4 ≥
1
4 .
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Example (Cont.)

We introduce a new slack variable u1:

1

8
x3 +

7

8
x4 − u1 =

1

4
⇐⇒ −1

8
x3 −

7

8
x4 + u1 = −1

4
.

Key point: u1 ∈ Z and u1 ≥ 0.
Why? It is clear that u1 ≥ 0. B carries all the fractional part, so B can be
1
4 , 1 + 1

4 , 2 + 1
4 , etc, and so it follows that u1 ∈ Z.
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Example (Cont.)

We get the new system

x1 x1 + + 1
8x3 − 1

8x4 = 17
4

x2 x2 − 1
12x3 + 5

12x4 = 19
6

u1 − 1
8x3 − 7

8x4 + u1 = −1
4

z 1
8x3 + 15

8 x4 + z = 161
4

We have a basic solution (x1 =
17

4
, x2 =

19

6
, x3 = x4 = 0, u1 = −1

4
) which

is not feasible. This shouldn’t come as a surprise, since the basic solution is
represented by the optimum of the LP problem, that is now outside the
feasible set.

Sara Maad Sasane Linear and Combinatorial Optimization 4 February 2020 16/23



Integer linear
programming

The cutting plane
method

The cutting plane method (Cont.)

Example (Cont.)

Now we can initialize using the two phase method, but there is another,
more convenient way, using the dual problem.

Rewrite the tableau into a problem in standard form, using the basic
variables x1, x2 and u1 as slack variables:

maximize z = −1

8
x3 −

15

8
x4 +

161

4
subject to


1
8x3 −

1
8x4 ≤

17
4 ,

− 1
12x3 + 5

12x4 ≤
19
6 ,

−1
8x3 −

7
8x4 ≤ −

1
4

x3, x4 ≥ 0.
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Example (Cont.)

Now, we will look at the dual problem. For making notation as simple as
possible, it is convenient to index the dual variables in the same way as the
slack variables of the primal problem. The dual problem is then

minimize w =
17

4
y1 +

19

6
y2 −

1

4
v1 +

161

4
subject to

1
8y1 −

1
12y2 −

1
8v1 ≥ −

1
8 ,

−1
8y1 + 5

12y2 −
7
8v1 ≥ −

15
8 ,

y1, y2, v1 ≥ 0.
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Example (Cont.)

Note that the primal problem is, strictly speaking, not an LP problem
because of the constant term 161

4 in the objective function. It does, however
have the same optimal solution as the LP problem obtained by removing
that term, and the optimal value will be the 161

4 higher than the optimal
value of that LP problem.

When forming the dual, the term 161
4 carries over to the objective function

of the dual problem. This is sensible, because then the primal and dual
problems will have the same optimal value just as is the case for LP
problems. Indeed, this follows from applying the strong duality theorem on
the LP problem.
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Put the dual problem into canonical form. Then we need two new slack
variables, y3 and y4:

maximize z = −17

4
y1 −

19

6
y2 +

1

4
v1 −

161

4

subject to

−1

8y1 + 1
12y2 + y3 + 1

8v1 = 1
8 ,

1
8y1 −

5
12y2 + y4 + 7

8v1 = 15
8 ,

y1, y2, y3, y4, v1 ≥ 0.

We see that the right hand side of the constraint equations are non-negative,
and so y3 = 1

8 , y4 = 15
8 , y1 = y2 = v1 = 0 is a basic feasible solution.
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We solve this system with the simplex method, and then translate back to
the primal problem. We get

x1 x1 − x4 + u1 = 4
x2 x2 + x4 − 2

3u1 = 10
3

x3 x3 + 7x4 − 8u1 = 2

z x4 + u1 + z = 40

The optimal solution for LP is not feasible for ILP since x2 = 10
3 /∈ Z.
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We add another cutting plane, now using the second row (since its RHS is
not an integer):

x2 + x4 − 1 · u1︸ ︷︷ ︸
A (integer part)

+ 1
3u1︸︷︷︸

B≥0 (fractional part)

= 3 +
1

3
.

B can be 1
3 , 1 + 1

3 , 2 + 1
3 , etc, i.e. B = u2 + 1

3 , where u2 is a nonnegative
integer.

We will add the equation

1

3
u1 = u2 +

1

3
⇐⇒ −1

3
u1 + u2 = −1

3
.
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The new system is then

x1 − x4 + u1 = 4
x2 + x4 − 2

3u1 = 10
3

x3 + 7x4 − 8u1 = 2
− 1

3u1 +u2 = −1
3

x4 + u1 + z = 40

The system is solved using the dual problem as in the previous step. We
obtain the solution x1 = 3, x2 = 4 (original variables) and z = 39.

See the homepage for a script which can be used for converting from the
primal to the dual problem.
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