

Overview

1 Duality

The weak duality theorem

Recall the weak duality theorem and some of its consequences from last time:

Theorem (The weak duality theorem)

If \mathbf{x} is a feasible solution of (P) and \mathbf{y} is a feasible solution of (D), then $\mathbf{c}^{\boldsymbol{\top}} \mathbf{x} \leq \mathbf{b}^{\boldsymbol{\top}} \mathbf{y}$.

Corollary

If the primal problem is unbounded, then the dual problem is infeasible.

The weak duality theorem

Theorem

If \mathbf{x} and \mathbf{y} are feasible solutions of the primal and dual problem, respectively, and if $\mathbf{c}^{\boldsymbol{\top}} \mathbf{x}=\mathbf{b}^{\boldsymbol{\top}} \mathbf{y}$, then both \mathbf{x} and \mathbf{y} are optimal solutions of their respective problems.

- Note: It can happen that both the primal and dual problems are infeasible.
- If the dual problem is unbounded (to $-\infty$), then the primal problem is infeasible (since the dual of the dual is the primal!).

The strong duality theorem

Theorem (The strong duality theorem)

If $\hat{\mathbf{x}}$ is optimal and feasible for (P), then there exists a $\hat{\mathbf{y}}$ which is optimal and feasible for (D), and $\mathbf{c}^{\top} \hat{\mathbf{x}}=\mathbf{b}^{\top} \hat{\mathbf{y}}$.

Proof.

Introduce slack variables to put (P) into canonical form, and solve the problem with the simplex algorithm. There exists an optimal solution $\widehat{\mathbf{x}}=\left[\begin{array}{l}\mathbf{x} \\ \mathbf{x}^{\prime}\end{array}\right]$, where \mathbf{x}^{\prime} is the vector of slack
variables. Let $\widehat{\mathbf{c}}=\left[\begin{array}{l}\mathbf{c} \\ \mathbf{0}\end{array}\right]$.

The strong duality theorem (Cont.)

Proof (Cont.)

We decompose $\widehat{\mathbf{x}}$ into its basic and nonbasic variables, $\widehat{\mathbf{x}}_{\boldsymbol{B}}$ and $\widehat{\mathbf{x}}_{\mathbf{N}}=\mathbf{0}$, and change the order of the variables so that $\widehat{\mathbf{x}}=\left[\begin{array}{l}\widehat{x}_{\mathbf{N}} \\ \widehat{\mathbf{x}}_{\mathbf{B}}\end{array}\right]$. At the same time, we need to change the order of the columns in $\left[\begin{array}{ll}\mathbf{A} & \mathbf{I}\end{array}\right]$ and in $\widehat{\mathbf{c}}$. Then $\widehat{\mathbf{x}}_{\mathbf{B}}=\mathbf{B}^{-\mathbf{1}} \mathbf{b}$, where \mathbf{B} is the (permuted!) submatrix of $\left[\begin{array}{ll}\mathbf{A} & \mathbf{l}\end{array}\right]$ corresponding to the basic variables of the optimal solution. Also, we decompose $\widehat{\mathbf{c}}$ into $\widehat{\mathbf{c}}_{\mathbf{B}}$ and $\widehat{\mathbf{c}}_{\mathbf{N}}$, and let $\mathbf{y}=\left(\mathbf{B}^{-\mathbf{1}}\right)^{T} \widehat{\mathbf{c}}_{\mathbf{B}}$.

The strong duality theorem (Cont.)

Proof (Cont.)

Then $\mathbf{y}^{\boldsymbol{\top}}=\widehat{\mathbf{c}}_{\mathbf{B}}^{\boldsymbol{B}} \mathbf{B}^{\mathbf{1}}$, and so

$$
z=\widehat{\mathbf{c}}^{\top} \widehat{\mathbf{x}}=\widehat{\mathbf{c}}_{\mathbf{N}}^{\top} \cdot \mathbf{0}+\widehat{\mathbf{c}}_{\mathbf{B}}^{\top} \widehat{x}_{\mathbf{B}}=\widehat{\mathbf{c}}_{\mathbf{B}}^{\top} \mathbf{B}^{-1} \mathbf{b}=\mathbf{y}^{\top} \mathbf{b}=\mathbf{b}^{\top} \mathbf{y} .
$$

By the weak duality theorem, we are done if we can show that \mathbf{y} is a feasible solution of (D).
Last time, we used the simplex method for a problem in canonical form:

$$
\left\{\begin{array}{l}
\text { maximize } \quad \begin{array}{l}
z=\mathbf{c}^{\boldsymbol{\top}} \mathbf{x}, \\
\text { subject to }
\end{array}\left\{\begin{array}{c}
\mathbf{A} \mathbf{x}=\mathbf{b} \\
\mathbf{x} \geq \mathbf{0}
\end{array}\right.
\end{array}\right.
$$

The strong duality theorem (Cont.)

Proof (Cont.)

We decomposed \mathbf{A} into $\left[\begin{array}{ll}\mathbf{A}_{\mathbf{N}} & \mathbf{A}_{\mathbf{B}}\end{array}\right]$, \mathbf{x} into $\left[\begin{array}{l}\mathbf{x}_{\mathbf{N}} \\ \mathbf{x}_{\mathbf{B}}\end{array}\right]$ and \mathbf{c} into $\left[\begin{array}{l}\mathbf{c}_{\mathbf{N}} \\ \mathbf{C}_{\mathbf{B}}\end{array}\right]$ and solved for $\mathbf{x}_{\mathbf{B}}$ in terms of $\mathbf{x}_{\mathbf{N}}$. We got the tableau

\mathbf{x}_{B}	$\mathbf{A}_{B}^{-1} \mathbf{A}_{N} \mathbf{x}_{N}+\mathbf{x}_{B}$		$=$	$\mathbf{A}_{B}^{-1} \mathbf{b}$
z	$\left(\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1} \mathbf{A}_{N}-\mathbf{c}_{N}^{T}\right) \mathbf{x}_{N}$	$+z$	$=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1} \mathbf{b}$	

If we do the same for our problem, and denote the (permuted) submatrix of the original matrix $\left[\begin{array}{ll}\mathbf{A} & \mathbf{I}\end{array}\right]$ corresponding to the nonbasic variables of the optimal solution $\widehat{\mathbf{x}}$ by \mathbf{N}, the tableau becomes

$\widehat{\mathbf{x}}_{B}$	$\mathbf{B}^{-1} \mathbf{N} \widehat{\mathbf{x}}_{N}+\widehat{\mathbf{x}}_{B}$	$=\mathbf{B}^{-1} \mathbf{b}$	
z	$\left(\hat{\mathbf{c}}_{B}^{\top} \mathbf{B}^{-1} \mathbf{N}-\widehat{\mathbf{c}}_{N}^{\top}\right) \widehat{\mathbf{x}}_{N}$	$+z$	$=\widehat{\mathbf{c}}_{B}^{T} \mathbf{B}^{-1} \mathbf{b}$

The strong duality theorem (Cont.)

Proof (Cont.)

The solution \widehat{x} is optimal if and only if

$$
\widehat{\mathbf{c}}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}-\widehat{\mathbf{c}}_{N}^{T} \geq 0,
$$

according to the optimality criterion in the simplex algorithm.
But note that we also have

$$
\widehat{\mathbf{c}}_{\mathbf{B}}^{\top} \mathbf{B}^{-1} \mathbf{B}-\widehat{\mathbf{c}}_{\mathbf{B}}^{\top}=\widehat{\mathbf{c}}_{\mathbf{B}}^{\top}-\widehat{\mathbf{c}}_{\mathbf{B}}^{\top}=\mathbf{0} \geq \mathbf{0} \text { (trivially! }
$$

Together, this gives

$$
\widehat{\mathbf{c}}_{\mathbf{B}}^{\top} \mathrm{B}^{-1}\left[\begin{array}{ll}
\mathrm{N} & \mathrm{~B}
\end{array}\right]-\left[\begin{array}{ll}
\widehat{\mathbf{c}}_{\mathbf{N}}^{\top} & \widehat{\mathbf{c}}_{\mathrm{B}}^{\top}
\end{array}\right] \geq 0
$$

But $\left[\begin{array}{ll}\mathbf{N} & \mathbf{B}\end{array}\right]$ is just the matrix $\left[\begin{array}{ll}\mathbf{A} & \mathbf{l}\end{array}\right]$ with permuted columns, and $\left[\begin{array}{ll}\mathbf{c}_{\mathbf{N}}^{\mathbf{N}} & \widehat{\mathbf{c}}_{\mathbf{B}}^{\mathbf{T}}\end{array}\right]$

The strong duality theorem (Cont.)

Proof.

Hence

$$
\widehat{\mathbf{c}}_{B^{\top}}^{\top} \mathbf{B}^{-1}\left[\begin{array}{ll}
\mathbf{A} & \mathbf{I}
\end{array}\right]-\left[\begin{array}{ll}
\mathbf{c}^{\top} & 0
\end{array}\right] \geq 0
$$

which is equivalent to

$$
\left\{\begin{array}{c}
\hat{\mathbf{c}}_{\mathbf{B}}^{\top} \mathbf{B}^{-1} \mathbf{A} \geq \mathbf{c}^{\top}, \tag{*}\\
\widehat{\mathbf{c}}_{\mathbf{B}}^{\top} \mathbf{B}^{-1} \geq \mathbf{0} .
\end{array}\right.
$$

Recall that $\mathbf{y}=\left(\mathbf{B}^{-\mathbf{1}}\right)^{T} \widehat{\mathbf{c}}_{\mathbf{B}}$. So $\left({ }^{*}\right)$ is equivalent to

$$
\left\{\begin{array} { r l }
{ \mathbf { y } ^ { \top } \mathbf { A } } & { \geq \mathbf { c } ^ { \boldsymbol { \top } } , } \\
{ \mathbf { y } ^ { \boldsymbol { \top } } \geq \mathbf { 0 } }
\end{array} \quad \Longleftrightarrow \quad \left\{\begin{array}{r}
\mathbf{A}^{\boldsymbol{\top}} \mathbf{y} \geq \mathbf{c} \\
\mathbf{y} \geq \mathbf{0}
\end{array}\right.\right.
$$

which shows that \mathbf{y} is feasible for (D).

Complementary slackness

Definition

Let \mathbf{x} and \mathbf{y} be feasible solutions for (P) and (D), respectively. Then \mathbf{x} and \mathbf{y} are said to satisfy the complementary slackness condition (CS) if

$$
\mathbf{y}^{\boldsymbol{\top}}(\mathbf{A} \mathbf{x}-\mathbf{b})=0 \quad \text { and } \quad \mathbf{x}^{\boldsymbol{\top}}\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)=0
$$

What does this mean?

Recall that $\mathbf{y} \geq \mathbf{0}$ and the slack variables $\mathbf{x}^{\prime}=\mathbf{b}-\mathbf{A} \mathbf{x} \geq \mathbf{0}$. We have

$$
\begin{aligned}
\mathbf{y}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})=\mathbf{0} \quad \Longleftrightarrow \quad-\mathbf{y}^{\top} \mathbf{x}^{\prime}=0 & \Longleftrightarrow \mathbf{y}^{\boldsymbol{\top}} \mathbf{x}^{\prime}=0 \quad \Longleftrightarrow \\
y_{1} x_{1}^{\prime}+y_{2} x_{2}^{\prime}+\cdots+y_{m} x_{m}^{\prime}=0 & \Longleftrightarrow y_{j} x_{j}^{\prime}=0 \text { for all } j .
\end{aligned}
$$

Complementary slackness

Since all the terms $y_{j} x_{j}^{\prime} \geq 0$, this is equivalent to $y_{j} x_{j}^{\prime}=0$ for all $j=1, \ldots, m$, i.e. if and only if $y_{j}=0$ or $x_{j}^{\prime}=0$ for all $j=1, \ldots, m$. This proves that

$$
\mathbf{y}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})=\mathbf{0} \quad \Longleftrightarrow \quad y_{j}=0 \text { or }(\mathbf{A} \mathbf{x})_{j}=\mathbf{b}_{j} \text { for every } j=1, \ldots, m
$$

If for some $j \in\{1, \ldots, m\},(\mathbf{A x})_{j}=\mathbf{b}_{j}$, we say that the j th constraint is active. In the same way as above, we can show that

$$
\mathbf{x}^{\top}\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)=\mathbf{0} \quad \Longleftrightarrow \quad x_{i}=0 \text { or }\left(\mathbf{A}^{\top} \mathbf{y}\right)_{i}=\mathbf{c}_{i} \text { for every } i=1, \ldots, n
$$

Complementary slackness

Lemma

If \mathbf{x}, \mathbf{y} satisfy (CS), then $\mathbf{c}^{\boldsymbol{\top}} \mathbf{x}=\mathbf{b}^{\boldsymbol{\top}} \mathbf{y}$
(and so \mathbf{x} and \mathbf{y} are optimal for (P) and (D), respectively, by the weak duality theorem).

Proof.

$$
(\mathrm{CS}) \Longrightarrow \mathbf{y}^{\top} \mathbf{A} \mathbf{x}=\mathbf{y}^{\top} \mathbf{b}=\mathbf{b}^{\top} \mathbf{y}
$$

but also

$$
y^{\top} A x=x^{\top} A^{\top} y=x^{\top} c=c^{\top} x
$$

and so

$$
\mathbf{c}^{\top} \mathbf{x}=\mathbf{b}^{\top} \mathbf{y}
$$

Complementary slackness

Theorem

If \mathbf{x} is optimal for (P) and \mathbf{y} is optimal for (D), then $(C S)$ holds.

Proof.

By the strong duality theorem, we have $\mathbf{c}^{\boldsymbol{\top}} \mathbf{x}=\mathbf{b}^{\boldsymbol{\top}} \mathbf{y}$. Introduce slack variables for (P) so that

$$
\mathbf{x}^{\prime}=\mathbf{b}-\mathbf{A} \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x}^{\prime \boldsymbol{\top}}=\mathbf{b}^{\boldsymbol{\top}}-\mathbf{x}^{\boldsymbol{\top}} \mathbf{A}^{\boldsymbol{\top}}
$$

which implies that

$$
\mathbf{x}^{\prime \top} \mathbf{y}=\mathbf{b}^{\top} \mathbf{y}-\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{y} \leq \mathbf{c}^{\top} \mathbf{x}-\mathbf{x}^{\top} \mathbf{c}=0
$$

Hence $(\mathbf{b}-\mathbf{A x})^{T} y \leq 0$. But $\mathbf{b}-\mathbf{A x} \geq 0$ and $\mathbf{y} \geq \mathbf{0}$, and so equality holds. In the same way, it can be proved that $\mathbf{x}^{\boldsymbol{\top}}\left(\mathbf{A}^{\top} \mathbf{y}-\mathbf{c}\right)=0$.

The diet problem

Note that we can solve whichever problem is easier to solve of (P) and (D), and then we automatically get a solution also for the other problem.

Example (Diet problem, p. 46-47 in Kolman-Beck)

2 foods, F_{1} and F_{2} contain nutrients N_{1}, N_{2} and N_{3}. The nutrient content and price per unit of food is given in the table below together with the minimal amounts required for each unit.

	N_{1}	N_{2}	N_{3}	Price
F_{1}	2	1	4	20
F_{2}	3	3	3	25
min amount	18	12	24	

The diet problem

Example (Diet problem, Cont.)

How do we compose a meal satisfying the nutrient requirements for the smallest possible cost?
This can be formulated as an LP problem as follows: Let x_{1}, x_{2} be the amounts of the foods F_{1} and F_{2} that goes into the meal. The LP problem is then the minimization problem

$$
\begin{array}{r}
\operatorname{minimize} \quad z=20 x_{1}+25 x_{2}, \\
\text { subject to }\left\{\begin{aligned}
2 x_{1}+3 x_{2} & \geq 18 \\
x_{1}+3 x_{2} & \geq 12 \\
4 x_{1}+3 x_{2} & \geq 24 \\
x_{1}, x_{2} & \geq 0
\end{aligned}\right.
\end{array}
$$

The diet problem

Example (Diet problem, Cont.)

Now, let's say that there is a manufacturer of artificial foods P_{1}, P_{2}, P_{3}, where one unit of P_{j} contains one unit of N_{j}. How should the manufacturer set the prices y_{1}, y_{2}, y_{3} of the foods P_{1}, P_{2}, P_{3} ?
The cost of the substitute for F_{j} cannot be higher than the cost of F_{j} (otherwise nobody would buy it). This gives the constraints

$$
\left\{\begin{aligned}
2 y_{1}+y_{2}+4 y_{3} & \leq 20, \\
3 y_{1}+3 y_{2}+3 y_{3} & \leq 25, \\
y_{1}, y_{2}, y_{3} & \geq 0 .
\end{aligned}\right.
$$

The profit should be maximized, so the problem is to

$$
\text { maximize } v=18 y_{1}+12 y_{2}+24 y_{3}
$$

The diet problem

Example (Diet problem, Cont.)

- Note that this is precisely the dual problem of the diet problem. We can choose to solve either of them. We notice that in the dual problem, phase 1 of the two-phase method is not required since the right hand side of the constraint vector has only positive entries.
- Solving this with the simplex method, we get $y_{1}=\frac{20}{3}, y_{2}=0, y_{3}=\frac{5}{3}$ and slack variables $y_{4}=0, y_{5}=0$.
- The complementary slackness condition implies that constraint number 1 and 3 are active in (P). Hence

$$
\left\{\begin{array}{l}
2 x_{1}+3 x_{2}=18 \\
4 x_{1}+3 x_{2}=24
\end{array}\right.
$$

The diet problem

Example (Diet problem, Cont.)

- The above system has the solution $x_{1}=3$ and $x_{2}=4$.
- The optimal value for (P) is $20 \cdot 3+25 \cdot 4=160$, and for (D) it is $18 \cdot \frac{20}{3}+24 \cdot \frac{5}{3}=6 \cdot 20+8 \cdot 5=160$, which are the same as expected.

