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Example: Korsbetningen�background

The background is the following.

In 1361 the Danish king Valdemar Atterdag conquered Gotland and

captured the rich Hanseatic town of Visby.

Most of the defenders were killed in the attack and are buried in a

�eld, Korsbetningen, outside of the walls of Visby.

In 1929�1930 the gravesite (with several graves) was excavated . In

grave one e.g. a total of 493 femurs, 237 right and 256 left, were

found.

We want to estimate the number of buried bodies.
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Example: Korsbetningen�model

We set up the following model.

Assume that the numbers y1 and y2 of left resp. right legs are two

observations from a Bin(n, p) distribution.

Here n is the total number of people buried and p is the probability of

�nding a leg, left or right, of a person.

We put a conjugate Beta(a, b)-prior on p and a U(256, 2500) prior on

n.
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Example: Korsbetningen�a hybrid MCMC

We proceed as follows:

A standard Gibbs step for

p|n, y1, y2 ∼ Beta(a+ y1 + y2, b+ 2n− (y1 + y2)).

MH for n, with a symmetric proposal obtained by drawing, given n, a
new candidate n∗ among the integers {n−R, . . . , n, . . . , n+R}.
The acceptance probability becomes

α(n, n∗) = 1 ∧ (1− p)2n∗
(n∗!)2(n− y1)!(n− y2)!

(1− p)2n(n!)2(n∗ − y1)!(n∗ − y2)!
.
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Example: Korsbetningen�a hybrid MCMC
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Example: Korsbetningen�an improved MCMC sampler

However, the previous algorithm mixes slowly. Thus, use instead the

following scheme.

1 First draw a new n∗ from the symmetric proposal as previously.

2 Then draw, conditional on n∗, also a candidate p∗ from
f(p|n = n∗, y1, y2).

3 Finally, accept or reject both n∗ and p∗.

This is a standard MH sampler!
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Example: Korsbetningen�an improved MCMC sampler

For the new sampler, the proposal kernel becomes

q(n∗, p∗|n, p) ∝ (2n∗ + a+ b− 1)!

(a+ y1 + y2 − 1)!(2n∗ + b− y1 − y2 − 1)!

× (p∗)a+y1+y2−1(1− p∗)b+2n∗−(y1+y2)−1
1|n−n∗|≤R,

yielding the acceptance probability

α((n, p), (n∗, p∗)) = 1 ∧ f(n∗, p∗, y1, y2)q(n, p|n∗, p∗)
f(n, p, y1, y2)q(n∗, p∗|n, p)

= 1 ∧
{

(n∗!)2(n− y1)!(n− y2)!

(n!)2(n∗ − y1)!(n∗ − y2)!

×(2n+ a+ b− 1)!(2n∗ + b− y1 − y2 − 1)!

(2n∗ + a+ b− 1)!(2n+ b− y1 − y2 − 1)!

}
.
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A one side 95% credible interval for n is [343,∞).
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Korsbetningen�E�ect of the prior
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Korsbetningen�E�ect of the prior
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The lower side of a one sided 95% credible interval for n is

{343, 346, 360, 296, 290, 289}. Posterior mean for n
{1068, 883, 653, 453, 358, 346}.
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The frequentist approach (again)

The frequentist approach to statistics is characterized as follows.

Data y is viewed as an observation of a random variable Y with

distribution P0 which most often is assumed to be a member of a

parametric family

P = {Pθ; θ ∈ Θ}.

Thus, P0 = Pθ0 for some θ0 ∈ Θ.

Estimates θ̂(y) are realizations of random variables.

A 95% con�dence interval is calculated to cover the true value in 95%
of the cases.

Hypothesis testing is made by rejecting a hypothesis H0 if

P(data‖H0) is small.
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The frequentist approach (again) (cont.)

Let us extend the previous framework somewhat: Given

observations y

and a model P for the data,

we want to make inference about some property (estimand) τ = τ(P0) of

the distribution P0 that generated the data. For instance,

τ(P0) =

∫
xf0(x) dx, (mean)

where f0 is the density of P0.

The inference problem can split into two subproblems:

1 How do we construct a data-based estimator of τ?

2 How do we assess the uncertainty of the estimate?
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Statistics

A statistic t is simply a (possibly vector-valued) function of data. Some

examples:

1 The arithmetic mean: t(y) = ȳ = 1
n

∑n
i=1 yi.

2 The s2-statistics: t(y) = s2(y) = 1
n−1

∑n
i=1(yi − ȳ)2.

3 The ordered sample (order statistics): t(y) = {y(1), y(2), . . . , y(n)}.
4 The maximum likelihood estimator (MLE): t(y) = argmaxθ∈Θfθ(y).
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Su�cient statistics

A statistic that completely summarizes the information contained in the

data about the unknown parameters θ is called a su�cient statistic for θ.

Mathematically, t is su�cient if the conditional distribution of Y given

t(Y ) does not depend on the parameter θ.

This means that given t(Y ) we may, by simulation, generate a sample

Y ′ with exact the same distribution as Y without knowing the value of

the unknown parameter θ0.

The factorization criterion says that t(y) is su�cient if and only if the

density of Y can be factorized as

fθ(y) = h(y)gθ(t(y)).
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Example: a simple su�cient statistic

For a simple example, let y = (y1, . . . , yn) be observations of n
independent variables with N (θ, 1)-distribution. Then

fθ(y|θ) =

n∏
i=1

fθ(yi|θ) =

n∏
i=1

(
1√
2π

exp

(
−(yi − θ)2

2

))

=

(
1√
2π

)n
exp

(
−1

2

n∑
i=1

y2
i

)
exp

(
θnȳ − 1

2
nθ2

)
.

We may now conclude that t(y) = ȳ is su�cient for θ by applying the

factorization criterion with
t(y)← ȳ,

gθ(t(y))← exp
(
θnȳ − 1

2nθ
2
)
,

h(y)←
(

1√
2π

)n
exp

(
−1

2

∑n
i=1 y

2
i

)
.
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Completeness

A data dependent statistics V is called ancillary if its distribution does

not depend on θ and �rst order ancillary if Eθ(V ) = c for all θ (note

that the latter is weaker than the former).

Since a good su�cient statistics T = t(Y ) provides lots of information

concerning θ it should not�if T is good enough�be possible to form

even a �rst order ancillary statistics based on T , i.e.

Eθ(V (T )) = c ∀θ ⇒ V (t) ≡ c (a.s).

Subtracting c leads to the following de�nition: A su�cient statistics T
is called complete if

Eθ(f(T )) = 0 ∀θ ⇒ f(t) ≡ 0 (a.s).
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Completeness (cont.)

Theorem (Lehmann-Sche�é)

Let T be an unbiased complete su�cient statistics for θ, i.e. Eθ(T ) = θ.
Then T is the (uniquely) best unbiased estimator of θ in terms of variance.

In the example above, where y = (y1, . . . , yn) were observations of n
independent variables with N (θ, 1)-distribution, one may show that the

su�cient statistics t(y) = ȳ is complete. Thus, t is the uniquely best

unbiased estimator of θ!
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Maximum likelihood estimators

Our �rst task is to �nd a statistic that is a good estimate of the estimand

τ = τ(P0) of interest. Two common choices are

the MLE and

the least squares estimator.

As mentioned, the MLE is de�ned as the parameter value maximizing the

likelihood function

θ 7→ fθ(y)

or, equivalently, the log-likelihood function

θ 7→ log fθ(y).
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Least square estimators

When applying least squares we �rst �nd the expectation as a function of

the unknown parameter:

µ(θ) =

∫
xfθ(x) dx.

After this, we minimize the squared deviation

t(y) = argminθ∈Θ

n∑
i=1

(µ(θ)− yi)2

between our observations and the expected value.
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Uncertainty of estimators

Some remarks:

It is important to always keep in mind that the estimate t(y) is an

observation of a random variable t(Y ). If the experiment was

repeated, resulting in a new vector y of random observations, the

estimator would take another value.

In the same way, the error ∆(y) = t(y)− τ is a realization of the

random variable ∆(Y ) = t(Y )− τ .
To assess the uncertainty of the estimator we thus need to analyze the

distribution function F∆ of the error ∆(Y ) (error distribution) under

P0.
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Con�dence intervals and bias

Assume that we have found the error distribution F∆. A con�dence

interval (L(y), U(y)) on level α for τ should ful�ll

1− α = P0 (L(Y ) ≤ τ ≤ U(Y ))

= P0 (t(Y )− L(Y ) ≥ t(Y )− τ ≥ t(Y )− U(Y ))

= P0 (t(Y )− L(Y ) ≥ ∆(Y ) ≥ t(Y )− U(Y )) .

Thus,{
t(Y )− L(Y ) = F−1

∆ (1− α/2)

t(Y )− U(Y ) = F−1
∆ (α/2)

⇔

{
L(Y ) = t(Y )− F−1

∆ (1− α/2)

U(Y ) = t(Y )− F−1
∆ (α/2)

and the con�dence interval becomes

Iα =
(
t(y)− F−1

∆ (1− α/2), t(y)− F−1
∆ (α/2)

)
.
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Con�dence intervals and bias

The bias of the estimator is

E0 (t(Y )− τ) = E0 (∆(Y )) =

∫
zf∆(z) dz,

where f∆(z) = d
dzF∆(z) denotes the density function of ∆(Y ).

Consequently, �nding the error distribution F∆ is essential for making

qualitative statements about the estimator.

In the previous normal distribution example,

∆(Y ) = Ȳ − θ0 ∼ N (0, 1/n),

yielding E0(∆(Y )) = 0 and{
F−1

∆ (1− α/2) = λα/2
1√
n

F−1
∆ (α/2) = −λα/2 1√

n

⇒ Iα =

(
ȳ − λα/2

1√
n
, ȳ + λα/2

1√
n

)
.
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Overview

So, we need F∆(z) (or f∆(z)) to evaluate the uncertainty of t. However,
here we generally face two obstacles:

1 We do not know F∆(z) (or f∆(z)); these distributions may for

instance depend on the quantity τ that we want to estimate.

2 Even if we knew F∆(z), �nding the quantiles F−1
∆ (p) is typically

complicated as integration cannot be carried out on closed form.

The bootstrap algorithm deals with these problems by

1 replacing P0 by an data-based approximation resp.

2 analyzing the variation of ∆(Y ) using MC simulation from the

approximation of P0.
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The empirical distribution function (EDF)

The empirical distribution (ED) P̂0 associated with the data

y = (y1, y2, . . . , yn) gives equal weight (1/n) to each of the yi's (assuming

that all values of y are distinct).

Consequently, if Z ∼ P̂0 is a random variable, then Z takes the value yi
with probability 1/n.

The empirical distribution function (EDF) associated with the data y is

de�ned by

F̂n(z) = P̂0(Z ≤ z)

=
1

n

n∑
i=1

1{yi≤z} = fraction of yi's that are less than z.
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Properties of the EDF

It holds that

lim
z→−∞

F̂n(z) = lim
z→−∞

F (z) = 0,

lim
z→∞

F̂n(z) = lim
z→∞

F (z) = 1.

In addition, trivially, nF̂n(z) ∼ Bin(n, F (z)).

This implies the LLN (as n→∞)

F̂n(z)→ F (z) (a.s.)

as well as the CLT
√
n(F̂n(z)− F (z))

d.−→ N (0, σ2(z)),

where

σ2(z) = F (z)(1− F (z)).
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The bootstrap

Having access to data y, we may now replace P0 by P̂0.

Any quantity involving P0 can now be approximated by plugging P̂0

into the quantity instead. For instance,

τ = τ(P0) ≈ τ̂ = τ(P̂0).

Moreover, the uncertainty of t(y) can be analyzed by drawing

repeatedly Y ∗ ∼ P̂0 and looking at the variation (histogram) of

∆(Y ∗) = t(Y ∗)− τ ≈ ∆(Y ∗) = t(Y ∗)− τ̂ .
Recall that the ED gives equal weight 1/n to all the yi's in y. Thus,
simulation from P̂0 is carried through by simply drawing, with

replacement, among the values y1, . . . , yn.
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The bootstrap (cont.)

The algorithm goes as follows.

Construct the ED P̂0 from the data y.

Simulate B new data sets Y ∗b , b ∈ {1, 2, . . . , B}, where each Y ∗b has

the size of y, from P̂0. Each Y
∗
b is obtained by drawing, with

replacement, n times among the yi's.

Compute the values t(Y ∗b ), b ∈ {1, 2, . . . , B}, of the estimator.

By setting in turn ∆∗b = t(Y ∗b )− τ̂ , b ∈ {1, 2, . . . , B}, we obtain
values being approximately distributed according to the error

distribution. These can be used for uncertainty analysis.
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A Toy example: Exponential distribution

We let y = (y1, . . . , y20) be i.i.d. observations of Yi ∼ Exp(θ), with
unknown mean θ. As estimator we take, as usual, t(y) = ȳ (which is an

unbiased complete su�cient statistics also in this case).
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Empirical distribution function, n=20
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A toy Example: Matlab implementation

In Matlab:

n = 20;
B = 200;
tau_hat = mean(y);
boot = zeros(1,B);
for b = 1:B, % bootstrap

I = randsample(n,n,true);
boot(b) = mean(y(I));

end
delta = sort(boot − tau_hat); % sorting to obtain quantiles
alpha = 0.05; % CB level
L = tau_hat − delta(ceil((1 − alpha/2)*B)); % constructing CB
U = tau_hat − delta(ceil(alpha*B/2));
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