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Last time: Sequential MC problems

In the sequential MC framework, we aim at sequentially estimating

sequences (τn)n≥0 of expectations

τn = Efn(φ(X0:n)) =

∫
Xn

φ(x0:n)fn(x0:n) dx0:n (∗)

over spaces Xn of increasing dimension, where the densities (fn) are known
up to normalizing constants only, i.e., for every n ≥ 0,

fn(x0:n) =
zn(x0:n)

cn
,

where cn is an unknown constant.
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Last time: Markov chains

Some applications involved the notion of Markov chains:

A Markov chain on X ⊆ Rd is a family of random variables (= stochastic

process) (Xk)k≥0 taking values in X such that

P(Xk+1 ∈ B|X0, X1, . . . , Xk) = P(Xk+1 ∈ B|Xk).

The density q of the distribution of Xk+1 given Xk = xk is called the

transition density of (Xk). Consequently,

P(Xk+1 ∈ B|Xk = xk) =

∫
B
q(xk+1|xk) dxk+1.

As a �rst example we considered an AR(1) process:

X0 = 0, Xk+1 = αXk + εk+1,

where α is a constant and (εk) are i.i.d. variables.
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Last time: Markov chains (cont.)

The following theorem provides the joint density fn(x0, x1, . . . , xn) of
X0, X1, . . . , Xn.

Theorem

Let (Xk) be Markov with X0 ∼ χ. Then for n > 0,

fn(x0, x1, . . . , xn) = χ(x0)

n−1∏
k=0

q(xk+1|xk).

Corollary (The Chapman-Kolmogorov equation)

Let (Xk) be Markov. Then for n > 1,

fn(xn|x0) =
∫
· · ·
∫ (n−1∏

k=0

q(xk+1|xk)

)
dx1 · · · dxn−1.
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Last time: Rare event analysis (REA) for Markov chains

Let (Xk) be a Markov chain. Assume that we want to compute, for

n = 0, 1, 2, . . .

τn = E(φ(X0:n)|X0:n ∈ B) =

∫
B
φ(x0:n)

fn(x0:n)

P(X0:n ∈ B)
dx0:n

=

∫
B
φ(x0:n)

χ(x0)
∏n−1

k=0 q(xk+1|xk)
P(X0:n ∈ B)

dx0:n,

where B is a possibly �rare� event and P(X0:n ∈ B) is generally unknown.

We thus face a sequential MC problem (∗) with{
zn(x0:n)← χ(x0)

∏n−1
k=0 q(xk+1|xk),

cn ← P(X0:n ∈ B).
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Last time: Estimation in general HMMs

Graphically:

"!
# 
"!
# 
"!
# 

"!
# 
"!
# 
"!
# 

Yk−1 Yk Yk+1
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... ... (Markov chain)

(Observations)

Yk|Xk = xk ∼ p(yk|xk) (Observation density)

Xk+1|Xk = xk ∼ q(xk+1|xk) (Transition density)

X0 ∼ χ(x0) (Initial distribution)
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Last time: Estimation in general HMMs

In an HMM, the smoothing distribution fn(x0:n|y0:n) is the conditional

distribution of a set X0:n of hidden states given Y0:n = y0:n.

Theorem (Smoothing distribution)

fn(x0:n|y0:n) =
χ(x0)p(y0|x0)

∏n
k=1 p(yk|xk)q(xk|xk−1)
Ln(y0:n)

,

where

Ln(y0:n) = density of the observations y0:n

=

∫
· · ·
∫
χ(x0)p(y0|x0)

n∏
k=1

p(yk|xk)q(xk|xk−1) dx0 · · · dxn.
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Last time: Estimation in general HMMs

Assume that we want to compute, online for n = 0, 1, 2, . . .,

τn = E(φ(X0:n)|Y0:n = y0:n)

=

∫
· · ·
∫
φ(x0:n)fn(x0:n|y0:n) dx0 · · · dxn

=

∫
· · ·
∫
φ(x0:n)

χ(x0)p(y0|x0)
∏n

k=1 p(yk|xk)q(xk|xk−1)
Ln(y0:n)

dx0 · · · dxn,

where Ln(y0:n) (= obscene integral) is generally unknown. We thus face a

sequential MC problem (∗) with{
zn(x0:n)← χ(x0)p(y0|x0)

∏n
k=1 p(yk|xk)q(xk|xk−1),

cn ← Ln(y0:n).
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Conditional methods

Say that we want to generate a random vector from a given bivariate

density p(x, y). If we know how to draw from the conditional distribution

p(y|x) and the marginal p(x) this can be done naturally using the following

scheme.

draw Z1 ∼ p(x)
draw Z2 ∼ p(y|x = Z1)
return (Z1, Z2)
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Conditional methods

This can be naturally extended to n-variate densities p(x1, . . . , xn):

draw Z1 ∼ p(x1)
draw Z2 ∼ p(x2|x1 = Z1)
draw Z3 ∼ p(x3|x1 = Z1, x2 = Z2)
...

draw Zn−1 ∼ p(xn−1|x1 = Z1, x2 = Z2, . . . , xn−2 = Zn−2)
draw Zn ∼ p(xn|x1 = Z1, x2 = Z2, . . . , xn−1 = Zn−1)
return (Z1, . . . , Zn)

Theorem

The vector (Z1, . . . , Zn) has indeed n-variate density function

p(x1, . . . , xn).
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Sequential Monte Carlo (SMC) methods

It is natural to aim at solving the problem using usual self-normalized IS.

However, the generated samples (X0:n
i , ωn(X

0:n
i )) should be such that

having (X0:n
i , ωn(X

0:n
i )), the next sample (X0:n+1

i , ωn+1(X
0:n+1
i )) is

easily generated with a complexity that does not increase with n
(online sampling).

the approximation remains stable as n increases.

We call each draw X0:n
i = (X0

i , . . . , X
n
i ) a particle. Moreover, we denote

importance weights by

ωi
n

def
= ωn(X

0:n
i ).
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Sequential importance sampling (SIS)

We proceed recursively. Assume that we have generated particles (X0:n
i )

from gn(x0:n) so that

N∑
i=1

ωi
n∑N

`=1 ω
`
n

φ(X0:n
i ) ≈ Efn(φ(X0:n)),

where, as usual, ωi
n = ωn(X

0:n
i ) = zn(X

0:n
i )/gn(X

0:n
i ).

Key trick: Choose an instrumental distribution satisfying

gn+1(x0:n+1) = gn+1(xn+1|x0:n)gn+1(x0:n)

gn+1(x0:n+1) = gn+1(xn+1|x0:n)gn(x0:n).
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SIS (cont.)

Now assume that we have drawn X0:n ∼ gn(x0:n). Then, as

gn+1(x0:n+1) = gn+1(xn+1|x0:n)gn+1(x0:n) = gn+1(xn+1|x0:n)gn(x0:n),

the conditional method allows us to generate a draw X0:n+1 from

gn+1(x0:n+1) using the following procedure:

draw Xn+1 ∼ gn+1(xn+1|x0:n = X0:n)
let X0:n+1 ← (X0:n, Xn+1)

This can be repeated recursively, yielding online sampling from the

sequence (gn).
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SIS (cont.)

Consequently, X0:n+1
i and ωi

n+1 can be generated by

keeping the previous X0:n
i ,

simulating Xn+1
i ∼ gn+1(xn+1|X0:n

i ),

setting X0:n+1
i = (X0:n

i , Xn+1
i ), and

computing

ωi
n+1 =

zn+1(X
0:n+1
i )

gn+1(X
0:n+1
i )

=
zn+1(X

0:n+1
i )

zn(X0:n
i )gn+1(X

n+1
i |X0:n

i )
× zn(X

0:n
i )

gn(X0:n
i )

=
zn+1(X

0:n+1
i )

zn(X0:n
i )gn+1(X

n+1
i |X0:n

i )
× ωi

n.
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SIS (cont.)

Voilà, the sample (X0:n+1
i , ωi

n+1) can now be used to approximate

Efn+1(φ(X0:n+1))!

So, by running the SIS algorithm, we have updated an approximation

N∑
i=1

ωi
n∑N

`=1 ω
`
n

φ(X0:n
i ) ≈ Efn(φ(X0:n))

to an approximation

N∑
i=1

ωi
n+1∑N

`=1 ω
`
n+1

φ(X0:n+1
i ) ≈ Efn+1(φ(X0:n+1))

by only adding a component Xn+1
i to X0:n

i and sequentially updating the

weights.
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SIS: Pseudo code

for i = 1→ N do

draw X0
i ∼ g0

set ωi
0 =

z0(X0
i )

g0(X0
i )

end for

return (X0
i , ω

i
0)

for k = 0, 1, 2, . . . do
for i = 1→ N do

draw Xk+1
i ∼ gk+1(xk+1|X0:k

i )
set X0:k+1

i ← (X0:k
i , Xk+1

i )

set ωi
k+1 ←

zk+1(X
0:k+1
i )

zk(X
0:k
i )gk+1(X

k+1
i |X0:k

i )
× ωi

k

end for

return (X0:k+1
i , ωi

k+1)
end for
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Example: REA reconsidered

We consider again the example of REA for Markov chains (X = R,
X0 = x0 = a):

τn = E(φ(X0:n)|a ≤ X`,∀` = 0, . . . , n)

=

∫
(a,∞)n

φ(x0:n)

∏n−1
k=1 q(xk+1|xk)
P(a ≤ X`, ∀`)︸ ︷︷ ︸
=zn(x0:n)/cn

dx1:n.

Choose gk+1(xk+1|x0:k) to be the conditional density of Xk+1 given Xk

and Xk+1 ≥ a:

gk+1(xk+1|x0:k) = {cf. HA1, Problem 1} = q(xk+1|xk)∫∞
a q(z|xk) dz

.
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Example: REA

This implies that (recall that we have conditioned on X0 = x0 = a)

gn(x0:n) =

n−1∏
k=0

q(xk+1|xk)∫∞
a q(z|xk) dz

.

In addition, the weights are updated according to

ωi
k+1 =

zk+1(X
0:k+1
i )

zk(X
0:k
i )gk+1(X

k+1
i |X0:k

i )
× ωi

k

=

∏k
`=0 q(X

`+1
i |X`

i )∏k−1
`=0 q(X

`+1
i |X`

i )×
q(Xk+1

i |Xk
i )∫∞

a q(z|Xk
i ) dz

× ωi
k

=

∫ ∞
a

q(z|Xk
i ) dz × ωi

k.
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Example: REA; Matlab implementation for
AR(1) process with Gaussian noise

% design of instrumental distribution:

int = @(x) 1 − normcdf(a,alpha*x,sigma);
trunk_td_rnd = ... % use e.g. HA1, Problem 1, to simulate

% the conditional transition density;
% SIS:

part = a*ones(N,1); % initialization of all particles in a
w = ones(N,1);
for k = 1:(n − 1), % main loop

part_mut = trunk_td_rnd(part);
w = w.*int(part);
part = part_mut;

end
c = mean(w); % estimated probability
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REA: Importance weight distribution

/ Serious drawback of SIS: the importance weights degenerate!...

−15 −10 −5 0
0

500

1000
n = 1

−15 −10 −5 0
0
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1000
n = 10

−15 −10 −5 0
0

50

100
n = 100

Importance weights (base 10 logarithm)
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What's next?

Weight degeneration is a universal problem with the SIS method and is due

to the fact that the particle weights are generated through subsequent

multiplications.

This drawback prevented�during several decades�the SIS method from

being practically useful.

Next week we will discuss an elegant solution to this problem: SIS with

resampling (SISR).
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