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Example: Linear/Gaussian HMM, SIS implementation

Comparison of SIS (◦) with exact values (∗) provided by the Kalman �lter
(possible only for linear/Gaussian models):
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Multinomial resampling

A simple�but revolutionary!�idea: duplicate/kill particles with
large/small weights! (Gordon et al., 1993)

The most natural approach to such selection is to simply draw, with
replacement, new particles X̃0:n

1 , X̃0:n
2 , . . . , X̃0:n

N among the SIS particles
X0:n

1 , X0:n
2 , . . . , X0:n

N with probabilities given by the normalized importance
weights.

Formally, this amounts to set, for i = 1, 2, . . . , N ,

X̃0:n
i = X0:n

j with probability
ωj
n∑N

`=1 ω
`
n

.
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Multinomial resampling (cont.)

After this, the resampled particles (X̃0:n
i ) are assigned equal weights

ω̃i
n = 1, say, and we replace

N∑
i=1

ωi
n∑N

`=1 ω
`
n

φ(X0:n
i ) by

1

N

N∑
i=1

φ(X̃0:n
i ).

Multinomial resampling does not add bias to the estimator:

Theorem

For all N ≥ 1 and n ≥ 0,

E

(
1

N

N∑
i=1

φ(X̃0:n
i )

)
= E

(
N∑
i=1

ωi
n∑N

`=1 ω
`
n

φ(X0:n
i )

)
.

The operation adds however some variance due to additional randomness.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L8 (6) 6 / 25



Last time: sequential Monte Carlo methods
Markov chain Monte Carlo (MCMC, Ch. 7)

Sequential importance sampling with resampling (SISR)

After selection, we proceed with standard SIS and move the selected
particles (X̃0:n

i ) according to gn+1(xn+1|x0:n).

The full scheme goes as follows. Given (X0:n
i , ωi

n),

(selection) draw, with replacement, (X̃0:n
i ) among (X0:n

i ) according to
probabilities (ωi

n/
∑N

`=1 ω
`
n)

(mutation) draw, for all i, Xn+1
i ∼ gn+1(xn+1|X̃0:n

i ),

set, for all i, X0:n+1
i = (X̃0:n

i , Xn+1
i ), and

set, for all i,

ωi
n+1 =

zn+1(X
0:n+1
i )

zn(X̃0:n
i )gn+1(X

n+1
i |X̃0:n

i )
.
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Example: Linear/Gaussian HMM, SIS implementation

Comparison of SIS (◦) and SISR (∗, blue) with exact values (∗, red)
provided by the Kalman �lter:
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Markov Chain Monte Carlo (MCMC)

Basic idea: To sample from a density f we construct a Markov chain
having f as stationary distribution. A law of large numbers for Markov
chains guarantees convergence.

If f is complicated and/or de�ned on a space of high dimension this is
often easier than transformation methods and rejection sampling.

The samples will however not be independent.

MCMC is currently the most common method for sampling from
complicated and/or high dimensional distributions.

Dates back to the 1950's with two key papers being

Equations of state calculations by fast computing machines (Metropolis
et al., 1953) and
Monte Carlo sampling methods using Markov chains and their

applications (Hastings, 1970).
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More on Markov chains

A Markov chain on X ⊆ Rd is a family of random variables (= stochastic
process) (Xk)k≥0 taking values in X such that

P(Xk+1 ∈ A|X0, X1, . . . , Xk) = P(Xk+1 ∈ A|Xk).

The density q of the distribution of Xk+1 given Xk = x is called the
transition density of (Xk). Consequently,

P(Xk+1 ∈ A|Xk = xk) =

∫
A
q(xk+1|xk) dxk+1.

As a �rst example we considered an AR(1) process:

X0 = 0, Xk+1 = αXk + εk+1,

where α is a constant and (εk) are i.i.d. noise variables.
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Markov chains (cont.)

The following theorem provides the joint density f(x0, x1, . . . , xn) of
X0, X1, . . . , Xn.

Theorem

Let (Xk) be Markov with initial distribution χ. Then for n > 0,

f(x0, x1, . . . , xn) = χ(x0)

n−1∏
k=0

q(xk+1|xk).

Corollary (Chapman-Kolmogorov equation)

Let (Xk) be Markov. Then for n > 1,

f(xn|x0) =
∫
· · ·
∫ (n−1∏

k=0

q(xk+1|xk)

)
dx1 · · · dxn−1.
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Stationary Markov chains

A distribution π(x) is said to be stationary if∫
q(x|z)π(z)dz = π(x). (Global balance)

For a stationary distribution π it holds that

χ = π

⇒ f(x1) =

∫
q(x1|x0)χ(x0) dx0 =

∫
q(x1|x0)π(x0) dx0 = π(x1)

⇒ f(x2) =

∫
q(x2|x1)f(x1) dx1 =

∫
q(x2|x1)π(x1) dx1 = π(x2)

⇒ ...⇒ f(xn) = π(xn), ∀n.

Thus, if the chain starts in the stationary distribution, it will always stay in
the stationary distribution. In this case we call also the chain stationary.
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Local balance

Let (Xk) have transition density q and let λ(x) be a distribution satisfying
the local balance condition

λ(x)q(z|x) = λ(z)q(x|z), ∀x, z ∈ X.

Interpretation:

��ow� from state x→ z = ��ow� from state z → x.

Theorem

Assume that λ satis�es local balance. Then λ is a stationary distribution.

The converse is not true.
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Ergodic Markov chains

A Markov chain (Xn) with stationary distribution π is called ergodic if for
all initial distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| → 0, as n→∞.

Theorem (Geometric ergodicity)

Assume that there exists a density µ(x) and a constant ε > 0 such that for

all x, z ∈ X,
q(z|x) ≥ εµ(z). (∗)

Then the chain (Xn) is geometrically ergodic, i.e. there is ρ < 1 such that

for all χ,
sup
A⊆X
|P(Xn ∈ A)− π(A)| ≤ ρn.
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Geometrically ezrgodic Markov chains

In other words, geometric ergodicity means that the chain forgets its initial
distribution geometrically fast. Two remarks:

The condition (∗) is typically satis�ed when X is compact (which is
e.g. the case when X is �nite set). It can however be weakened
considerably to hold also for non-compact state spaces.

Geometric ergodicity implies in general that

|C(φ(Xm), φ(Xn))| ≤ Cρ̃|n−m|

for some ρ̃ < 1 and some constant C > 0 depending on φ.
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A coupling-based proof of geometric ergodicity

De�ne the transition density

q̃(xk+1|xk) =
q(xk+1|xk)− εµ(xk+1)

1− ε
(≥ 0 by (∗))

and let χ and χ′ be two initial distributions. De�ne two new Markov chains
(Xk) and (X ′k) as follows:

Draw X0 ∼ χ and X ′0 ∼ χ′.
given Xk and X ′k, toss an ε-coin. If
(i) head (w. pr. ε), draw Xk+1 ∼ µ(xk+1) and set X ′

k+1 = Xk+1 (⇒
coupling).

(ii) tail (w. pr. 1− ε), draw Xk+1 ∼ q̃(xk+1|Xk). In addition, draw
independently X ′

k+1 ∼ q̃(xk+1|X ′
k); however, if the chains have

coupled earlier, keep X ′
k+1 = Xk+1.
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Example: a chain on a discrete set

Let X = {1, 2, 3} and q(1|1) = 0.4 q(2|1) = 0.4 q(3|1) = 0.2
q(1|2) = 0 q(2|2) = 0.7 q(3|2) = 0.3
q(1|3) = 0 q(2|3) = 0.1 q(3|3) = 0.9

 .

This chain has π = (0, 0.25, 0.75) as stationary distribution (check global
balance). Moreover, the chain satis�es (∗) with

ε = 0.3 and µ = (0, 1/3, 2/3).

It is thus geometrically ergodic.
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Example: a chain on a discrete set

Estimated correlation obtained by simulating the chain 1000 time steps:
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A law of large numbers for Markov chains

In the case when (Xk) is geometrically ergodic, the states are only weakly
dependent. There is thus, just like in the case of independent variables, a
law of large numbers:

Theorem (Law of large numbers for Markov chains)

Let (Xn) be a geometrically ergodic Markov chain with stationary

distribution π. Then for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

k=1

φ(Xk)−
∫
φ(x)π(x) dx

∣∣∣∣∣ ≥ ε
)
→ 0 as n→∞.

This means that 1
n

∑n
k=1 φ(Xk) converges in probability to the mean of

φ(Xk) under π.
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Example: a chain on a discrete set reconsidered

Plot of means 1
n

∑n
k=1Xk with increasing n. Here the mean of the

stationary distribution is 1 · 0 + 2 · 0.25 + 3 · 0.75 = 2.75 (red line).
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Next week

Now we have gained enough understanding of Markov chains to be able to
understand MCMC in some detail.

Thus, next week we will deal with the main objective of MCMC, namely
how to, given a density f , construct a Markov chain (Xk) having f as
stationary distribution.

Focus will be set on

the Metropolis-Hastings algorithm and

the Gibbs sampler.

We will also work out a full example of an implementation.

See you!
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