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Duality

The weak duality theorem

Recall the weak duality theorem and some of its consequences
from last time:

Theorem (The weak duality theorem)

If x is a feasible solution of (P) and y is a feasible solution of
(D), then cTx ≤ bTy.

Corollary

If the primal problem is unbounded, then the dual problem is
infeasible.
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Duality

The weak duality theorem

Theorem

If x and y are feasible solutions of the primal and dual problem, respectively,
and if cTx = bTy, then both x and y are optimal solutions of their respective
problems.

Note: It can happen that both the primal and dual problems are infeasible.

If the dual problem is unbounded (to −∞), then the primal problem is
infeasible (since the dual of the dual is the primal!).
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Duality

The strong duality theorem

Theorem (The strong duality theorem)

If x̂ is optimal and feasible for (P), then there exists a ŷ which
is optimal and feasible for (D), and cTx̂ = bTŷ.

Proof.

Introduce slack variables to put (P) into canonical form, and
solve the problem with the simplex algorithm. There exists an

optimal solution x̂ =

[
x
x′

]
, where x′ is the vector of slack

variables. Let ĉ =

[
c
0

]
.
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Duality

The strong duality theorem (Cont.)

Proof (Cont.)

We decompose x̂ into its basic and nonbasic variables, x̂B and x̂N = 0, and

change the order of the variables so that x̂ =

[
x̂N
x̂B

]
. At the same time, we

need to change the order of the columns in
[
A I

]
and in ĉ. Then

x̂B = B−1b, where B is the (permuted!) submatrix of
[
A I

]
corresponding

to the basic variables of the optimal solution. Also, we decompose ĉ into ĉB
and ĉN, and let y = (B−1)T ĉB.
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Duality

The strong duality theorem (Cont.)

Proof (Cont.)

Then yT = ĉTBB
−1, and so

z = ĉTx̂ = ĉTN · 0+ ĉTBx̂B = ĉTBB
−1b = yTb = bTy.

By the weak duality theorem, we are done if we can show that y is a feasible
solution of (D).
Last time, we used the simplex method for a problem in canonical form:

maximize z = cTx,

subject to
{
Ax = b,

x ≥ 0.
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Duality

The strong duality theorem (Cont.)

Proof (Cont.)

We decomposed A into
[
AN AB

]
, x into

[
xN
xB

]
and c into

[
cN
cB

]
and solved

for xB in terms of xN. We got the tableau

xB A−1B ANxN + xB = A−1B b

z (cTBA
−1
B AN − cTN )xN + z = cTBA

−1
B b

If we do the same for our problem, and denote the (permuted) submatrix of
the original matrix

[
A I

]
corresponding to the nonbasic variables of the

optimal solution x̂ by N, the tableau becomes

x̂B B−1Nx̂N + x̂B = B−1b
z (ĉTBB

−1N− ĉTN )x̂N + z = ĉTBB
−1b
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Duality

The strong duality theorem (Cont.)

Proof (Cont.)

The solution x̂ is optimal if and only if

ĉTBB
−1N− ĉTN ≥ 0,

according to the optimality criterion in the simplex algorithm.
But note that we also have

ĉTBB
−1B− ĉTB = ĉTB − ĉTB = 0 ≥ 0 (trivially!)

Together, this gives

ĉTBB
−1 [N B

]
−
[
ĉTN ĉTB

]
≥ 0.

But
[
N B

]
is just the matrix

[
A I

]
with permuted columns, and

[
ĉTN ĉTB

]
is the same permutation of the row vector

[
cT 0

]
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Duality

The strong duality theorem (Cont.)

Proof.

Hence
ĉTBB

−1 [A I
]
−
[
cT 0

]
≥ 0

which is equivalent to {
ĉTBB

−1A ≥ cT,

ĉTBB
−1 ≥ 0.

(*)

Recall that y = (B−1)T ĉB. So (*) is equivalent to{
yTA ≥ cT,

yT ≥ 0.
⇐⇒

{
ATy ≥ c,

y ≥ 0,

which shows that y is feasible for (D).
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Duality

Complementary slackness

Definition

Let x and y be feasible solutions for (P) and (D), respectively. Then x and y
are said to satisfy the complementary slackness condition (CS) if

yT(Ax− b) = 0 and xT(ATy − c) = 0.

What does this mean?
Recall that y ≥ 0 and the slack variables x′ = b− Ax ≥ 0. We have

yT(Ax− b) = 0 ⇐⇒ −yTx′ = 0 ⇐⇒ yTx′ = 0 ⇐⇒
y1x
′
1 + y2x

′
2 + · · ·+ ymx

′
m = 0 ⇐⇒ yjx

′
j = 0 for all j .
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Duality

Complementary slackness

Since all the terms yjx
′
j ≥ 0, this is equivalent to yjx

′
j = 0 for all j = 1, . . . ,m,

i.e. if and only if yj = 0 or x ′j = 0 for all j = 1, . . . ,m. This proves that

yT(Ax− b) = 0 ⇐⇒ yj = 0 or (Ax)j = bj for every j = 1, . . . ,m.

If for some j ∈ {1, . . . ,m}, (Ax)j = bj , we say that the jth constraint is active.
In the same way as above, we can show that

xT(ATy − c) = 0 ⇐⇒ xi = 0 or (ATy)i = ci for every i = 1, . . . , n.
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Duality

Complementary slackness

Lemma

If x, y satisfy (CS), then cTx = bTy
(and so x and y are optimal for (P) and (D), respectively, by the weak duality
theorem).

Proof.

(CS) =⇒ yTAx = yTb = bTy,

but also
yTAx = xTATy = xTc = cTx,

and so
cTx = bTy.
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Duality

Complementary slackness

Theorem

If x is optimal for (P) and y is optimal for (D), then (CS) holds.

Proof.

By the strong duality theorem, we have cTx = bTy. Introduce slack variables
for (P) so that

x′ = b− Ax ⇐⇒ x′
T
= bT − xTAT

which implies that

x′
T
y = bTy − xTATy ≤ cTx− xTc = 0.

Hence (b− Ax)T y ≤ 0. But b− Ax ≥ 0 and y ≥ 0, and so equality holds. In
the same way, it can be proved that xT(ATy − c) = 0.
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Duality

The diet problem

Note that we can solve whichever problem is easier to solve of (P) and (D),
and then we automatically get a solution also for the other problem.

Example (Diet problem, p. 46–47 in Kolman–Beck)

2 foods, F1 and F2 contain nutrients N1, N2 and N3. The nutrient content
and price per unit of food is given in the table below together with the
minimal amounts required for each unit.

N1 N2 N3 Price

F1 2 1 4 20

F2 3 3 3 25

min
amount

18 12 24
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Duality

The diet problem

Example (Diet problem, Cont.)

How do we compose a meal satisfying the nutrient requirements for the
smallest possible cost?
This can be formulated as an LP problem as follows: Let x1, x2 be the
amounts of the foods F1 and F2 that goes into the meal. The LP problem is
then the minimization problem

minimize z = 20x1 + 25x2,

subject to

2x1 + 3x2 ≥ 18,

x1 + 3x2 ≥ 12,

4x1 + 3x2 ≥ 24,

x1, x2 ≥ 0.

.
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Duality

The diet problem

Example (Diet problem, Cont.)

Now, let’s say that there is a manufacturer of artificial foods P1, P2, P3,
where one unit of Pj contains one unit of Nj . How should the manufacturer
set the prices y1, y2, y3 of the foods P1, P2, P3?
The cost of the substitute for Fj cannot be higher than the cost of Fj
(otherwise nobody would buy it). This gives the constraints

2y1 + y2 + 4y3 ≤ 20,

3y1 + 3y2 + 3y3 ≤ 25,

y1, y2, y3 ≥ 0.

.

The profit should be maximized, so the problem is to

maximize v = 18y1 + 12y2 + 24y3
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Duality

The diet problem

Example (Diet problem, Cont.)

Note that this is precisely the dual problem of the diet problem. We can
choose to solve either of them. We notice that in the dual problem, phase 1
of the two-phase method is not required since the right hand side of the
constraint vector has only positive entries.

Solving this with the simplex method, we get y1 =
20
3 , y2 = 0, y3 =

5
3 and

slack variables y4 = 0, y5 = 0.

The complementary slackness condition implies that constraint number 1
and 3 are active in (P). Hence{

2x1 + 3x2 = 18

4x1 + 3x2 = 24,
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Duality

The diet problem

Example (Diet problem, Cont.)

The above system has the solution x1 = 3 and x2 = 4.

The optimal value for (P) is 20 · 3 + 25 · 4 = 160, and for (D) it is

18 · 20
3

+ 24 · 5
3
= 6 · 20 + 8 · 5 = 160, which are the same as expected.
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