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Markov Chain Monte Carlo (MCMC)

Basic idea: To sample from a density f we construct a Markov chain
having f as stationary distribution. A law of large numbers for Markov
chains guarantees convergence.

If f is complicated and/or high dimensional this is often easier than
transformation methods and rejection sampling.

The price is it that samples will be statistically dependent.

MCMC is currently the most common method for sampling from
complicated and/or high dimensional distributions.

Dates back to the 1950's with two key papers being

Equations of state calculations by fast computing machines (Metropolis
et al., 1953) and
Monte Carlo sampling methods using Markov chains and their
applications (Hastings, 1970).
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Last time: Stationary Markov chains

We called a distribution π(x) stationary if∫
q(x|z)π(z)dz = π(x). (Global balance)

For a stationary distribution π it holds that

χ = π ⇒ f(xn) = π(xn), ∀n.

Thus, if the chain starts in the stationary distribution, it will always stay in
the stationary distribution. In this case we call also the chain stationary.
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Local balance

Let (Xk) have transition density q and let λ(x) be a distribution satisfying
the local balance condition

λ(x)q(z|x) = λ(z)q(x|z), ∀x, z ∈ X.

Interpretation:

��ow� from state x→ z = ��ow� from state z → x.

Then the following holds.

Theorem

Assume that λ satis�es local balance. Then λ is a stationary distribution.

The converse is not true in general.
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Ergodic Markov chains

A Markov chain (Xn) with stationary distribution π is called ergodic if for
all initial distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| → 0, as n→∞.

Theorem (Geometric ergodicity)

Assume that there exists a density µ(x) and a constant ε > 0 such that for

all x, z ∈ X,
q(z|x) ≥ εµ(z). (∗)

Then the chain (Xn) is geometrically ergodic, i.e. there is a ρ < 1 such

that for all χ,
sup
A⊆X
|P(Xn ∈ A)− π(A)| ≤ ρn.
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Example: a chain on a discrete set

Let X = {1, 2, 3} and q(1|1) = 0.4 q(2|1) = 0.4 q(3|1) = 0.2
q(1|2) = 0 q(2|2) = 0.7 q(3|2) = 0.3
q(1|3) = 0 q(2|3) = 0.1 q(3|3) = 0.9

 .

This chain has π = (0, 0.25, 0.75) as stationary distribution (check global
balance). Moreover, the chain satis�es (∗) with

ε = 0.3 and µ = (0, 1/3, 2/3).

It is thus geometrically ergodic.
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Example: a chain on a discrete set

Estimated correlation obtained by simulating the chain 1000 time steps:
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A law of large numbers for Markov chains

In the case when (Xn) is geometrically ergodic, the states are only weakly
dependent. For such Markov chains there is, just like in the case of
independent variables, a law of large numbers (LLN):

Theorem (Law of large numbers for Markov chains)

Let (Xn) be a stationary Markov chain. Denote by π the stationary

distribution. In addition, assume that

∞∑
k=1

|C (φ(X1), φ(Xk))| <∞. (∗∗)

Then for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

k=1

φ(Xk)−
∫
X
φ(x)π(x) dx

∣∣∣∣∣ > ε

)
→ 0 as n→∞.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L9 (10) 10 / 31



Last time: Introduction to MCMC
The Metropolis-Hastings algorithm (Ch. 5.3)

Comments on HA 1

Proof of LLN (helping Lemma)

Lemma (Chebyshev's inequality)

Let Z ≥ 0 be a r.v. with EZ2 <∞ then

P(Z > ε) ≤ E[Z2]

ε2
.

Proof.

P(Z > ε) = E[I(Z > ε)] ≤ E

[(
Z

ε

)2

I(Z > ε)

]

≤ E

[(
Z

ε

)2
]
=

E[Z2]

ε2

2
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A law of large numbers for Markov chains (cont.)

In the theorem above,

the condition (∗∗) is often satis�ed for geometrically ergodic Markov
chains for which the dependence between states decreases
geometrically fast.

the condition (∗∗) can be weakened considerably (it is however needed
for the corresponding CLT; see next lecture).

the convergence type is called convergence in probability and one
typically writes

1

n

n∑
k=1

φ(Xk)
P→
∫
X
φ(x)π(x) dx as n→∞.

It is possible to extend the LLN to stronger types of convergence, such
as convergence a.s.
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The principle of MCMC

The LLN for Markov chains makes it possible to estimate expectations

τ = E(φ(X)) =

∫
X
φ(x)f(x) dx

by simulating, N steps, a Markov chain (Xk) with stationary distribution f
and letting

τN =
1

N

N∑
k=1

φ(Xk)→ τ as N →∞.

This is the principle of all MCMC methods.
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To make this idea practicable requires simulation schemes that guarantee

that simulating the chain (Xk) is an easily implementable process

that the stationary distribution of (Xk) indeed coincides with the
desired distribution f .

that the chain (Xk) converges towards f irrespectively of the initial
value X1.

We will now discuss two major classes of such algorithms, namely the
Metropolis-Hastings algorithm and the Gibbs sampler.
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The Metropolis-Hastings (MH) algorithm

In the following we assume that we can simulate from a transition density
r(z|x), referred to as the proposal kernel, on X.

The MH algorithm simulates a sequence of values (Xk), forming a Markov
chain on X, through the following mechanism: given Xk,

generate X∗ ∼ r(z|Xk) and

set

Xk+1 =

 X∗ w. pr. α(Xk, X
∗)

def
= 1 ∧ f(X

∗)r(Xk|X∗)
f(Xk)r(X∗|Xk)

,

Xk otherwise.

Here we used the notation a ∧ b def
= min{a, b}. The scheme is initialized by

drawing X1 from some initial distribution χ.
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The MH algorithm: Pseudo-code

draw X1 ∼ χ
for k = 1→ (N − 1) do

draw X∗ ∼ r(z|Xk)

set α(Xk, X
∗)← 1 ∧ f(X∗)r(Xk|X∗)

f(Xk)r(X∗|Xk)

draw U ∼ U(0, 1)
if U ≤ α then

Xk+1 ← X∗

else

Xk+1 = Xk

end if

end for

set τN ←
∑N

k=1 φ(Xk)/N
return τN
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A look at α(Xk, X
∗)

Recall that

α(Xk, X
∗) = 1 ∧ f(X

∗)r(Xk|X∗)
f(Xk)r(X∗|Xk)

is the probability of accepting the new state X∗ given the old state Xk.

First, ignore the transition kernel r. Then

the ratio f(X∗)/f(Xk) says: accept (keep) the proposed state X∗ if
it is �better� than the old state Xk (as measured by f);

otherwise, if the proposed state is �worse� than the old one, accept it
with a probability proportional to how much worse.
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A look at α(Xk, X
∗)

Recall again

α(Xk, X
∗) = 1 ∧ f(X

∗)r(Xk|X∗)
f(Xk)r(X∗|Xk)

.

At the same time we also want to explore the state space, where some
states may be easier to reach than others. This is compensated for by the
factor r(Xk|X∗)/r(X∗|Xk).

If it is easy to reach X∗ from Xk, the denominator r(X∗|Xk) will
reduce the acceptance probability;

if it is easy to get back to Xk from X∗, the numerator r(Xk|X∗) will
increase the acceptance probability.
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Convergence of the MH algorithm

The following result is fundamental.

Theorem (Global balance of the MH sampler)

The chain (Xk) generated by the MH sampler has f as stationary

distribution.

In addition, one may prove, under weak assumptions, that the MH
algorithm is also geometrically ergodic, implying that, as N →∞,

τN =
1

N

N∑
k=1

φ(Xk)→ τ =

∫
φ(x)f(x) dx.

Given some starting value X1, there will be, say, B iterations before the
distribution of the chain can be considered as �su�ciently close� to the
stationary distribution. The values (Xk)

B
k=1 are referred to as burn-in and

are typically discarded in the analysis.
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di�erent types of proposal kernels

There are a number of di�erent ways of constructing the proposal kernel r.
The three main classes are

independent proposals,

symmetric proposals, and

multiplicative proposals.
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Independent proposal

Independent proposals are characterized as follows.

Draw the candidates from r(z), i.e. independently of the current state
x.

The acceptance probability reduces to

α(x, z) = 1 ∧ f(z)r(x)
f(x)r(z)

.

Here it is required that {x : f(x) > 0} ⊆ {x : r(x) > 0} to ensure
convergence.

If we take r(x) = f(x), which is of course infeasible in general, the
acceptance probability reduces to 1 and we get independent samples
from f .
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Symmetric proposal

Symmetric proposals are characterized by the following.

It holds that r(z|x) = r(x|z), ∀(x, z) ∈ X2.

In this case the acceptance probability reduces to

α(x, y) = 1 ∧ f(z)
f(x)

.

Commonly this corresponds to X∗ = Xk + ε (random walk proposal)
with, e.g.,

ε ∈ N (0, σ2) or
ε ∈ U(−a, a).
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Multiplicative proposals

An easy way to obtain an asymmetric proposal where the size of the jump
depends on the current state Xk = x is to take

X∗ = xε,

where ε is drawn from some density p.

The proposal kernel now becomes r(z|x) = p(z/x)/x and the acceptance
probability becomes

α(x, z) = 1 ∧ f(z)p(x/z)/z
f(x)p(z/x)/x

.
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Example: a tricky integral

Since the target density f enters the acceptance probability α(x, z) only
via the ratio f(z)/f(x), we only need to know f up to a normalizing
constant (cf. rejection sampling). This is one of the main strengths of the
MH sampler.

As an example we estimate the variance τ = E(X2) under

f(x) = exp(cos2(x))/c, x ∈ (−π/2, π/2),

where c > 0 is unknown, using the MH algorithm.

We propose new candidates according to a simple symmetric random walk
initialized in the origin, i.e.

r(z|x) = N (z;x, σ2)

and X1 = 0.
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Example: a tricky integral (cont.)

In Matlab:

z = @(x) exp(cos(x).^2).*(x > −pi/2).*(x < pi/2);
burn_in = 2000;
M = N + burn_in
X = zeros(1,M);
X(1) = 0;
for k = 1:(M − 1),

cand = X(k) + randn*sigma;
alpha = z(cand)/z(X(k));
if rand <= alpha,

X(k + 1) = cand;
else

X(k + 1) = X(k);
end

end
tau = mean(X(burn_in:M).^2);
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Example: a tricky integral (cont.)

Comparison between the true density and the histogram of Xk,
k = 2001, . . . , 22000.
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Example:a tricky integral (cont.)

MH output (τN ) for increasing N (blue) and true value (red):
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A few comments on HA 1

Always provide numerical values (not only �gures), preferably in a
table.

Focus on describing precisely how you obtained your results rather
than on describing the general theory. But be concise!

Analyze your results.

A �gure caption cannot almost never be too long!

Check your importance weights properly!
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Next time

Next time we will

prove the global balance theorem above and

move on to the Gibbs sampler.
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