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The Gibbs sampler

In the following,

assume that the space X can be divided into m blocks, i.e.

x = (x1, . . . , xm) ∈ X, where each block may itself be vector-valued.

assume that we want to sample a multivariate distribution f on X.

denote by xi the ith component of x and by x−i = (x`)` 6=i the set of
remaining components.

denote by fi(x
i|x−i) = f(x)/

∫
f(x) dxi the conditional distribution

of Xi given the other components X−i = x−i and

assume that it is easy to simulate from fi(x
i|x−i) for all i = 1, . . . ,m.
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The Gibbs sampler (cont.)

The Gibbs sampler then goes as follows.

Simulate a sequence of values (Xk), forming a Markov chain on X, with
the following mechanism: Given Xk,

draw X1
k+1 ∼ f1(x1|X2

k , . . . , X
m
k ),

draw X2
k+1 ∼ f2(x2|X1

k+1, X
3
k , . . . , X

m
k ),

draw X3
k+1 ∼ f3(x3|X1

k+1, X
2
k+1, X

4
k , . . . , X

m
k ),

. . .

draw Xm
k+1 ∼ fm(xm|X1

k+1, X
2
k+1, . . . , X

m−1
k+1 ).

In other words, at the `th round of the cycle generating Xk+1, the `th
component of Xk+1 is updated by simulation from its conditional

distribution given all other components.
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Convergence of the Gibbs sampler

As for the MH algorithm, the following holds true.

Theorem

The chain (Xk) generated by the Gibbs sampler has f as stationary

distribution.

In addition, one may prove, under weak assumptions, that the Gibbs

sampler is also geometrically ergodic, implying that

τN =
1

N

N∑
k=1

φ(Xk)→ τ as N →∞.
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Variance of MCMC estimators

As mentioned, the MH and Gibbs samplers are geometrically ergodic,

implying a LLN for the resulting estimators.

In addition, one may establish the following CLT. Let

r(`) = lim
n→∞

C(φ(Xn+`), φ(Xn))

be the covariance function of the MCMC chain at stationarity.

Theorem
√
N(τN − τ)

d.−→ N (0, σ2) as N →∞,

where

σ2 = r(0) + 2

∞∑
`=1

r(`).
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Estimating asymptotic variance using blocking

Use N = nK samples and write

τN =
1

N

N∑
k=1

φ(Xk) =
1

n

n∑
`=1

T`,

where

T`
def
=

1

K

`K∑
m=(`−1)K+1

φ(Xm), ` = 1, 2, . . . , n.

If the blocks are large enough we can view these as close to independent

and identically distributed.
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Estimating asymptotic variance using blocking (cont.)

We may thus expect the CLT to hold at least approximately, implying that

V(τN ) = V

(
1

n

n∑
`=1

T`

)
≈ V(T1)

n
,

where V(T1) can be estimated using the standard estimator

V(T1) ≈
1

n− 1

n∑
m=1

(Tm − Tn)2,

with Tn =
∑n

m=1 Tm/n denoting the sample mean. The latter is easily

computed using Matlab's var function.
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Example: A tricky bivariate distribution (again)

We let again (X,Y ) have bivariate distribution

f(x, y) ∝ n!

(n− x)!x!
yx+α−1(1− y)n−x+β−1

on {0, 1, 2, . . . , n} × (0, 1) and estimate the marginal expectation

τ = E(Y )

using the output (Xk, Yk) of the Gibbs sampler.

In addition, we construct a 95% con�dence bound on τ using the blocking

method.
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Example: A tricky bivariate distribution (again)

K = 50; % block size
n = N/K; % number of blocks
T = zeros(1,n);
for k = 1:n, % take means over n blocks

T(k) = mean(Y((burn_in + (k − 1)*K + 1):(burn_in + K*k)));
end
LB = tau − norminv(0.975)*std(T)/sqrt(n); % confidence bound
UB = tau + norminv(0.975)*std(T)/sqrt(n);
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Gibbs trajectory

Number of iterations (N) after burn−in
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Hybrid MCMC samplers

It is often very convenient to consider hybrids between Gibbs and MH:

Divide the space into blocks and aim for Gibbs sampling.

If the conditional distribution of a block is known, update according to

Gibbs.

If there are blocks for which we cannot �nd the conditional

distribution, just insert a MH step instead!

The resulting chain still satis�es global balance and is thus a valid MCMC

sampler.

This will be of great use in HA3!
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Hybrid chains (theoretical motivation)

Assume without loss of generality that we have two blocks and want to

sample from f(x1, x2). The hybrid MCMC goes like this, given

X = x = (x1, x2).

1 Draw X̃2 ∼ q(x̃2|x2) where q is an MH kernel for f(x2|x1).
2 Draw X̃1 ∼ f(x̃1|X2 = X̃2) i.e. standard Gibbs.
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Global balance equation

∫ ∫
q(x̃2, x̃1|x1, x2)f(x1, x2)dx1dx2

=

∫ ∫
f(x̃1|x̃2)q(x̃2|x2)f(x2|x1)f(x1)dx1dx2

= f(x̃1|x̃2)
∫ ∫

q(x̃2|x2)f(x2|x1)dx2f(x1)dx1

Global Balance MH
= f(x̃1|x̃2)

∫
f(x̃2|x1)f(x1)dx1

Law of total prob
= f(x̃1|x̃2)f(x̃2) = f(x̃1, x̃2),

which concludes the proof .
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Part II: MC methods for statistical inference
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Overview

We will consider

some literature,

stochastic modeling,

frequentist vs. Bayesian statistics, and

an example�MCMC.
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Alternative literature

For MCMC:

Markov Chain Monte Carlo in Practice,
Gilks, Richardson & Spiegelhalter, 1996.
Monte Carlo Statistical Methods,
Robert & Casella, 2005.

For Bootstrap (to be discussed next week):

Bootstrap Methods and Their Application,
Davison & Hinkley, 1997.
An Introduction to the Bootstrap,
Efron & Tibshirani, 1994.
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Stochastic modeling: frequentist approach

The basic setup is the following.

We observe data y.

The data y is assumed to be an observation of a (typically

multivariate) random variable Y with distribution P0.

A statistical model is a set P of probability distributions that is

assumed to contain P0.

The largest possible model would be

P = {all possible distributions P that could generate y}.

An inference problem refers to the problem of selecting a distribution

from P that �t the observed data y.
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Stochastic modeling: frequentist approach (cont.)

Commonly we restrict the set of distributions to a come from a

parametric family

P = {Pθ : θ ∈ Θ},

where Θ is called the parameter space.

For instance,

P = {all normal distributions with mean θ and variance 1}.

In this case, Θ = R and the true parameter θ0 is seen as having an

unknown but �xed value.
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Stochastic modeling: frequentist approach

An estimate of θ0 is formed using a function θ̂(y) of the data. The

function θ̂(y) is called estimator. The estimate θ̂(y) (i.e. the value

taken by the estimator) should be close to θ0.

Since y is a random sample from P0, the estimate θ̂(y) is a realization

of the random variable θ̂(Y ).

A common estimator is the maximum likelihood estimator (MLE),

which is obtained as the parameter θ̂(y) maximizing the likelihood

function

θ 7→ f(y|θ),

where y is the given observed data.

Often, a 95% con�dence interval is calculated to cover the true value

in 95% of the cases.
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Stochastic modeling: Bayesian approach

In Bayesian inference, the setup is the following.

Our uncertainty concerning the parameters θ is modeled by letting the

parameters be random variables.

Thus, a Bayesian model is the joint distribution f(y, θ) of Y and θ.
By Bayes's formula,

f(y, θ) = f(y|θ)f(θ).

f(y|θ) is the likelihood that describes how the data Y behaves

conditionally on the parameters θ.

f(θ) is called the prior distribution and summarizes our prior belief

about θ before observing Y .
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Stochastic modeling: Bayesian approach (cont.)

Since θ is viewed as a random variable, inference is based on the

posterior (or a posteriori) distribution f(θ|y), i.e. the distribution of

the parameters given the observed data.

By Bayes's Formula:

f(θ|y) =
f(y, θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ′)f(θ′) dθ′

∝ f(y|θ)f(θ).
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Bayesian vs. frequentist statistics

Bayesian inference is done using the posterior f(θ|y).

Frequentist inference uses the likelihood f(y|θ).
A Bayesian makes statements about the relative evidence for

parameter values given a dataset.

A Frequentist compare the relative chance of datasets given a

parameter value.
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Bayesian vs. frequentist statistics: Example

An example:

Suppose a hospital has around 200 beds occupied each day and that we

want to know the underlying risk that a patient will be infected by MRSA

(methicillin-resistant Staphylococcus aureus).

Looking back at the �rst six months of the year, we count y = 20
infections in 40,000 bed-days.

Let θ be the expected number of infections per 10,000 bed-days. A

reasonable model is that y is an observation of Y ∼ Po(4θ).

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L11 (26) 26 / 35



Last time: Gibbs sampling and estimation of variance
Hybrid MCMC samplers

Stochastic modeling and Bayesian inference
Home assignment 3 (HA3)

Bayesian vs. frequentist statistics: Example (cont.)

Frequentist approach:

MLE: θ̂(y) = y/4 = 20/4 = 5.
An approximate con�dence interval based on a normal approximation is
given by

θ̂(y)± λα/2

√
θ̂(y)

4
= (2.81, 7.19).

A hypothesis test of H0 : θ = 4 vs. H1 : θ > 4 can be carried through
using the direct method which gives

P (get what we got or worse under H0‖H0 true)

= P(Y ≥ 20‖Y ∼ Po(16)) = 0.188.
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Bayesian vs. frequentist: Example (cont.)

Bayesian approach:

However, other information about the underlying risk may exist, such
as the previous year's rates or rates in similar hospitals. Suppose this
other information, on its own, suggests plausible values of θ of around
10 per 10,000, with 95% of the support for θ lying between 5 and 17.
This can be expressed through the prior

θ ∼ Γ(a, b), a = 10, b = 1.

The posterior distribution is now

f(θ|y) ∝ f(y|θ)f(θ) ∝ θye−4θθa−1e−bθ ∝ θy+a−1e−θ(4+b).

⇒ θ|Y = y ∼ Γ(y + a, 4 + b).
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Bayesian vs. frequentist: Example (cont.)

Thus, the posterior is θ|Y = y ∼ Γ(y + a, 4 + b).

If we want a point estimate of θ, one may use Bayes's estimator

θ̂ = E(θ|Y = y) =

∫
θ′f(θ′|y) dθ′ =

y + a

4 + b
=

20 + 10

4 + 1
= 6.

A credible or posterior probability interval can be found using the

quantiles of the posterior distribution.

A hypothesis test of H0 : θ = 4 vs. H1 : θ > 4 can be carried through

by computing P(θ > 4|Y = y) = 0.978, which indicates strong

evidence against H0.
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HA3: MCMC and bootstrap

HA3 comprises

one problem aiming at detecting change points in coal mine data

using hybrid MCMC samplers and

one problem aiming at estimating the 100-year north Atlantic wave

using parametric bootstrap (discussed on Tuesday).

Deadline: Tuesday 10 Mar, 13:00:00.
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