

Overview

Duality

1 Duality

The weak duality theorem

Duality

Recall the weak duality theorem and some of its consequences from last time:

Theorem (The weak duality theorem)

If x is a feasible solution of (P) and y is a feasible solution of (D), then $c^Tx \leq b^Ty$.

Corollary

If the primal problem is unbounded, then the dual problem is infeasible.

gap?

The weak duality theorem

Duality

Theorem

If x and y are feasible solutions of the primal and dual problem, respectively, and if $\mathbf{c}^\mathsf{T} \mathbf{x} = \mathbf{b}^\mathsf{T} \mathbf{v}$, then both \mathbf{x} and \mathbf{v} are optimal solutions of their respective problems.

- Note: It can happen that both the primal and dual problems are infeasible.
- If the dual problem is unbounded (to $-\infty$), then the primal problem is infeasible (since the dual of the dual is the primal!).

The strong duality theorem

Duality

Theorem (The strong duality theorem)

If $\hat{\mathbf{x}}$ is optimal and feasible for (P), then there exists a $\hat{\mathbf{y}}$ which is optimal and feasible for (D), and $\mathbf{c}^\mathsf{T}\hat{\mathbf{x}} = \mathbf{b}^\mathsf{T}\hat{\mathbf{y}}$.

Proof.

Introduce slack variables to put (P) into canonical form, and solve the problem with the simplex algorithm. There exists an optimal solution $\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x}' \end{bmatrix}$, where \mathbf{x}' is the vector of slack variables. Let $\hat{\mathbf{c}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{n} \end{bmatrix}$.

Duality

Proof (Cont.)

We decompose $\widehat{\mathbf{x}}$ into its basic and nonbasic variables, $\widehat{\mathbf{x}}_B$ and $\widehat{\mathbf{x}}_N = \mathbf{0}$, and change the order of the variables so that $\widehat{\mathbf{x}} = \begin{bmatrix} \widehat{\mathbf{x}}_N \\ \widehat{\mathbf{x}}_B \end{bmatrix}$. At the same time, we need to change the order of the columns in $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$ and in $\widehat{\mathbf{c}}$. Then $\widehat{\mathbf{x}}_B = \mathbf{B}^{-1}\mathbf{b}$, where \mathbf{B} is the (permuted!) submatrix of $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$ corresponding to the basic variables of the optimal solution. Also, we decompose $\widehat{\mathbf{c}}$ into $\widehat{\mathbf{c}}_B$ and $\widehat{\mathbf{c}}_N$, and let $\mathbf{y} = (\mathbf{B}^{-1})^T \widehat{\mathbf{c}}_B$.

Duality

Proof (Cont.)

Then $\mathbf{y}^\mathsf{T} = \widehat{\mathbf{c}}_\mathsf{B}^\mathsf{T} \mathbf{B}^{-1}$, and so

$$z = \widehat{\mathbf{c}}^\mathsf{T} \widehat{\mathbf{x}} = \widehat{\mathbf{c}}_\mathsf{N}^\mathsf{T} \cdot \mathbf{0} + \widehat{\mathbf{c}}_\mathsf{B}^\mathsf{T} \widehat{\mathbf{x}}_\mathsf{B} = \widehat{\mathbf{c}}_\mathsf{B}^\mathsf{T} \mathbf{B}^{-1} \mathbf{b} = \mathbf{y}^\mathsf{T} \mathbf{b} = \mathbf{b}^\mathsf{T} \mathbf{y}.$$

By the weak duality theorem, we are done if we can show that \mathbf{v} is a feasible solution of (D).

Last time, we used the simplex method for a problem in canonical form:

$$\begin{cases} \text{maximize} & z = \mathbf{c^T x}, \\ \text{subject to} & \begin{cases} \mathbf{Ax} = \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0}. \end{cases} \end{cases}$$

Duality

Proof (Cont.)

We decomposed **A** into $\begin{bmatrix} A_N & A_B \end{bmatrix}$, **x** into $\begin{bmatrix} x_N \\ x_B \end{bmatrix}$ and **c** into $\begin{bmatrix} c_N \\ c_B \end{bmatrix}$ and solved for x_B in terms of x_N . We got the tableau

If we do the same for our problem, and denote the (permuted) submatrix of the original matrix [A I] corresponding to the nonbasic variables of the optimal solution $\hat{\mathbf{x}}$ by \mathbf{N} , the tableau becomes

$\widehat{\mathbf{x}}_B$		$\widehat{\mathbf{x}}_B$			=	$B^{-1}b$
Z	$(\widehat{\mathbf{c}}_B^T \mathbf{B}^{-1} \mathbf{N} - \widehat{\mathbf{c}}_N^T) \widehat{\mathbf{x}}_N$		+	Z	=	$\widehat{\mathbf{c}}_B^T \mathbf{B}^{-1} \mathbf{b}$

Duality

Proof (Cont.)

The solution $\hat{\mathbf{x}}$ is optimal if and only if

$$\widehat{\mathbf{c}}_B^T \mathbf{B}^{-1} \mathbf{N} - \widehat{\mathbf{c}}_N^T \ge 0,$$

according to the optimality criterion in the simplex algorithm. But note that we also have

$$\widehat{c}_B^\mathsf{T} B^{-1} B - \widehat{c}_B^\mathsf{T} = \widehat{c}_B^\mathsf{T} - \widehat{c}_B^\mathsf{T} = 0 \geq 0 \text{ (trivially!)}$$

Together, this gives

$$\widehat{c}_{\mathsf{R}}^{\mathsf{T}}\mathsf{B}^{-1}\begin{bmatrix}\mathsf{N} & \mathsf{B}\end{bmatrix} - \begin{bmatrix}\widehat{c}_{\mathsf{N}}^{\mathsf{T}} & \widehat{c}_{\mathsf{R}}^{\mathsf{T}}\end{bmatrix} \geq 0.$$

LUND

But $[\mathbf{N} \ \mathbf{B}]$ is just the matrix $[\mathbf{A} \ \mathbf{I}]$ with permuted columns, and $[\widehat{\mathbf{c}}_{\mathbf{N}}^{\mathsf{T}} \ \widehat{\mathbf{c}}_{\mathbf{B}}^{\mathsf{T}}]$ is a theorem by the state of the permutation of the

Duality

Proof.

$$\widehat{\boldsymbol{c}}_{B}^{T}\boldsymbol{B}^{-1}\begin{bmatrix}\boldsymbol{A} & \boldsymbol{I}\end{bmatrix} - \begin{bmatrix}\boldsymbol{c}^{T} & \boldsymbol{0}\end{bmatrix} \geq \boldsymbol{0}$$

which is equivalent to

$$\begin{cases} \widehat{c}_B^\mathsf{T} B^{-1} A \geq c^\mathsf{T}, \\ \widehat{c}_B^\mathsf{T} B^{-1} \geq 0. \end{cases} \tag{*}$$

Recall that $\mathbf{y} = (\mathbf{B}^{-1})^T \widehat{\mathbf{c}}_{\mathbf{B}}$. So (*) is equivalent to

$$\begin{cases} \textbf{y}^{\mathsf{T}}\textbf{A} \geq \textbf{c}^{\mathsf{T}}, \\ \textbf{y}^{\mathsf{T}} \geq \textbf{0}. \end{cases} \iff \begin{cases} \textbf{A}^{\mathsf{T}}\textbf{y} \geq \textbf{c}, \\ \textbf{y} \geq \textbf{0}, \end{cases}$$

which shows that \mathbf{v} is feasible for (D).

Duality

Definition

Let x and y be feasible solutions for (P) and (D), respectively. Then x and y are said to satisfy the complementary slackness condition (CS) if

$$\mathbf{y}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = 0$$
 and $\mathbf{x}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{y} - \mathbf{c}) = 0$.

What does this mean?

Recall that $y \ge 0$ and the slack variables $x' = b - Ax \ge 0$. We have

$$\mathbf{y}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{0} \iff -\mathbf{y}^{\mathsf{T}}\mathbf{x}' = 0 \iff \mathbf{y}^{\mathsf{T}}\mathbf{x}' = 0 \iff y_1x_1' + y_2x_2' + \dots + y_mx_m' = 0 \iff y_jx_j' = 0 \text{ for all } j.$$

Duality

Since all the terms $y_j x_i' \ge 0$, this is equivalent to $y_j x_i' = 0$ for all j = 1, ..., m, i.e. if and only if $y_i = 0$ or $x_i' = 0$ for all j = 1, ..., m. This proves that

$$\mathbf{y}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{0} \iff y_j = 0 \text{ or } (\mathbf{A}\mathbf{x})_j = \mathbf{b}_j \text{ for every } j = 1, \dots, m.$$

If for some $j \in \{1, ..., m\}$, $(\mathbf{Ax})_i = \mathbf{b}_i$, we say that the jth constraint is active. In the same way as above, we can show that

$$\mathbf{x}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{y} - \mathbf{c}) = \mathbf{0} \iff x_i = 0 \text{ or } (\mathbf{A}^{\mathsf{T}}\mathbf{y})_i = \mathbf{c}_i \text{ for every } i = 1, \dots, n.$$

Duality

Lemma

If \mathbf{x} , \mathbf{y} satisfy (CS), then $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$ (and so \mathbf{x} and \mathbf{y} are optimal for (P) and (D), respectively, by the weak duality theorem).

Proof.

$$(\mathsf{CS}) \quad \Longrightarrow \quad \mathbf{y}^\mathsf{T} \mathbf{A} \mathbf{x} = \mathbf{y}^\mathsf{T} \mathbf{b} = \mathbf{b}^\mathsf{T} \mathbf{y},$$

but also

$$\mathbf{y}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{c} = \mathbf{c}^{\mathsf{T}}\mathbf{x},$$

and so

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}.$$

Duality

Theorem

If x is optimal for (P) and y is optimal for (D), then (CS) holds.

Proof.

By the strong duality theorem, we have $\mathbf{c^Tx} = \mathbf{b^Ty}$. Introduce slack variables for (P) so that

$$\mathbf{x}' = \mathbf{b} - \mathbf{A}\mathbf{x} \iff \mathbf{x'}^T = \mathbf{b}^T - \mathbf{x}^T \mathbf{A}^T$$

which implies that

$$\mathbf{x'}^{\mathsf{T}}\mathbf{y} = \mathbf{b}^{\mathsf{T}}\mathbf{y} - \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{y} \leq \mathbf{c}^{\mathsf{T}}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{c} = 0.$$

Hence $(\mathbf{b} - \mathbf{A}\mathbf{x})^T y \le 0$. But $\mathbf{b} - \mathbf{A}\mathbf{x} \ge 0$ and $\mathbf{y} \ge \mathbf{0}$, and so equality holds. In the same way, it can be proved that $\mathbf{x}^T (\mathbf{A}^T \mathbf{y} - \mathbf{c}) = 0$.

Duality

Note that we can solve whichever problem is easier to solve of (P) and (D), and then we automatically get a solution also for the other problem.

Example (Diet problem, p. 46–47 in Kolman–Beck)

2 foods, F_1 and F_2 contain nutrients N_1 , N_2 and N_3 . The nutrient content and price per unit of food is given in the table below together with the minimal amounts required for each unit.

	N_1	N_2	N_3	Price
F_1	2	1	4	20
F_2	3	3	3	25
min	18	12	24	
amount				

Duality

Example (Diet problem, Cont.)

How do we compose a meal satisfying the nutrient requirements for the smallest possible cost?

This can be formulated as an LP problem as follows: Let x_1 , x_2 be the amounts of the foods F_1 and F_2 that goes into the meal. The LP problem is then the minimization problem

$$\begin{array}{ll} \textit{minimize} & z = 20x_1 + 25x_2, \\ \textit{subject to} \begin{cases} 2x_1 + 3x_2 \geq 18, \\ x_1 + 3x_2 \geq 12, \\ 4x_1 + 3x_2 \geq 24, \\ x_1, x_2 \geq 0. \end{cases}$$

Duality

Example (Diet problem, Cont.)

Now, let's say that there is a manufacturer of artificial foods P_1 , P_2 , P_3 , where one unit of P_j contains one unit of N_j . How should the manufacturer set the prices y_1 , y_2 , y_3 of the foods P_1 , P_2 , P_3 ? The cost of the substitute for F_j cannot be higher than the cost of F_j (otherwise nobody would buy it). This gives the constraints

$$\begin{cases} 2y_1 + y_2 + 4y_3 \le 20, \\ 3y_1 + 3y_2 + 3y_3 \le 25, \\ y_1, y_2, y_3 \ge 0. \end{cases}$$

The profit should be maximized, so the problem is to

$$maximize \ v = 18y_1 + 12y_2 + 24y_3$$

Duality

Example (Diet problem, Cont.)

- Note that this is precisely the dual problem of the diet problem. We can choose to solve either of them. We notice that in the dual problem, phase 1 of the two-phase method is not required since the right hand side of the constraint vector has only positive entries.
- Solving this with the simplex method, we get $y_1 = \frac{20}{3}$, $y_2 = 0$, $y_3 = \frac{5}{3}$ and slack variables $y_4 = 0$, $y_5 = 0$.
- The complementary slackness condition implies that constraint number 1 and 3 are active in (P). Hence

$$\begin{cases} 2x_1 + 3x_2 = 18 \\ 4x_1 + 3x_2 = 24, \end{cases}$$

Duality

Example (Diet problem, Cont.)

- The above system has the solution $x_1 = 3$ and $x_2 = 4$.
- The optimal value for (P) is $20 \cdot 3 + 25 \cdot 4 = 160$, and for (D) it is $18 \cdot \frac{20}{2} + 24 \cdot \frac{5}{2} = 6 \cdot 20 + 8 \cdot 5 = 160$, which are the same as expected.