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Plan of today’s lecture

@ Last time: Gibbs sampling and estimation of variance
@ Hybrid MCMC samplers
© Stochastic modeling and Bayesian inference

@ Home assignment 3 (HA3)
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Last time: Gibbs sampling and estimation of variance

We are here — o

@ Last time: Gibbs sampling and estimation of variance
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Last time: Gibbs sampling and estimation of variance

The Gibbs sampler

In the following,

@ assume that the space X can be divided into m blocks, i.e.

x = (x',...,2™) € X, where each block may itself be vector-valued.

@ assume that we want to sample a multivariate distribution f on X.

e denote by z* the ith component of = and by z7¢ = (a:é)g# the set of
remaining components.

e denote by f;(2%|z™%) = f(x)/ [ f(x)dz" the conditional distribution
of X given the other components X! = 2~ and

@ assume that it is easy to simulate from fi(x!|x=%) forall i =1,... ,m.
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Last time: Gibbs sampling and estimation of variance

The Gibbs sampler (cont.)

The Gibbs sampler then goes as follows.

Simulate a sequence of values (X}), forming a Markov chain on X, with
the following mechanism: Given X,

o draw X} | ~ fi(z!|XZ,..., X;"),

o draw X7 | ~ fo(a?| X}, , X2, ..., X",

o draw X} | ~ fa(a®| X}, , X2, 1, Xt X7,
° ...

o draw XJ" | ~ fm (2™ X} 1, X2 0q, ..., X150,

In other words, at the /th round of the cycle generating Xy 1, the /th
component of X1 is updated by simulation from its conditional
distribution given all other components.
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Last time: Gibbs sampling and estimation of variance

Convergence of the Gibbs sampler

As for the MH algorithm, the following holds true.

Theorem
The chain (X},) generated by the Gibbs sampler has f as stationary
distribution.

In addition, one may prove, under weak assumptions, that the Gibbs
sampler is also geometrically ergodic, implying that

N
1
TN:NkZ_ld)(Xk)—)T as N — oo.
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Last time: Gibbs sampling and estimation of variance

Variance of MCMC estimators

As mentioned, the MH and Gibbs samplers are geometrically ergodic,
implying a LLN for the resulting estimators.

In addition, one may establish the following CLT. Let

r(€) = lim C(¢(Xn1r), ¢(Xn))

n—00
be the covariance function of the MCMC chain at stationarity.
Theorem

VN(ry —7) -2 N(0,02) as N — oo,

where

o2 =r(0) +2 ir(@).
=1
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Last time: Gibbs sampling and estimation of variance

Estimating asymptotic variance using blocking

Use N = nK samples and write

N n
1 1

™ = quﬁ(Xk) =-Y T,

k=1 (=1
where
1 (K
TE— Y ¢(Xm), €=1,2,...,n
m=({—1)K+1

If the blocks are large enough we can view these as close to independent
and identically distributed.
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Last time: Gibbs sampling and estimation of variance

Estimating asymptotic variance using blocking (cont.)

We may thus expect the CLT to hold at least approximately, implying that

V(TN> =V (71‘L iTZ> ~ V(:l)’
(=1

where V(7T7) can be estimated using the standard estimator

1 __
V(Tl) ~ n—1 Z(Tm - Tn)27
m=1

with T, = > _ T, /n denoting the sample mean. The latter is easily

m=1
computed using Matlab’s var function.
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Last time: Gibbs sampling and estimation of variance

Example: A tricky bivariate distribution (again)

We let again (X,Y") have bivariate distribution

n!

z+a—1 1— n—x+p4—1
on {0,1,2,...,n} x (0,1) and estimate the marginal expectation
T=E(Y)

using the output (X, Yy) of the Gibbs sampler.

In addition, we construct a 95% confidence bound on 7 using the blocking
method.
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Last time: Gibbs sampling and estimation of variance

Example: A tricky bivariate distribution (again)

K = 50; % block size

n = N/K; % number of blocks
T = zeros(1l,n);
for k = 1:n, % take means over n blocks

T(k) = mean (Y ((burn_in + (k — 1)*K + 1) :(burn_in + Kxk)));
end
LB = tau — norminv (0.975) xstd(T) /sgrt (n); % confidence bound
UB = tau + norminv (0.975)xstd(T) /sqgrt (n);

Gibbs trajectory

0.7

0.5‘

0.45
0

5000 15000
Number of iterations (N) after burn-in
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Hybrid MCMC samplers

We are here — o

@ Hybrid MCMC samplers
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Hybrid MCMC samplers

Hybrid MCMC samplers

It is often very convenient to consider hybrids between Gibbs and MH:
@ Divide the space into blocks and aim for Gibbs sampling.

@ If the conditional distribution of a block is known, update according to
Gibbs.

o If there are blocks for which we cannot find the conditional
distribution, just insert a MH step instead!

The resulting chain still satisfies global balance and is thus a valid MCMC
sampler.

This will be of great use in HA3!
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Hybrid MCMC samplers

Hybrid chains (theoretical motivation)

Assume without loss of generality that we have two blocks and want to
sample from f(x1,x2). The hybrid MCMC goes like this, given
X =z = (21, x2).

© Draw Xy ~ ¢(Za|z2) where ¢ is an MH kernel for f(zo|x1).

@ Draw X; ~ f(Z1]Xo = Xg) i.e. standard Gibbs.
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Hybrid MCMC samplers

Global balance equation

//q(@,:i1|x1,x2)f(:n1,x2)dx1dx2
=//f(fl\fz)Q(fz!932)f($2|$1)f(331)d$1d$2
— 1(@nlz) | [ atdalon) f(aalon)doaf (o)don
b 82 M f(313) [ (k) o)

TSP f(3]n) f(32) = f(@1,72),

which concludes the proof [
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Hybrid MCMC samplers

Part IlI: MC methods for statistical inference
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Stochastic modeling and Bayesian inference

We are here — o

© Stochastic modeling and Bayesian inference
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Stochastic modeling and Bayesian inference

Overview

We will consider
@ some literature,
@ stochastic modeling,
o frequentist vs. Bayesian statistics, and
@ an example—MCMC.

M. Wiktorsson Monte Carlo and Empirical Methods for Stoch 18 / 35



Stochastic modeling and Bayesian inference

Alternative literature

For MCMC:
o Markov Chain Monte Carlo in Practice,
Gilks, Richardson & Spiegelhalter, 1996.
e Monte Carlo Statistical Methods,
Robert & Casella, 2005.
For Bootstrap (to be discussed next week):
e Bootstrap Methods and Their Application,
Davison & Hinkley, 1997.
o An Introduction to the Bootstrap,
Efron & Tibshirani, 1994.
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Stochastic modeling and Bayesian inference

Stochastic modeling: frequentist approach

The basic setup is the following.
o We observe data y.

@ The data y is assumed to be an observation of a (typically
multivariate) random variable Y with distribution Py.

@ A statistical model is a set P of probability distributions that is
assumed to contain Py.

@ The largest possible model would be
P = {all possible distributions P that could generate y}.
@ An inference problem refers to the problem of selecting a distribution

from P that fit the observed data y.
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Stochastic modeling and Bayesian inference

Stochastic modeling: frequentist approach (cont.)

@ Commonly we restrict the set of distributions to a come from a
parametric family
P = {Pg 10 e @},

where O is called the parameter space.

For instance,
P = {all normal distributions with mean 6 and variance 1}.

In this case, ©® = R and the true parameter y is seen as having an
unknown but fixed value.
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Stochastic modeling and Bayesian inference

Stochastic modeling: frequentist approach

o~

@ An estimate of 0 is formed using a function 0(y) of the data. The

Y
function 0(y) is called estimator. The estimate 6(y) (i.e. the value
taken by the estimator) should be close to 6y.

~

@ Since y is a random sample from P, the estimate 6(y) is a realization
of the random variable 6(Y).

@ A common estimator is the maximum likelihood estimator (MLE),

which is obtained as the parameter 6(y) maximizing the likelihood
function

0 — f(ylo),
where y is the given observed data.

o Often, a 95% confidence interval is calculated to cover the true value
in 95% of the cases.
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Stochastic modeling and Bayesian inference

Stochastic modeling: Bayesian approach

In Bayesian inference, the setup is the following.

@ Our uncertainty concerning the parameters 6 is modeled by letting the
parameters be random variables.

@ Thus, a Bayesian model is the joint distribution f(y,6) of Y and 6.
By Bayes’s formula,

f(y,0) = f(yl0) f(0).

e f(y|0) is the likelihood that describes how the data Y behaves
conditionally on the parameters 6.

e f(0) is called the prior distribution and summarizes our prior belief
about 6 before observing Y.
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Stochastic modeling and Bayesian inference

Stochastic modeling: Bayesian approach (cont.)

@ Since 0 is viewed as a random variable, inference is based on the
posterior (or a posteriori) distribution f(60|y), i.e. the distribution of
the parameters given the observed data.

@ By Bayes's Formula:

fly,0)  fylo)f(9)

TOW) =50y = THGI0 () de

o f(yl0)£(0).
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Stochastic modeling and Bayesian inference

Bayesian vs. frequentist statistics

Bayesian inference is done using the posterior f(6|y).

Frequentist inference uses the likelihood f(y|6).

A Bayesian makes statements about the relative evidence for
parameter values given a dataset.

A Frequentist compare the relative chance of datasets given a
parameter value.
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Stochastic modeling and Bayesian inference

Bayesian vs. frequentist statistics: Example

An example:

Suppose a hospital has around 200 beds occupied each day and that we
want to know the underlying risk that a patient will be infected by MRSA
(methicillin-resistant Staphylococcus aureus).

Looking back at the first six months of the year, we count y = 20
infections in 40,000 bed-days.

Let € be the expected number of infections per 10,000 bed-days. A
reasonable model is that y is an observation of Y ~ Po(46).
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Stochastic modeling and Bayesian inference

Bayesian vs. frequentist statistics: Example (cont.)

Frequentist approach:
o MLE: 8(y) = y/4=20/4 =5.
o An approximate confidence interval based on a normal approximation is

given by
0(y) £ Aoy @ = (2.81,7.19).

o A hypothesis test of Hg : 0 = 4 vs. Hy : 6 > 4 can be carried through
using the direct method which gives

P (get what we got or worse under Ho||Ho true)
= P(Y > 20]|Y ~ Po(16)) = 0.188.
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Stochastic modeling and Bayesian inference

Bayesian vs. frequentist: Example (cont.)

Bayesian approach:

e However, other information about the underlying risk may exist, such
as the previous year's rates or rates in similar hospitals. Suppose this
other information, on its own, suggests plausible values of # of around
10 per 10,000, with 95% of the support for € lying between 5 and 17.

e This can be expressed through the prior

0 ~T(a,b), a=10, b=1.
o The posterior distribution is now

F(0y) < f(y|0)f(0) x B¥e=10gr—1eb0  guta=le—0(4+0)
=0Y =y~T(y+a,4+0).
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Stochastic modeling and Bayesian inference

Bayesian vs. frequentist: Example (cont.)

@ Thus, the posterioris 0|Y =y ~I'(y + a,4 + b).

o If we want a point estimate of 6, one may use Bayes's estimator

§:E(9\Y:y):/grf(ef,y)de,: yt+a _20+10

44+4b  4+1

@ A credible or posterior probability interval can be found using the
quantiles of the posterior distribution.

@ A hypothesis test of Hy: 0 =4 vs. Hy : 0 > 4 can be carried through
by computing P(6 > 4|Y = y) = 0.978, which indicates strong
evidence against H,.

M. Wiktorsson Monte Carlo and Empirical Methods for Stoch 29 / 35



Home assignment 3 (HA3)

We are here — o

@ Home assignment 3 (HA3)
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Home assignment 3 (HA3)

HA3: MCMC and bootstrap

HA3 comprises
@ one problem aiming at detecting change points in coal mine data
using hybrid MCMC samplers and
@ one problem aiming at estimating the 100-year north Atlantic wave
using parametric bootstrap (discussed on Tuesday).

Deadline: Tuesday 10 Mar, 13:00:00.
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Home assignment 3 (HA3)

profile log likelihood for one breakpoint
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Home assignment 3 (HA3)

prafile log likelihood far tuo breskpoints
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Home assignment 3 (HA3)
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Home assignment 3 (HA3)
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