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The frequentist approach to statistical inference

We assume that we have at hand

observations y

and a (possibly parametric) model P for the data.

In this setting we want to make inference about some property (estimand)
τ = τ(P0) of the distribution P0 that generated the data. For instance,

τ(P0) =

∫
xf0(x) dx, (mean)

where f0 is the density of P0.

The estimand τ is estimated using a statistic t(y).
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Uncertainty of estimators

Some remarks:

It is important to always keep in mind that the estimate t(y) is an
observation of a random variable t(Y ). If the experiment was
repeated, resulting in a new vector y of random observations, the
estimator would take another value.

In the same way, the error ∆(y) = t(y)− τ is a realization of the
random variable ∆(Y ) = t(Y )− τ .
To assess the uncertainty of the estimator we thus need to analyze the
distribution of the error ∆(Y ) (error distribution).
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Bootstrap in a nutshell

Using the bootstrap algorithm we deal with this matter by

1 replacing P0 by an data-based approximation P̂0 and

2 analyzing the variation of ∆(Y ) by MC simulation from the
approximation P̂0.

A generic way to obtain the approximation P̂0 is to use the empirical
distribution.
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The empirical distribution (ED)

The empirical distribution (ED) P̂0 associated with the data
y = (y1, y2, . . . , yn) gives equal weight (1/n) to each of the yi's (assuming
that all values of y are distinct).

Consequently, if Z ∼ P̂0 is a random variable, then Z takes the value yi
with probability 1/n.

The empirical distribution function (EDF) associated with the data y is
de�ned by

F̂n(z) = P̂0(Z ≤ z)

=
1

n

n∑
i=1

1{yi≤z} = fraction of yi's that are less than z.
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The EDF
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Generating samples from the ED

Consequently a sample Y ∗ of size n from the empirical distribution P̂0

associated with the observations y = (y1, y2, . . . , yn) is generated by

1 drawing indices I1, I2, . . . , In independently from the uniform
distribution on the integers {1, 2, . . . , n}, and

2 letting Y ∗ = (yI1 , yI2 , . . . , yIn).

Note that this algorithm draws n values from the set {y1, y2, . . . , yn} with
replacement.
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The bootstrap

Having access to data y, we may now replace P0 by P̂0.

Any quantity involving P0 can now be approximated by plugging P̂0

into the quantity instead. In particular,

τ = τ(P0) ≈ τ̂ = τ(P̂0),

which, e.g., in the case of the mean, becomes

τ =

∫
yf0(y) dy ≈ 1

n

n∑
i=1

yi.

Moreover, the uncertainty of t(y) can be analyzed by drawing
repeatedly Y ∗ ∼ P̂0 and look at the variation (histogram) of
∆(Y ∗) = t(Y ∗)− τ ≈= t(Y ∗)− τ̂ .
In the case of the empirical distribution, simulation from P̂0 is carried
through by simply drawing, with replacement, among the values
y1, . . . , yn.
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The bootstrap (cont.)

The algorithm goes as follows.

Construct an approximation P̂0 of P0 from the data y.

Simulate B new data sets Y ∗b , b ∈ {1, 2, . . . , B}, where each Y ∗b has

the size of y, from P̂0.

Compute the values t(Y ∗b ), b ∈ {1, 2, . . . , B}, of the estimator.

By setting in turn ∆∗b = t(Y ∗b )− τ̂ , b ∈ {1, 2, . . . , B}, we obtain
values being approximately distributed according to the error
distribution. These can be used for uncertainty analysis.
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Non-parametric Bootstrap

The bootstrap algorithm considered above is non-parametric in the
sense that we have no assumptions on the distribution P0 apart from
the samples being i.i.d.; in particular, we do not assume that P0

belongs to a certain parametric family.

Our approximation P̂0 of P0 is the empirical distribution function.

The simulation step boils down to drawing from the empirical
distribution, i.e. drawing from the data with replacement.
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Example: law schools

We have average test scores (LSAT and GPA) from 15 american law
schools and want to investigate if the two scores are correlated, i.e. τ is the
correlation between the two datasets.

1 Our data consists of pairs (x, y) = ((x1, y1), . . . , (x15, y15)).

2 Estimate the correlation of the data using the sample correlation

τ̂ = t(x, y) =
n
∑

i xiyi −
∑

i xi
∑

i yi√
n
∑

i x
2
i − (

∑
i xi)

2
√
n
∑

i y
2
i − (

∑
i yi)

2
≈ 0.776.

3 Create bootstrap samples (X,Y )∗b , b ∈ {1, 2, . . . , B}, where each
sample (X,Y )∗b is generated by drawing 15 times with replacement
from the pairs (xi, yi), i ∈ {1, . . . , 15}.

4 Calculate the correlation t((X,Y )∗b) for each random sample.
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Example: law schools (cont.)

Given the (X,Y )∗b 's we create variables ∆∗b = t((X,Y )∗b)− τ̂ ,
b ∈ {1, 2, . . . , B}, being approximately distributed according to the
error distribution.

This gives that the bias of our estimate is approximately
E(∆(X,Y )) ≈ ∆∗ = −0.0057.

The bias-corrected estimate is t(x, y)−∆∗ = 0.783.

A one-sided 95%-con�dence interval for the correlation is consequently

I0.05 =
(
τ̂ − F−1

∆ (0.95), 1
)

≈
(
τ̂ −∆∗d0.95Be, 1

)
= (0.614, 1).
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Parametric bootstrap

In the non-parametric bootstrap we had no assumptions on the distribution
function apart from the observed data y being i.i.d.

In the parametric bootstrap we assume that data comes from a distribution
P0 = Pθ0 ∈ {Pθ; θ ∈ Θ} belonging to some parametric family.

Instead of using the ED, we �nd an estimate θ̂ = θ̂(y) of θ0 from our
observations and

1 generate new bootstrapped samples Y ∗b , b ∈ {1, 2, . . . B}, from
P̂0 = P

θ̂
.

2 After this we form, as usual, bootstrap estimates θ̂(Y ∗b ) and errors

∆∗b = θ̂(Y ∗b )− θ̂, b ∈ {1, 2, . . . B}.
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A toy example: exponential distribution

We let y = (y1, . . . , y20) be i.i.d. observations of Yi ∼ Exp(θ0), with
unknown mean θ0. The MLE of θ0 is θ̂(y) = ȳ and following plot displays
Exp(θ̂(y)) vs. Exp(θ0).
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A toy example: exponential distribution (cont.)

In Matlab:

n = 20;
B = 500;
theta_hat = mean(y);
boot = zeros(1,B);
for b = 1:B, % bootstrap

y_boot = exprnd(theta_hat,1,n);
boot(b) = mean(y_boot);

end
delta = sort(boot − theta_hat); % sorting to obtain quantiles
alpha = 0.05; % CB level
L = theta_hat − delta(ceil((1 − alpha/2)*B)); % forming CB
U = theta_hat − delta(ceil(alpha*B/2));
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A toy example: exponential distribution (cont.)
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Semi-parametric bootstrap

We assume a parametric model for the data, for instance

Yi = kxi +m+ εi, i ∈ {1, 2, . . . n},

and a non-parametric model for the residuals εi.

Our only assumption on the residuals is that they are i.i.d.

Given data y = (y1, . . . , yn) we want to construct estimators k̂(y) and
m̂(y) of the parameters k and m and assess the uncertainty of the
estimates.

To do the latter, we would generate bootstrap samples Y ∗b and

parameter estimates k̂(Y ∗b ) and m̂(Y ∗b ) and study the variation of e.g.

∆∗b = k̂(Y ∗b )− k̂(y).

A con�dence interval for k is then given by(
k̂(y)−∆∗dB(1−α/2)e, k̂(y)−∆∗dBα/2e

)
.
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Semi-parametric bootstrap (cont.)

We proceed as follows:

Find estimators k̂ = k̂(y) and m̂ = m̂(y) for the parameters using
least squares.

Estimate the residuals as

ε̂i = yi − k̂xi − m̂, i ∈ {1, 2, . . . , n}.

Now, the ε̂i's approximately form an i.i.d. sample from an unknown
distribution. For b = 1, 2, . . . , B,

1 resample the residuals to generate a bootstrap sample ε∗b = (ε1, . . . εn)∗b
and

2 Use the bootstrapped residuals to generate bootstrapped observations

(Yi)
∗
b = k̂xi + m̂+ (εi)

∗
b .

3 Given the bootstrapped observations, estimate the parameters to

obtain k̂(Y ∗
b ) and m̂(Y ∗

b ).

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L14 (24) 24 / 41



Last time: Introduction to bootstrap (Ch. 9)
More on the bootstrap (Ch. 9)

MC methods for hypothesis testing (Ch. 9)

Example: law schools
Parametric bootstrap
Semi-parametric bootstrap

Example: linear regression

As an example,

assume that Yi = kxi +m+ εi, with standard Gaussian residuals.

To test the semi-parametric bootstrap we simulate a data set with
m = 3 and k = 4.

Given data, the parameters are estimated using least squares
estimation.

For comparison, we know from the theory of linear regression that an
exact con�dence interval for k is given by

Iα =
(
k̂ − tα/2(n− 2)sb, k̂ + tα/2(n− 2)sb

)
.

where

s2
b =

1
n−2

∑
i ε̂

2
i∑

i(xi − x̄)2
.
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Example: Simple regression

Applying this to the given data set yields

I0.05 = (3.56, 4.20) .

For a comparison we applied semi-parametric as well as parametric
bootstrap to the same data set.

Using semi-parametric bootstrap, where we resample the estimated
residuals, we obtain the interval

I0.05 = (3.57, 4.18) .

Instead using parametric bootstrap, where we draw new residuals from
N (0, σ̂2), we obtain

I0.05 = (3.57, 4.20) .
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Summary: Di�erent types of bootstrap

Non-parametric bootstrap

makes no assumptions on the distribution apart from i.i.d.

needs more data than parametric.

Parametric bootstrap

assumes that data comes from a parametric family of distributions.

needs less data to get good estimates due to stronger assumptions.

may however be sensitive to assumptions.

Semi-parametric bootstrap

assumes a parametric model, coupled with non-parametric nuisance

variables, often residuals.

is typically used for regression.
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Statistical hypotheses

A statistical hypothesis is a statement about the distributional
properties of data.

The goal of a hypothesis test is to see if data agrees with the
statistical hypothesis.

Rejection of a hypothesis indicates that there is su�cient evidence in
the data to make the hypothesis unlikely.

Strictly speaking, a hypothesis test does not accept a hypothesis; it
fails to reject it.
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Testing hypotheses

The basis of a hypothesis test consist of

a null hypothesis H0 that we wish to test.

a test statistic t(y), i.e. a function of the observed data y.

a critical region R.

If the test statistic falls into the critical region, then we reject the null
hypothesis H0.
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Important concepts

Signi�cance The probability (risk) that the test incorrectly rejects the null
hypothesis.

Power The probability that the test correctly rejects the null
hypothesis. Is a function of the true, unknown parameter.

p-value The probability, given the null hypothesis, of observing a
result at least as extreme as the test statistic.

Type I error Incorrectly rejecting the null hypothesis=False positive.

Type II error Failing to reject the null hypothesis=False negative.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L14 (33) 33 / 41



Last time: Introduction to bootstrap (Ch. 9)
More on the bootstrap (Ch. 9)

MC methods for hypothesis testing (Ch. 9)

Preliminaries
MC tests
Permutation tests

Testing simple hypotheses

A simple hypothesis speci�es completely a single distribution for the
data, e.g. Y ∼ N (θ, 1) with H0 : θ = 0.

We construct/de�ne a test statistic t(y) such that large values of t(y)
indicate evidence against H0.

The p-value of the test is now p(y) = P(t(Y ) ≥ t(y)‖H0).

The rejection region is R = {y : p(y) ≤ α}, where α is the level of the
test.

Thus, to evaluate the p-value we need to �nd the distribution of t(Y )
under H0.
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MC test of a simple hypothesis

An MC-based algorithm for testing simple hypotheses is as follows:

1 Draw N samples, Y1, . . . , YN , from the distribution speci�ed by H0.

2 Calculate the test statistic ti = t(Yi) for each sample.

3 Estimate the p-value using MC integration by letting

p̂(y) =
1

N

N∑
i=1

1{ti≥t(y)}.

4 If p̂(y) ≤ α, reject H0.
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Permutation tests

The random variables of a set Y is said to be exchangeable if they
have the same distribution for all permutations.

The distribution of Y given the ordered sample is then the uniform
distribution on the set of all permutations of Y .

Conditioning on the ordered variables leads to permutation tests.

Permutation tests can be very e�cient in testing an exchangeable
null-hypothesis against a non-exchangeable alternative, e.g. for testing
if two samples di�er in some way.
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MC permutation test

An MC-based permutation test can be implemented as follows.

1 Draw N permutations, Y1, . . . , YN , of the vector y.

2 Calculate the test statistic ti = t(Yi) for each permutation.

3 Estimate the p-value using MC integration according to

p̂(y) =
1

N

N∑
i=1

1{ti≥t(y)}.

4 If p̂(y) ≤ α, reject H0.
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Example: pH data

We have 273 historical and current pH-measurements of 149 lakes in
Wisconsin and want to test if the pH-levels have increased.

We assume that all measurements are independent and that historical
measurements have a distribution F0 and that new measurements
have a distribution G0.

We want to test H0 : F0 = G0 against H1 : F0 6= G0
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Example: pH data (cont.)

Assume that the distribution for current data can be written as
G0(y) = F0(y− θ). That is, the mean of the current data is the mean
of the historical data plus θ.

We now want to test H0 : θ = 0 against H1 : θ > 0.

Under H0, all data are i.i.d. and thus exchangeable.

We use the di�erence in the sample means as a test statistic.

A permutation test using 10000 random permutations gives
p = 0.0185
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