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The Metropolis-Hastings (MH) algorithm

Assuming that we can simulate from a transition density r(z|x) (referred to

as the proposal kernel) on X, the MH algorithm goes as follows.

Simulate a sequence of values (Xk), forming a Markov chain on X, with
the following mechanism: Given Xk,

generate X∗ ∼ r(z|Xk) and

set

Xk+1 =

 X∗ w. pr. α(Xk, X
∗) = 1 ∧ f(X

∗)r(Xk|X∗)
f(Xk)r(X∗|Xk)

,

Xk otherwise.

The scheme is initialized by setting X1 to an arbitrary value or drawing the

same from some initial distribution χ.
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The MH algorithm: Pseudo-code

draw X1 ∼ χ
for k = 1→ (N − 1) do
draw X∗ ∼ r(z|Xk)

set α(Xk, X
∗)← 1 ∧ f(X∗)r(Xk|X∗)

f(Xk)r(X∗|Xk)
draw U ∼ U(0, 1)
if U ≤ α then

Xk+1 ← X∗

else

Xk+1 = Xk

end if

end for

set τN ← 1
N

∑N
k=1 φ(Xk)

return τN
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di�erent types of proposal kernels

We also considered di�erent classes of proposal kernels r, namely the

independent proposals,

symmetric proposals, and

multiplicative proposals.
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The transition kernel of the Metropolis-Hastings algorithm

Lemma (MH transition kernel)

The MH algorithm is a Markov chain with the following transition kernel:

q(z|x) = α(x, z)r(z|x) + pR(x)δx(z),

where

pR(x) = 1−
∫
α(x, z)r(z|x)dz

with

α(x, z) = 1 ∧ f(z)r(x|z)
f(x)r(z|x)

.

Note that δx(z) = δ(z − x) = δ(x− z) = δz(x) where δ is the so called

Dirac delta function.
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Proof of lemma (sketch)

First note that the conditional density if we accepted the step given

Xk = x is

P(U ≤ α(x, z)|X∗ = z,Xk = x)fX∗|Xk=x(z) = α(x, z)r(z|x).

If we do not accept the step we stay at x giving a point mass at x. The
probability for this to happen (i.e. the size of the point mass) is∫

P(U > α(x, y)|X∗ = y,Xk = x)fX∗|Xk=x(y)dy

=

∫
(1− α(x, y))r(y|x)dy

= 1−
∫
α(x, y)r(y|x)dy = pR(x)

Putting the two parts together we get

q(z|x) = α(x, z)r(z|x) + pR(x)δx(z).
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Convergence of the MH algorithm

The following result is fundamental.

Theorem

The chain (Xk) generated by the MH sampler has f as stationary

distribution.

In addition, one may prove, under weak assumptions, that the MH

algorithm is also geometrically ergodic, implying that

τN =
1

N

N∑
k=1

φ(Xk)→ τ as N →∞.
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Proof of theorem (sketch)

In order to show that f is the stationary distribution we should check the

global balance equation ∫
f(x)q(z|x)dx = f(z).

or

the local balance equation

f(x)q(z|x) = f(z)q(x|z), ∀x, z ∈ X.

Using the lemma above we insert the transition kernel for the

MH-algorithm yielding

f(x)q(z|x) = f(x)α(x, z)r(z|x) + f(x)pR(x)δx(z).

Examining the �rst term we get

f(x)α(x, z)r(z|x) = f(x)r(z|x)
(
1 ∧ f(z)r(x|z)

f(x)r(z|x)

)
= f(x)r(z|x) ∧ f(z)r(x|z) = f(z)r(x|z)

(
1 ∧ f(x)r(z|x)

f(z)r(x|z)

)
= f(z)α(z, x)r(x|z).

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L10 (10) 10 / 22



Last time: The Metropolis-Hastings algorithm (Ch. 7.1)
The Gibbs sampler (Ch. 7.2)
Variance of MCMC samplers

Proof of theorem (sketch)

or the local balance equation

f(x)q(z|x) = f(z)q(x|z), ∀x, z ∈ X.

Using the lemma above we insert the transition kernel for the

MH-algorithm yielding

f(x)q(z|x) = f(x)α(x, z)r(z|x) + f(x)pR(x)δx(z).

Examining the �rst term we get

f(x)α(x, z)r(z|x) = f(x)r(z|x)
(
1 ∧ f(z)r(x|z)

f(x)r(z|x)

)
= f(x)r(z|x) ∧ f(z)r(x|z) = f(z)r(x|z)

(
1 ∧ f(x)r(z|x)

f(z)r(x|z)

)
= f(z)α(z, x)r(x|z).

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L10 (10) 10 / 22



Last time: The Metropolis-Hastings algorithm (Ch. 7.1)
The Gibbs sampler (Ch. 7.2)
Variance of MCMC samplers

Proof of theorem (sketch)

or the local balance equation

f(x)q(z|x) = f(z)q(x|z), ∀x, z ∈ X.

Using the lemma above we insert the transition kernel for the

MH-algorithm yielding

f(x)q(z|x) = f(x)α(x, z)r(z|x) + f(x)pR(x)δx(z).

Examining the �rst term we get

f(x)α(x, z)r(z|x) = f(x)r(z|x)
(
1 ∧ f(z)r(x|z)

f(x)r(z|x)

)
= f(x)r(z|x) ∧ f(z)r(x|z) = f(z)r(x|z)

(
1 ∧ f(x)r(z|x)

f(z)r(x|z)

)
= f(z)α(z, x)r(x|z).

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L10 (10) 10 / 22



Last time: The Metropolis-Hastings algorithm (Ch. 7.1)
The Gibbs sampler (Ch. 7.2)
Variance of MCMC samplers

proof (cont)

We now plug this into to the global balance equation∫
f(x)q(z|x)dx =

∫
(f(z)α(z, x)r(x|z) + f(x)pR(x)δx(z)) dx

= f(z)

∫
α(z, x)r(x|z)dx+ f(z)pR(z)

Using the expression for pR(z) we get

= f(z)

∫
α(z, x)r(x|z)dx+ f(z)

(
1−

∫
α(z, x)r(x|z)dx

)
= f(z)

(
1 +

∫
α(z, x)r(x|z)dx−

∫
α(z, x)r(x|z)dx

)
= f(z),

which concludes the proof.
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Example of particle MCMC kernel for smoothing distribution
INPUT: Conditional trajectory X0:n

f , measurements y0:n, parameter θ.
OUTPUT: Trajectory X0:n

∗ .
draw X0

i ∼ χ, i = 1, · · · , N − 1 (intial distribution).
set X0

N ← X0
f (initilize �xed trajectory).

set w0
i ← 1, i = 1, · · · , N − 1 (initilize weights).

for k = 1→ (n− 1) do
draw aik with P (aik = j) ∝ wjk−1 for i = 1, · · · , N − 1 (index resampling).

draw Xk
i ∼ pθ(xk|Xk−1

ai
k

) for i = 1, · · · , N − 1 (move particles).

draw aNk with P (aNk = j) ∝ wjk−1pθ(X
k
f |Xk−1

j ) (index resampling �xed trajectory).

set Xk
N ← Xk

f (update �xed trajectory).

set wki ← pθ(y
k|Xk

i ) for i = 1, · · · , N (update weights).
end for

draw I with P (I = j) ∝ wjn (initilize index for backward step).
set Xn

∗ = Xn
I (initilize trajectory for backward step).

for k = (n− 1)→ 0 do

set I ← aIk+1 (track index backwards).
set Xk

∗ ← Xk
I (update trajectory for backward step).

end for

return X0:n
∗
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The Gibbs sampler

In the following,

assume that the space X can be divided into m blocks, i.e.

x = (x1, . . . , xm) ∈ X, where each block may itself be vector-valued.

assume that we want to sample a multivariate distribution f on X.

denote by xi the ith component of x and by x−i = (x`)` 6=i the set of

remaining components.

denote by fi(x
i|x−i) = f(x)/

∫
f(x) dxi the conditional distribution

of Xi given the other components X−i = x−i and

assume that it is easy to simulate from fi(x
i|x−i) for all i = 1, . . . ,m.
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The Gibbs sampler (cont.)

The Gibbs sampler goes as follows.

Simulate a sequence of values (Xk), forming a Markov chain on X, with
the following mechanism: Given Xk,

draw X1
k+1 ∼ f1(x1|X2

k , . . . , X
m
k ),

draw X2
k+1 ∼ f2(x2|X1

k+1, X
3
k , . . . , X

m
k ),

draw X3
k+1 ∼ f3(x3|X1

k+1, X
2
k+1, X

4
k , . . . , X

m
k ),

. . .

draw Xm
k+1 ∼ fm(xm|X1

k+1, X
2
k+1, . . . , X

m−1
k+1 ).

In other words, at the `th round of the cycle generating Xk+1, the `th
component of Xk+1 is updated by simulation from its conditional

distribution given all other components.
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Convergence of the Gibbs sampler

As for the MH algorithm, the following holds true.

Theorem

The chain (Xk) generated by the Gibbs sampler has f as stationary

distribution.

In addition, one may prove, under weak assumptions, that the Gibbs

sampler is also geometrically ergodic, implying that

τN =
1

N

N∑
k=1

φ(Xk)→ τ as N →∞.
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Example: A tricky bivariate distribution

Suppose that we want to sample the distribution on

{0, 1, 2, . . . , n} × (0, 1) given by

f(x, y) ∝ n!

(n− x)!x!
yx+α−1(1− y)n−x+β−1.

This density is very complex and hard to sample from. The conditional

distributions are however simple; indeed

X|Y = y ∼ Bin(n, y),

Y |X = x ∼ Beta(x+ α, n− x+ β).

Thus, the problem of sampling f(x, y) can be perfectly cast into the

framework of the Gibbs sampler.
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Example: A tricky bivariate distribution (cont.)

In Matlab:

burn_in = 1000;
M = N + burn_in;
X = zeros(1,M);
Y = X;
X(1) = 5;
Y(1) = 0.5;
for k = 1:(M − 1),

x = binornd(n,Y(k));
X(k + 1) = x;
Y(k + 1) = betarnd(x + alpha,n − x + beta);

end
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Example: A tricky bivariate distribution (cont.)

Comparison between the true density and the histogram of Yk,
k = 1001, . . . , 11000.
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Variance of MCMC estimators

As mentioned, the MH and Gibbs samplers are geometrically ergodic,

implying a LLN for the resulting estimators. In addition, one may establish

the following CLT. Let

r(`) = lim
n→∞

C(φ(Xn+`), φ(Xn))

be the covariance function of the MCMC chain at stationarity.

Theorem

For the MCMC samplers discussed above it holds that

√
N(τN − τ)

d.−→ N (0, σ2) as N →∞,

where

σ2 = r(0) + 2

∞∑
`=1

r(`).
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Estimating the variance of MCMC samplers

For the ordinary Monte Carlo integration we used the sample variance

(Matlab: var) to estimate V(φ(X)). However, now we need the entire

covariance function r(`). A number of di�erent approximative solutions are

possible, e.g.

assume a parametric form of the covariance function, usually that of

an AR process of low order, and estimate it,

use only use samples that are far apart, ensuring approximate

independence,

block the samples into blocks that are large enough to be

approximately independent. Then calculate averages of each block and

use these to estimate the standard deviation.

Next week we will discuss the last solution in some detail.
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