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Optimization

”Optimization = the best”

Let D ⊂ Rn (D = Rn is allowed).

The problem: Find the largest or smallest value of a function f : D → R (if
they exist).

This general problem has applications in many diverse fields such as
mechanics, economics, electrical engineering, control theory, etc.

As soon as we would like to find ”the best” way of doing something,
optimization can be useful.
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Optimization

We define

fmin = min
x∈D

f (x),

xmin = argmin
x∈D

f (x) (= x ∈ D such that f (x) = fmin).

Note that xmin is not necessarily unique.

In the same way, we define fmax and xmax.

We distinguish between discrete (combinatorial) and continuous
optimization.

Sara Maad Sasane Linear and Combinatorial Optimization 21 January 2020 4/24



Optimization

Discrete and
continuous
optimization

Convexity

Linear optimization
(Linear programming)

Existence of minimizers

D discrete D not discrete
• Combinatorial or • Continuous optimization

discrete optimization (f is required to be
continuous on D).

• D is finite • D is compact (= closed and bounded)
⇒ fmin and fmax exist. ⇒ fmin and fmax exist.
(obvious) (Weierstrass’s extreme value theorem)

How do we find xmax and xmin?

One way is to reduce the number of possible candidates by studying local
minima and maxima (which may be easier to find than the global one).
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Local minimizers/maximizers

D discrete D not discrete
• To each point x ∈ D, • D ⊂ Rn.

we identify a set of
neighbours, Gx .
• A point xloc is said to be a • A point xloc is said to be a

local minimum local minimum
if if there exists a δ > 0 s t
f (xloc) ≤ f (y) f (xloc) ≤ f (y)
for all y ∈ Gx . for all y ∈ D s t ‖y − xloc‖ < δ.
• A point xloc is said to be a • A point xloc is said to be a

local maximum local maximum
if if there exists a δ > 0 s t
f (xloc) ≥ f (y) f (xloc) ≥ f (y)
for all y ∈ Gx . for all y ∈ D s t ‖y − xloc‖ < δ.
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Convexity

Convex optimization is an important special case of continuous optimization.

Definition

A set C ⊂ Rn is said to be convex if

x, y ∈ C , λ ∈ [0, 1] =⇒ λx + (1− λ)y ∈ C .

A convex set A non-convex set
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Examples of convex sets:
a square,
a disc,
Rn.

Proposition

The half space {(x1, x2, . . . , xn); x1 ≥ 0} is convex.

Proof.

Let the half space be denoted by C . Take x, y ∈ C and λ ∈ [0, 1]. Then

x = (x1, x2, . . . , xn)

y = (y1, y2, . . . , yn)

where x1, y1 ≥ 0.
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Proof (cont.).

We then have

λx + (1− λ)y = λ(x1, x2, . . . , xn) + (1− λ)(y1, y2, . . . , yn)

= (λx1 + (1− λ)y1, . . . , λxn + (1− λ)yn),

whose first entry is λx1 + (1− λ)y1 ≥ 0 since λ, (1− λ), x1 and y1 are all
non-negative. Hence λx + (1− λ)y ∈ C . Since x, y ∈ C were arbitrary, this
shows that C is convex.
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Example

A general halfspace

{(x1, . . . , xn); a1x1 + a2x2 + · · ·+ anxn ≥ b}

is convex. You will prove this in one of the assigned exercises.

Proposition

The intersection of finitely many convex sets is convex.

Try to prove this yourself or together with a friend before you look at my
proof. Note that it suffices to prove the statement for two sets, A and B.
(Why?)
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Proof.

Suppose that A, B ⊂ Rn are convex. The intersection of A and B is, by
definition,

A ∩ B = {x ∈ Rn; x ∈ A and x ∈ B}.

Let x, y ∈ A ∩ B and let λ ∈ [0, 1]. We need to prove that

λx + (1− λ)y ∈ A ∩ B.

x, y ∈ A and A is convex =⇒ λx + (1− λ)y ∈ A.

x, y ∈ B and B is convex =⇒ λx + (1− λ)y ∈ B.

Hence λx + (1− λ)y ∈ A ∩ B, as required.
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The boundary of a half-space is called a hyperplane:

{(x1, . . . , xn); a1x1 + · · ·+ anxn = b}.

Proposition

Every hyperplane is convex.

In one of the assigned exercises, you will be asked to prove this proposition.
Do this in two ways:

Directly from the definition of convexity,

By writing the hyperplane as an intersection of two sets that you have
already proved are convex, and using a previous proposition.
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Proposition

The solution set of a linear system

Ax = b

is convex.

Proof.

Each of the equations in the system describes a hyperplane in Rn. The
solution set of the system is the intersection of all these hyperplanes (since all
the equations have to be satisfied at the same time). The result follows since
all hyperplanes are convex, and the intersection of finitely many convex sets is
convex.
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Definition

The intersection of a finite number of half spaces (in Rn) is called a convex
polyhedron.

A convex polyhedron. Can you identify the half-spaces?
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Definition

Let C ⊂ Rn be a convex set. A function f : C → R is said to be convex if

x, y ∈ C , λ ∈ [0, 1] =⇒ f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

x

f(x)

y

f(y)

λx+(1−λ)y

λf (x)+(1−λ)f (y)

f (λx+(1−λ)y)
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Note that the domain of a convex function needs to be a convex set. This is
to ensure that f (λx + (1− λ)y) is defined for all λ ∈ [0, 1], i.e. for all points
on the line segment between x and y.

Definition

A convex optimization problem is a problem of the form

Minimize z = f (x)

subject to x ∈ C ,

where C ⊂ Rn is a closed convex set and f : C → R is a convex function.

Note that a convex optimization problem is always a minimization problem.
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Theorem

For convex optimization problems, every local minimizer is a global minimizer
(but it can happen that a minimizer doesn’t exist).

(x,f (x))

(y,f (y))

(λ0x+(1−λ0)y,λ0f (x)+(1−λ0)f (y))

(λ0x+(1−λ0)y,f (λ0x+(1−λ0)y))
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Proof.

Suppose that x is a local minimizer of f which is not a global minimizer.
Then there exists a point y such that f (y) < f (x). Then for every λ ∈ [0, 1],
we have

λf (x) + (1− λ)f (y) < λf (x) + (1− λ)f (x) = f (x),

but since x is a local minimizer, there exists λ0 ∈ (0, 1) such that

f (λx + (1− λ)y) ≥ f (x)

for all λ ∈ [λ0, 1]. Hence, for every λ ∈ [λ0, 1] we have

λf (x) + (1− λ)f (y) < f (λx + (1− λ)y),

contradicting the assumption that f is convex. The proof is complete.
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Definition

Let {x1, x2, . . . , xn} ⊂ Rn be a finite set. A convex combination of x1, . . . , xn
is a point y ∈ Rn which can be written as

y =
n∑

j=1

λjxj,

where
n∑

j=1

λj = 1 and λj ∈ [0, 1].

Theorem

The set of all convex combinations of a finite set is a bounded convex
polyhedron.
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Definition

Let C be a convex set. A point x ∈ C is called an extreme point of C if it is
not the interior point of any line segment in C.

Example

The set of extreme points of a disc is a circle (the boundary of the disc).

The set of extreme points of a rectangle is the set of the four corner points
of the rectangle.

Example

In linear programming we optimize over convex polyhedra. A convex
polyhedron has finitely many extreme points (if any).
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The general problem of linear programming.

Maximize or minimize z = cTx

subject to

A1x ≤ b1,

A2x ≥ b2,

A3x = b3,

where c, Aj, bj are given vectors or matrices of size n × 1, mj × n, mj × 1,
respectively (but all of them don’t have to be there). The relations ≤, ≥ and
= are taken componentwise. x ∈ Rn is the unknown vector that we wish to
find together with the optimal value z .
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Theorem

A linear programming (LP) problem is a convex optimization problem and the
domain is a convex polyhedron.

Proof sketch.

The constraints describe the intersection of finitely many half-spaces, and so
the domain is a convex polyhedron by definition. If the LP problem is a
maximization problem, it can be rephrased as a minimization problem by using

z = max cTx ⇐⇒ −z = min(−cTx).

It is easy to check (Do it!) that all linear functions are convex. Hence the
optimization problem is a convex optimization problem.
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Theorem (Extreme point theorem for LP problems)

Let S be the domain of a general LP problem (so S is a convex polyhedron),
and let E be the set of extreme points of S.

If S 6= ∅ and S is bounded, then there exists an optimal solution which
belongs to E.

If E 6= ∅ and S is unbounded, and if an optimal solution exists, then there is
an optimal solution which belongs to E.

If an optimal solution does not exist, then S is either ∅ or unbounded.
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The extreme point theorem for LP problems implies that if an optimal
solution exists and if there exists at least one extreme point, then there has
to be an optimal solution at an extreme point of the feasible set. Since the
feasible set of an LP problem is a convex polyhedron and the set of extreme
points of a convex polyhedron is finite (or empty), we obtain a combinatorial
optimization problem.

For this reason, linear programming problems can be regarded as convex
optimization problems (which is a special case of continuous optimization
problems) as well as combinatorial (discrete) optimization problems.

In this course, we will mainly study linear programming problems as a
combinatorial optimization problem.
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