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Last time: Variance reduction

Last time we discussed how to reduce the variance of the standard MC

sampler by introducing correlation between the variables of the sample.

More speci�cally, we used

1 a control variate Y such that E(Y ) = m is known:

Z = φ(X) + β(Y −m),

where β was tuned optimally to β∗ = −C(φ(X), Y )/V(Y ).

2 antithetic variables V and V ′ such that E(V ) = E(V ′) = τ and

C(V, V ′) < 0:

W =
V + V ′

2
.
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Last time: Variance reduction

The following theorem turned out to be useful when constructing antithetic

variables.

Theorem

Let V = ϕ(U), where ϕ : R→ R is a monotone function. Moreover,

assume that there exists a non-increasing transform T : R→ R such that

U
d.

= T (U). Then V = ϕ(U) and V ′ = ϕ(T (U)) are identically distributed

and

C(V, V ′) = C(ϕ(U), ϕ(T (U))) ≤ 0.

An important application of this theorem is the following: Let F be a

distribution function and φ a monotone function. Then, letting

U ∼ U(0, 1), T (u) = 1− u, and ϕ(u) = φ(F−1(u)) yields, for
V = φ(F−1(U)) and V ′ = φ(F−1(1− U)),

V
d.
= V ′ and C(V, V ′) ≤ 0.
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Last time: Variance reduction

τ = 2

∫ π/2

0
exp(cos2(x)) dx,


V = π exp(cos2(X)),

V ′ = π exp(sin2(X)),

W = V+V ′

2 .
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Control variates reconsidered

A problem with the control variate approach is that the optimal β, i.e.

β∗ = −C(φ(X), Y )

V(Y )
,

is generally not known explicitly. Thus, it was suggested to

1 draw (Xi)
N
i=1,

2 draw (Y i)Ni=1,

3 estimate, via MC, β∗ using the drawn samples, and

4 use this to optimally construct (Zi)Ni=1.

This yields a so-called batch estimator of β∗. However, this procedure is
computationally somewhat complex.
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An online approach to optimal control variates

The estimators

CN
def
=

1

N

N∑
i=1

φ(Xi)(Y
i −m)

VN
def
=

1

N

N∑
i=1

(Y i −m)2

of C(φ(X), Y ) and V(Y ), respectively, can be implemented recursively

according to

C`+1 =
`

`+ 1
C` +

1

`+ 1
φ(X`+1)(Y

`+1 −m)

and

V`+1 =
`

`+ 1
V` +

1

`+ 1
(Y `+1 −m)2.

with C0 = V0 = 0.
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An online approach to optimal control variates (cont.)

Inspired by this we set for ` = 0, 1, 2, . . . , N − 1,

Z`+1 = φ(X`+1) + β`(Y
`+1 −m),

τ`+1 =
`

`+ 1
τ` +

1

`+ 1
Z`+1,

(∗)

where β0
def
= 1, β`

def
= −C`/V` for ` > 0, and τ0

def
= 0 yielding an online

estimator. One may then establish the following convergence results.

Theorem

Let τN be obtained through (∗). Then, as N →∞,

(i) τN → τ (a.s.),

(ii)
√
N(τN − τ)

d.−→ N (0, σ2∗),

where σ2∗
def

= V(φ(X)){1− ρ(φ(X), Y )2} is the optimal variance.
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Example: the tricky integral again

We estimate

τ =

∫ π/2

−π/2
exp(cos2(x)) dx

sym
= 2

∫ π/2

0
exp(cos2(x)) dx∫ π/2

0
2
π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2

π︸︷︷︸
=f(x)

dx = Ef (φ(X))

using

Z = φ(X) + β∗(Y −m),

where Y = cos2(X) is a control variate with

m = E(Y ) =

∫ π/2

0
cos2(x)

2

π
dx = {use integration by parts} = 1

2
.

However, the optimal coe�cient β∗ is in general not known explicitly

(tedious calculations give β∗ = −4 e
1
2π I1

(
1
2

)
≈ −5.3432) .
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Example: the tricky integral again

cos2 = @(x) cos(x).^2;
phi = @(x) pi*exp(cos2(x));
m = 1/2;
X = (pi/2)*rand;
Y = cos2(X);
c = phi(X)*(Y − m);
v = (Y − m)^2;
tau_CV = phi(X) + (Y − m);
beta = − c/v;
for k = 2:N,

X = (pi/2)*rand;
Y = cos2(X);
Z = phi(X) + beta*(Y − m);
tau_CV = (k − 1)*tau_CV/k + Z/k;
c = (k − 1)*c/k + phi(X)*(Y − m)/k;
v = (k − 1)*v/k + (Y − m)^2/k;
beta = − c/v;

end
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Example: the tricky integral again
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Sequential MC problems

We will now (and for the coming two lectures) extend the principal goal of

the course to the problem of estimating sequentially sequences (τn)n≥0 of

expectations

τn = Efn(φ(X0:n)) =

∫
Xn

φ(x0:n)fn(x0:n) dx0:n

over spaces Xn of increasing dimension, where again the densities (fn)n≥0
are known up to normalizing constants only; i.e. for every n ≥ 0,

fn(x0:n) =
zn(x0:n)

cn
,

where cn is an unknown constant and zn is a known positive function on

Xn.

As we will see, such sequences appear in many applications in statistics and

numerical analysis.
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Prelude: Markov chains

A Markov chain on X ⊆ Rd is a family of random variables (= stochastic

process) (Xk)k≥0 taking values in X such that

P(Xk+1 ∈ B|X0, X1, . . . , Xk) = P(Xk+1 ∈ B|Xk)

for all (measurable) B ⊆ X. We call the chain time homogeneous if the

conditional distribution of Xk+1 given Xk does not depend on k.

The distribution of Xk+1 given Xk = x determines completely the

dynamics of the process, and the density q of this distribution is called the

transition density of (Xk). Consequently,

P(Xk+1 ∈ B|Xk = xk) =

∫
B
q(xk+1|xk) dxk+1.
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Markov chains (cont.)

The following theorem provides the joint density fn(x0, x1, . . . , xn) of
X0, X1, . . . , Xn.

Theorem

Let (Xk) be Markov with initial distribution χ. Then for n > 0,

fn(x0, x1, . . . , xn) = χ(x0)

n−1∏
k=0

q(xk+1|xk).

Corollary (Chapman-Kolmogorov equation)

Let (Xk) be Markov. Then for n > 1,

fn(xn|x0) =
∫
· · ·
∫ (n−1∏

k=0

q(xk+1|xk)

)
dx1 · · · dxn−1.
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Example: The AR(1) process

As a �rst example we consider a �rst order autoregressive process (AR(1))

in R. Set
X0 = 0, Xk+1 = αXk + εk+1,

where α is a constant and the variables (εk)k≥1 of the noise sequence are

i.i.d. with density function f . In this case,

P(Xk+1 ≤ xk+1|Xk = xk) = P(αXk + εk+1 ≤ xk+1|Xk = xk)

= P(εk+1 ≤ xk+1 − αxk|Xk = xk) = P(εk+1 ≤ xk+1 − αxk),

implying that

q(xk+1|xk) =
∂

∂xk+1
P(Xk+1 ≤ xk+1|Xk = xk)

=
∂

∂xk+1
P(εk+1 ≤ xk+1 − αxk) = f(xk+1 − αxk).
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Simulation of rare events for Markov chains

Let (Xk) be a Markov chain on X = R and consider the rectangle

B = B0 × B1 × · · ·Bn ⊆ Rn, where every B` = (a`, b`) is an interval. Here

B can be a possibly extreme event.

Say that we wish to to compute, sequentially as n increases, some

expectation under the conditional distribution fn|B of the states

X0:n = (X0, X1, X2, . . . , Xn) given X0:n ∈ B, i.e.

τn = Efn(φ(X0:n)|X0:n ∈ B) = Efn|B(φ(X0:n))

=

∫
B
φ(x0:n)

f(x0:n)

P(X0:n ∈ B)︸ ︷︷ ︸
=fn|B(x0:n)=zn(x0:n)/cn

dx0:n.

Here the unknown probability cn = P(X0:n ∈ B) of the rare event B is

often the quantity of interest.
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Simulation of rare events for Markov chains (cont.)

As

cn = P(X0:n ∈ B) =

∫
1B(x0:n)f(x0:n) dx0:n

a �rst�naive�approach could of course be to use standard MC and

simply

1 simulate the Markov chain N times, yielding trajectories (X0:n
i )Ni=1,

2 count the number NB of trajectories that fall into B, and

3 estimate cn using the MC estimator

cNn =
NB

N
.

Problem: if cn = 10−9 we may expect to produce a billion draws before

obtaining a single draw belonging to B! As we will se, SMC methods solve

the problem e�ciently.
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Estimation in general hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises two stochastic processes:

1 A Markov chain (Xk)k≥0 with transition density q:

Xk+1|Xk = xk ∼ q(xk+1|xk).

The Markov chain is not seen by us (hidden) but partially observed

through

2 an observation process (Yk)k≥0 such that conditionally on the chain
(Xk)k≥0,
(i) the Yk's are independent with
(ii) conditional distribution of each Yk depending on the corresponding Xk

only.

The density of the conditional distribution Yk|(Xk)k≥0
d.
= Yk|Xk will be

denoted by p(yk|xk).
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Estimation in general HMMs (cont.)

Graphically:

"!
# 
"!
# 
"!
# 

"!
# 
"!
# 
"!
# 

Yk−1 Yk Yk+1

Xk−1 Xk Xk+1
- - - -

6 6 6

... ... (Markov chain)

(Observations)

Yk|Xk = xk ∼ p(yk|xk) (Observation density)

Xk+1|Xk = xk ∼ q(xk+1|xk) (Transition density)

X0 ∼ χ(x0) (Initial distribution)

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (25) 25 / 35



Variance reduction reconsidered
Sequential MC problems

3 Examples of SMC problems

Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs
Example 3: Estimation of SAWs

Example HMM: A stochastic volatility model

The following dynamical system is used in �nancial economy (see Taylor

(1982)). Let {
Xk+1 = αXk + σεk+1,

Yk = β exp
(
Xk
2

)
εk,

where α ∈ (0, 1), σ > 0, and β > 0 are constants and (εk)k≥1 and (εk)k≥0
are sequences of i.i.d. standard normal-distributed noise variables. In this

model

the values of the observation process (Yk) are observed daily

log-returns (from e.g. the Swedish OMXS30 index) and

the hidden chain (Xk) is the unobserved log-volatility (modeled by a

stationary AR(1) process).

The strength of this model is that it allows for volatility clustering, a

phenomenon that is often observed in real �nancial time series.
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Example HMM: A stochastic volatility model

A realization of the the model looks like follows (here α = 0.975, σ = 0.16,
and β = 0.63).
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Example HMM: A stochastic volatility model

Daily log-returns from the Swedish stock index OMXS30, from 2005-03-30

to 2007-03-30.
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The smoothing distribution

When operating on HMMs, one is most often interested in the smoothing

distribution fn(x0:n|y0:n), i.e. the conditional distribution of a set X0:n of

hidden states given Y0:n = y0:n.

Theorem (Smoothing distribution)

fn(x0:n|y0:n) =
χ(x0)p(y0|x0)

∏n
k=1 p(yk|xk)q(xk|xk−1)
Ln(y0:n)

,

where Ln(y0:n) is the likelihood function given by

Ln(y0:n) = density of the observations y0:n

=

∫
· · ·
∫
χ(x0)p(y0|x0)

n∏
k=1

p(yk|xk)q(xk|xk−1) dx0 · · · dxn.
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Estimation of smoothed expectations

Being a high-dimensional (say n ≈ 1000 or 10, 000) integral over
complicated integrands, Ln(y0:n) is in general unknown. However by

writing

τn = E(φ(X0:n)|Y0:n = y0:n) =

∫
· · ·
∫
φ(x0:n)fn(x0:n|y0:n) dx0 · · · dxn

=

∫
· · ·
∫
φ(x0:n)

zn(x0:n)

cn
dx0 · · · dxn,

with {
zn(x0:n) = χ(x0)p(y0|x0)

∏n
k=1 p(yk|xk)q(xk|xk−1),

cn = Ln(y0:n),

we may cast the problem of computing τn into the framework of

self-normalized IS. In particular we would like to update sequentially, in n,
the approximation as new data (Yk) appears.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (30) 30 / 35
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Self-avoiding walks (SAWs) in the 2-dim integer (Z2) lattice

Let Sn
def
= {x0:n ∈ Z2n : x0 = 0, |xk+1 − xk| = 1, xk 6= x`, ∀0 ≤ ` < k ≤ n}

be the set of n-step self-avoiding walks in Z2.
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A self−avoiding walk of length 50
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Self-avoiding walks (SAWs) in the honeycomb lattice (HCL)

Let

Sn
def
= {x0:n ∈ HCL : x0 = 0, |xk+1 − xk| = 1, xk 6= x`,∀0 ≤ ` < k ≤ n} be

the set of n-step self-avoiding walks in HCL.
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M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (33) 33 / 35



Variance reduction reconsidered
Sequential MC problems

3 Examples of SMC problems

Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs
Example 3: Estimation of SAWs

Application of SAWs

In addition, let

cn = |Sn| = The number of possible SAWs of length n.

SAWs are used in

polymer science for describing long chain polymers, with the

self-avoidance condition modeling the excluded volume e�ect.

statistical mechanics and the theory of critical phenomena in

equilibrium.

However, computing cn (and in analyzing how cn depends on n) is known
to be a very challenging combinatorial problem!
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An MC approach to SAWs

Trick: let fn(x0:n) be the uniform distribution on Sn:

fn(x0:n) =
1

cn
1Sn(x0:n)︸ ︷︷ ︸
=z(x0:n)

, x0:n ∈ Z2n,

We may thus cast the problem of computing the number cn (= the

normalizing constant of fn) into the framework of self-normalized IS based

on some convenient instrumental distribution gn on Z2n.

In addition, solving this problem for n = 1, 2, 3, . . . , 508, 509, . . . calls for
sequential implementation of IS.

This will be the topic of HA2!
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