Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Magnus Wiktorsson

Centre for Mathematical Sciences
Lund University, Sweden

Lecture 6
Sequential Monte Carlo methods II February 6, 2020

Plan of today's lecture

(1) Last time: Sequential MC problems
(2) Random number generation reconsidered
(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

We are here

(1) Last time: Sequential MC problems

(2) Random number generation reconsidered

(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

Last time: Sequential MC problems

In the sequential MC framework, we aim at sequentially estimating sequences $\left(\tau_{n}\right)_{n \geq 0}$ of expectations

$$
\tau_{n}=\mathbb{E}_{f_{n}}\left(\phi\left(X_{0: n}\right)\right)=\int_{X_{n}} \phi\left(x_{0: n}\right) f_{n}\left(x_{0: n}\right) \mathrm{d} x_{0: n} \quad(*)
$$

over spaces \mathbf{X}_{n} of increasing dimension, where the densities $\left(f_{n}\right)$ are known up to normalizing constants only, i.e., for every $n \geq 0$,

$$
f_{n}\left(x_{0: n}\right)=\frac{z_{n}\left(x_{0: n}\right)}{c_{n}}
$$

where c_{n} is an unknown constant.

Last time: Markov chains

Some applications involved the notion of Markov chains:
A Markov chain on $\mathrm{X} \subseteq \mathbb{R}^{d}$ is a family of random variables ($=$ stochastic process) $\left(X_{k}\right)_{k \geq 0}$ taking values in X such that

$$
\mathbb{P}\left(X_{k+1} \in \mathrm{~B} \mid X_{0}, X_{1}, \ldots, X_{k}\right)=\mathbb{P}\left(X_{k+1} \in \mathrm{~B} \mid X_{k}\right) .
$$

The density q of the distribution of X_{k+1} given $X_{k}=x_{k}$ is called the transition density of $\left(X_{k}\right)$. Consequently,

$$
\mathbb{P}\left(X_{k+1} \in \mathrm{~B} \mid X_{k}=x_{k}\right)=\int_{\mathrm{B}} q\left(x_{k+1} \mid x_{k}\right) \mathrm{d} x_{k+1} .
$$

As a first example we considered an $\operatorname{AR}(1)$ process:

$$
X_{0}=0, \quad X_{k+1}=\alpha X_{k}+\epsilon_{k+1}
$$

where α is a constant and $\left(\epsilon_{k}\right)$ are i.i.d. variables.

Last time: Markov chains (cont.)

The following theorem provides the joint density $f_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of $X_{0}, X_{1}, \ldots, X_{n}$.

Theorem

Let $\left(X_{k}\right)$ be Markov with $X_{0} \sim \chi$. Then for $n>0$,

$$
f_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\chi\left(x_{0}\right) \prod_{k=0}^{n-1} q\left(x_{k+1} \mid x_{k}\right)
$$

Corollary (The Chapman-Kolmogorov equation)
Let $\left(X_{k}\right)$ be Markov. Then for $n>1$,

$$
f_{n}\left(x_{n} \mid x_{0}\right)=\int \cdots \int\left(\prod_{k=0}^{n-1} q\left(x_{k+1} \mid x_{k}\right)\right) d x_{1} \cdots d x_{n-1}
$$

Last time: Rare event analysis (REA) for Markov chains

Let $\left(X_{k}\right)$ be a Markov chain. Assume that we want to compute, for $n=0,1,2, \ldots$

$$
\begin{aligned}
\tau_{n}=\mathbb{E}\left(\phi\left(X_{0: n}\right) \mid X_{0: n} \in \mathrm{~B}\right) & =\int_{\mathrm{B}} \phi\left(x_{0: n}\right) \frac{f_{n}\left(x_{0: n}\right)}{\mathbb{P}\left(X_{0: n} \in \mathrm{~B}\right)} \mathrm{d} x_{0: n} \\
& =\int_{\mathrm{B}} \phi\left(x_{0: n}\right) \frac{\chi\left(x_{0}\right) \prod_{k=0}^{n-1} q\left(x_{k+1} \mid x_{k}\right)}{\mathbb{P}\left(X_{0: n} \in \mathrm{~B}\right)} \mathrm{d} x_{0: n},
\end{aligned}
$$

where B is a possibly "rare" event and $\mathbb{P}\left(X_{0: n} \in \mathrm{~B}\right)$ is generally unknown. We thus face a sequential MC problem (*) with

$$
\left\{\begin{array}{l}
z_{n}\left(x_{0: n}\right) \leftarrow \chi\left(x_{0}\right) \prod_{k=0}^{n-1} q\left(x_{k+1} \mid x_{k}\right) \\
c_{n} \leftarrow \mathbb{P}\left(X_{0: n} \in \mathrm{~B}\right)
\end{array}\right.
$$

Last time: Estimation in general HMMs

Graphically:

$$
\begin{aligned}
Y_{k} \mid X_{k}=x_{k} & \sim p\left(y_{k} \mid x_{k}\right) \\
X_{k+1} \mid X_{k}=x_{k} & \sim q\left(x_{k+1} \mid x_{k}\right) \\
X_{0} & \sim \chi\left(x_{0}\right)
\end{aligned}
$$

(Observation density)
(Transition density)
(Initial distribution)

Last time: Estimation in general HMMs

In an HMM, the smoothing distribution $f_{n}\left(x_{0: n} \mid y_{0: n}\right)$ is the conditional distribution of a set $X_{0: n}$ of hidden states given $Y_{0: n}=y_{0: n}$.

Theorem (Smoothing distribution)

$$
f_{n}\left(x_{0: n} \mid y_{0: n}\right)=\frac{\chi\left(x_{0}\right) p\left(y_{0} \mid x_{0}\right) \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) q\left(x_{k} \mid x_{k-1}\right)}{L_{n}\left(y_{0: n}\right)}
$$

where
$L_{n}\left(y_{0: n}\right)=$ density of the observations $y_{0: n}$

$$
=\int \cdots \int \chi\left(x_{0}\right) p\left(y_{0} \mid x_{0}\right) \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) q\left(x_{k} \mid x_{k-1}\right) d x_{0} \cdots d x_{n}
$$

Last time: Estimation in general HMMs

Assume that we want to compute, online for $n=0,1,2, \ldots$,

$$
\begin{gathered}
\tau_{n}=\mathbb{E}\left(\phi\left(X_{0: n}\right) \mid Y_{0: n}=y_{0: n}\right) \\
=\int \cdots \int \phi\left(x_{0: n}\right) f_{n}\left(x_{0: n} \mid y_{0: n}\right) \mathrm{d} x_{0} \cdots \mathrm{~d} x_{n} \\
=\int \cdots \int \phi\left(x_{0: n}\right) \frac{\chi\left(x_{0}\right) p\left(y_{0} \mid x_{0}\right) \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) q\left(x_{k} \mid x_{k-1}\right)}{L_{n}\left(y_{0: n}\right)} \mathrm{d} x_{0} \cdots \mathrm{~d} x_{n}
\end{gathered}
$$

where $L_{n}\left(y_{0: n}\right)$ (= obscene integral) is generally unknown. We thus face a sequential MC problem (*) with

$$
\left\{\begin{array}{l}
z_{n}\left(x_{0: n}\right) \leftarrow \chi\left(x_{0}\right) p\left(y_{0} \mid x_{0}\right) \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) q\left(x_{k} \mid x_{k-1}\right), \\
c_{n} \leftarrow L_{n}\left(y_{0: n}\right) .
\end{array}\right.
$$

Random number generation reconsidered

 Sequential Monte Carlo (SMC) methods
We are here

(1) Last time: Sequential MC problems

(2) Random number generation reconsidered
(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

Conditional methods

Say that we want to generate a random vector from a given bivariate density $p(x, y)$. If we know how to draw from the conditional distribution $p(y \mid x)$ and the marginal $p(x)$ this can be done naturally using the following scheme.
draw $Z_{1} \sim p(x)$
draw $Z_{2} \sim p\left(y \mid x=Z_{1}\right)$
return $\left(Z_{1}, Z_{2}\right)$

Conditional methods

This can be naturally extended to n-variate densities $p\left(x_{1}, \ldots, x_{n}\right)$:
draw $Z_{1} \sim p\left(x_{1}\right)$
draw $Z_{2} \sim p\left(x_{2} \mid x_{1}=Z_{1}\right)$
draw $Z_{3} \sim p\left(x_{3} \mid x_{1}=Z_{1}, x_{2}=Z_{2}\right)$
:
draw $Z_{n-1} \sim p\left(x_{n-1} \mid x_{1}=Z_{1}, x_{2}=Z_{2}, \ldots, x_{n-2}=Z_{n-2}\right)$
draw $Z_{n} \sim p\left(x_{n} \mid x_{1}=Z_{1}, x_{2}=Z_{2}, \ldots, x_{n-1}=Z_{n-1}\right)$
return $\left(Z_{1}, \ldots, Z_{n}\right)$

Theorem

The vector $\left(Z_{1}, \ldots, Z_{n}\right)$ has indeed n-variate density function $p\left(x_{1}, \ldots, x_{n}\right)$.

We are here

(1) Last time: Sequential MC problems

(2) Random number generation reconsidered

(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

We are here

(1) Last time: Sequential MC problems
(2) Random number generation reconsidered
(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

Sequential Monte Carlo (SMC) methods

It is natural to aim at solving the problem using usual self-normalized IS. However, the generated samples $\left(X_{i}^{0: n}, \omega_{n}\left(X_{i}^{0: n}\right)\right)$ should be such that

- having $\left(X_{i}^{0: n}, \omega_{n}\left(X_{i}^{0: n}\right)\right)$, the next sample $\left(X_{i}^{0: n+1}, \omega_{n+1}\left(X_{i}^{0: n+1}\right)\right)$ is easily generated with a complexity that does not increase with n (online sampling).
- the approximation remains stable as n increases.

We call each draw $X_{i}^{0: n}=\left(X_{i}^{0}, \ldots, X_{i}^{n}\right)$ a particle. Moreover, we denote importance weights by

$$
\omega_{n}^{i} \stackrel{\text { def }}{=} \omega_{n}\left(X_{i}^{0: n}\right)
$$

We are here

(1) Last time: Sequential MC problems

(2) Random number generation reconsidered

(3) Sequential Monte Carlo (SMC) methods

- Overview
- Sequential importance sampling (SIS)

Sequential importance sampling (SIS)

We proceed recursively. Assume that we have generated particles ($X_{i}^{0: n}$) from $g_{n}\left(x_{0: n}\right)$ so that

$$
\sum_{i=1}^{N} \frac{\omega_{n}^{i}}{\sum_{\ell=1}^{N} \omega_{n}^{\ell}} \phi\left(X_{i}^{0: n}\right) \approx \mathbb{E}_{f_{n}}\left(\phi\left(X_{0: n}\right)\right)
$$

where, as usual, $\omega_{n}^{i}=\omega_{n}\left(X_{i}^{0: n}\right)=z_{n}\left(X_{i}^{0: n}\right) / g_{n}\left(X_{i}^{0: n}\right)$.
Key trick: Choose an instrumental distribution satisfying

$$
\begin{aligned}
& g_{n+1}\left(x_{0: n+1}\right)=g_{n+1}\left(x_{n+1} \mid x_{0: n}\right) g_{n+1}\left(x_{0: n}\right) \\
& g_{n+1}\left(x_{0: n+1}\right)=g_{n+1}\left(x_{n+1} \mid x_{0: n}\right) g_{n}\left(x_{0: n}\right) .
\end{aligned}
$$

SIS (cont.)

Now assume that we have drawn $X_{0: n} \sim g_{n}\left(x_{0: n}\right)$. Then, as

$$
g_{n+1}\left(x_{0: n+1}\right)=g_{n+1}\left(x_{n+1} \mid x_{0: n}\right) g_{n+1}\left(x_{0: n}\right)=g_{n+1}\left(x_{n+1} \mid x_{0: n}\right) g_{n}\left(x_{0: n}\right)
$$

the conditional method allows us to generate a draw $X_{0: n+1}$ from $g_{n+1}\left(x_{0: n+1}\right)$ using the following procedure:

$$
\begin{aligned}
& \text { draw } X_{n+1} \sim g_{n+1}\left(x_{n+1} \mid x_{0: n}=X_{0: n}\right) \\
& \text { let } X_{0: n+1} \leftarrow\left(X_{0: n}, X_{n+1}\right)
\end{aligned}
$$

This can be repeated recursively, yielding online sampling from the sequence $\left(g_{n}\right)$.

SIS (cont.)

Consequently, $X_{i}^{0: n+1}$ and ω_{n+1}^{i} can be generated by

- keeping the previous $X_{i}^{0: n}$,
- simulating $X_{i}^{n+1} \sim g_{n+1}\left(x_{n+1} \mid X_{i}^{0: n}\right)$,
- setting $X_{i}^{0: n+1}=\left(X_{i}^{0: n}, X_{i}^{n+1}\right)$, and
- computing

$$
\begin{aligned}
\omega_{n+1}^{i} & =\frac{z_{n+1}\left(X_{i}^{0: n+1}\right)}{g_{n+1}\left(X_{i}^{0: n+1}\right)} \\
& =\frac{z_{n+1}\left(X_{i}^{0: n+1}\right)}{z_{n}\left(X_{i}^{0: n}\right) g_{n+1}\left(X_{i}^{n+1} \mid X_{i}^{0: n}\right)} \times \frac{z_{n}\left(X_{i}^{0: n}\right)}{g_{n}\left(X_{i}^{0: n}\right)} \\
& =\frac{z_{n+1}\left(X_{i}^{0: n+1}\right)}{z_{n}\left(X_{i}^{0: n}\right) g_{n+1}\left(X_{i}^{n+1} \mid X_{i}^{0: n}\right)} \times \omega_{n}^{i}
\end{aligned}
$$

SIS (cont.)

Voilà, the sample ($X_{i}^{0: n+1}, \omega_{n+1}^{i}$) can now be used to approximate $\mathbb{E}_{f_{n+1}}\left(\phi\left(X_{0: n+1}\right)\right)$!
So, by running the SIS algorithm, we have updated an approximation

$$
\sum_{i=1}^{N} \frac{\omega_{n}^{i}}{\sum_{\ell=1}^{N} \omega_{n}^{\ell}} \phi\left(X_{i}^{0: n}\right) \approx \mathbb{E}_{f_{n}}\left(\phi\left(X_{0: n}\right)\right)
$$

to an approximation

$$
\sum_{i=1}^{N} \frac{\omega_{n+1}^{i}}{\sum_{\ell=1}^{N} \omega_{n+1}^{\ell}} \phi\left(X_{i}^{0: n+1}\right) \approx \mathbb{E}_{f_{n+1}}\left(\phi\left(X_{0: n+1}\right)\right)
$$

by only adding a component X_{i}^{n+1} to $X_{i}^{0: n}$ and sequentially updating the weights.

SIS: Pseudo code

for $i=1 \rightarrow N$ do
draw $X_{i}^{0} \sim g_{0}$
set $\omega_{0}^{i}=\frac{z_{0}\left(X_{i}^{0}\right)}{g_{0}\left(X_{i}^{0}\right)}$
end for
return $\left(X_{i}^{0}, \omega_{0}^{i}\right)$
for $k=0,1,2, \ldots$ do for $i=1 \rightarrow N$ do draw $X_{i}^{k+1} \sim g_{k+1}\left(x_{k+1} \mid X_{i}^{0: k}\right)$ set $X_{i}^{0: k+1} \leftarrow\left(X_{i}^{0: k}, X_{i}^{k+1}\right)$
set $\omega_{k+1}^{i} \leftarrow \frac{z_{k+1}\left(X_{i}^{0: k+1}\right)}{z_{k}\left(X_{i}^{0: k}\right) g_{k+1}\left(X_{i}^{k+1} \mid X_{i}^{0: k}\right)} \times \omega_{k}^{i}$
end for
return $\left(X_{i}^{0: k+1}, \omega_{k+1}^{i}\right)$
end for

Example: REA reconsidered

We consider again the example of REA for Markov chains $(X=\mathbb{R}$, $X_{0}=x_{0}=a$):

$$
\begin{aligned}
& \tau_{n}=\mathbb{E}\left(\phi\left(X_{0: n}\right) \mid a \leq X_{\ell}, \forall \ell\right.=0, \ldots, n) \\
&=\int_{(a, \infty)^{n}} \phi\left(x_{0: n}\right) \underbrace{\prod_{k=1}^{n-1} q\left(x_{k+1} \mid x_{k}\right)}_{=z_{n}\left(x_{0: n}\right) / c_{n}} \\
& \mathbb{P}\left(a \leq X_{\ell}, \forall \ell\right) \\
& x_{1: n}
\end{aligned}
$$

Choose $g_{k+1}\left(x_{k+1} \mid x_{0: k}\right)$ to be the conditional density of X_{k+1} given X_{k} and $X_{k+1} \geq a$:

$$
g_{k+1}\left(x_{k+1} \mid x_{0: k}\right)=\{\text { cf. HA1, Problem } 1\}=\frac{q\left(x_{k+1} \mid x_{k}\right)}{\int_{a}^{\infty} q\left(z \mid x_{k}\right) \mathrm{d} z}
$$

Example: REA

This implies that (recall that we have conditioned on $X_{0}=x_{0}=a$)

$$
g_{n}\left(x_{0: n}\right)=\prod_{k=0}^{n-1} \frac{q\left(x_{k+1} \mid x_{k}\right)}{\int_{a}^{\infty} q\left(z \mid x_{k}\right) \mathrm{d} z}
$$

In addition, the weights are updated according to

$$
\begin{aligned}
\omega_{k+1}^{i} & =\frac{z_{k+1}\left(X_{i}^{0: k+1}\right)}{z_{k}\left(X_{i}^{0: k}\right) g_{k+1}\left(X_{i}^{k+1} \mid X_{i}^{0: k}\right)} \times \omega_{k}^{i} \\
& =\frac{\prod_{\ell=0}^{k} q\left(X_{i}^{\ell+1} \mid X_{i}^{\ell}\right)}{\prod_{\ell=0}^{k-1} q\left(X_{i}^{\ell+1} \mid X_{i}^{\ell}\right) \times \frac{q\left(X_{i}^{k+1} \mid X_{i}^{k}\right)}{\int_{a}^{\infty} q\left(z \mid X_{i}^{k}\right) \mathrm{d} z} \times \omega_{k}^{i}} \\
& =\int_{a}^{\infty} q\left(z \mid X_{i}^{k}\right) \mathrm{d} z \times \omega_{k}^{i}
\end{aligned}
$$

Example: REA; Matlab implementation for AR(1) process with Gaussian noise

```
% design of instrumental distribution:
int = @(x) 1 - normcdf(a,alpha*x,sigma);
trunk_td_rnd = ... % use e.g. HA1, Problem 1, to simulate
    % the conditional transition density;
% SIS:
part = a*ones(N,1); % initialization of all particles in a
w = ones (N,1);
for k = 1:(n - 1), % main loop
    part_mut = trunk_td_rnd(part);
    w = w.*int(part);
    part = part_mut;
end
c = mean(w); % estimated probability
```


REA: Importance weight distribution

Serious drawback of SIS: the importance weights degenerate!...

What's next?

Weight degeneration is a universal problem with the SIS method and is due to the fact that the particle weights are generated through subsequent multiplications.

This drawback prevented-during several decades-the SIS method from being practically useful.

Next week we will discuss an elegant solution to this problem: SIS with resampling (SISR).

