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© Sequential MC problems

© 3 Examples of SMC problems
@ Prelude: Markov chains
@ Example 1: Simulation of extreme events
@ Example 2: Estimation in general HMMs
@ Example 3: Estimation of SAWs

M. Wiktorsson Monte Carlo and Empirical Methods for Stoch 2 /35



Variance reduction reconsidered

We are here — o

@ Variance reduction reconsidered

M. Wiktorsson Monte Carlo and Empirical Methods for Stoch 3/35



Variance reduction reconsidered

Last time: Variance reduction

Last time we discussed how to reduce the variance of the standard MC

sampler by introducing correlation between the variables of the sample.
More specifically, we used

@ a control variate Y such that E(Y) = m is known:
Z = ¢(X) + B(Y —m),

where 3 was tuned optimally to 5* = —C(¢(X),Y)/V(Y).

@ antithetic variables V' and V' such that E(V) = E(V') = 7 and
C(V,V') < 0;

V+Vv
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Variance reduction reconsidered

Last time: Variance reduction

The following theorem turned out to be useful when constructing antithetic
variables.

Theorem

Let V.= o(U), where ¢ : R — R is a monotone function. Moreover,
assume that there exists a non-increasing transform T : R — R such that
UZTU). Then V = (U) and V' = o(T(U)) are identically distributed
and

C(V,V") = Cp(U), p(T(U))) < 0.

An important application of this theorem is the following: Let F' be a
distribution function and ¢ a monotone function. Then, letting
U~U0,1), T(u) =1—u, and p(u) = ¢(F~*(u)) yields, for

V =¢(F1(U)) and V' = ¢(F~1(1 - U)),

VEV' o and C(V,V')<0.
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Variance reduction reconsidered

Last time: Variance reduction

V = mexp(cos?(X)),

/2
T= 2/ exp(cos?(z)) dz, V' = mexp(sin?(X)),
0

_ V4V’
W= V£V

With Antithetic sampling|
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Variance reduction reconsidered

Control variates reconsidered

A problem with the control variate approach is that the optimal £, i.e.

is generally not known explicitly. Thus, it was suggested to
O draw (X)),
@ draw (YHNY,,
© estimate, via MC, 8* using the drawn samples, and
@ use this to optimally construct (Z%)Y,.

This yields a so-called batch estimator of 5*. However, this procedure is
computationally somewhat complex.
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Variance reduction reconsidered

An online approach to optimal control variates

The estimators

deflqu )

def 1 i 2
VN = NZ;(Y —m)

of C(¢(X),Y) and V(Y'), respectively, can be implemented recursively
according to

_ ¢ 1 041
Coy1 = £+1C£+ £+1¢(X£+1)(Y m)

and

_ ¢ 1 041 2
Ven = g Vet 7V m)°.

with Cp = Vp = 0.
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Variance reduction reconsidered

An online approach to optimal control variates (cont.)

Inspired by this we set for £ =0,1,2,..., N — 1,

Zoi1 = ¢(Xopy) + Be(Y = m),

¢ 1 (*)

=———n+—72
To+1 €+1Te+£+le+1,

def

where [ «, Be = —Cy/Vy for £ > 0, and 7 =) yielding an online
estimator. One may then establish the following convergence results.
Theorem

Let Ty be obtained through (*). Then, as N — oo,

Q@ v — 7 (as.),

O VN(rv — 1) =5 N(0,02),

where 02 ZV(¢(X)){1 — p(¢(X),Y)2} is the optimal variance.
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Variance reduction reconsidered

Example: the tricky integral again

We estimate

w/2 /2
T = / exp(cos?(z)) dz "£" 2/ exp(cos?(x)) dz
0

—7/2
w/2
/ 2%‘”‘p(0082(%’)) z dz = Ez(¢(X))
0 <
=¢() =f(@)

using
Z = ¢(X)+ (Y —m),

where Y = cos?(X) is a control variate with

/2 9 1
m=E(Y) = / cos?(z)= dz = {use integration by parts} = 3"
0 s

However, the optimal coefficient 5* ils in general not known explicitly
(tedious calculations give 8* = —4ezm ]y (3) &~ —5.3432) .
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Variance reduction reconsidered

Example: the tricky integral again

cos2 = @(x) cos(x)."2;

phi = @(x) pixexp(cos2(x));
m=1/2;

X = (pi/2)*rand;

Y = cos2 (X);
c = phi(X)*(Y — m);

v = (Y —m)"2;
tau_CV = phi(X) + (Y — m);
beta = — c¢/v;

for k = 2:N,
X = (pi/2) *rand;
Y = cos2(X);
Z = phi(X) + betax(Y — m);

tau_CV = (k — 1)*tau_CV/k + Z/k;

c = (k — 1)*c/k + phi(X)*(Y — m)/k;
v = (k — 1)*xv/k + (Y — m)"2/k;

beta = — c/v;

end
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Variance reduction reconsidered

Example: the tricky integral again
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Sequential MC problems

Sequential MC problems

We will now (and for the coming two lectures) extend the principal goal of
the course to the problem of estimating sequentially sequences (7,),>0 of
expectations

Tn = Efn (¢(X0n)) = ¢($0:n)fn($0:n) dSUO:n
Xn
over spaces X,, of increasing dimension, where again the densities (fy,)n>0
are known up to normalizing constants only; i.e. for every n > 0,
Zn($0:n)

fn(x[):n) =

Cn
where ¢,, is an unknown constant and z, is a known positive function on
Xn.

As we will see, such sequences appear in many applications in statistics and
numerical analysis.
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Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs

3 Examples of SMC problems Example 3: Estimation of SAWs

Prelude: Markov chains

A Markov chain on X C R? is a family of random variables (= stochastic
process) (X )r>0 taking values in X such that

P(Xg+1 € B|Xo, X1, ..., Xi) = P(Xg11 € B|Xy)

for all (measurable) B C X. We call the chain time homogeneous if the
conditional distribution of X1 given X} does not depend on k.

The distribution of X1 given X} = x determines completely the
dynamics of the process, and the density ¢ of this distribution is called the
transition density of (Xj). Consequently,

P(Xpy1 € BI Xy = 23) = / q(Tpq1|Tr) dTppr.
B
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Prelude: Markov chains
- . L Example 1: Simulation of extreme events
) 3 Example 2: Estimation in general HMMs
3 Examples of SMC problems Example 3: Estimation of SAWs

Markov chains (cont.)
The following theorem provides the joint density f,,(zo,z1,...,zy) of
Xo, X1, X

Theorem
Let (X) be Markov with initial distribution x. Then for n > 0,

n—1

Tl il o o o ) = Sl H q(Tpy1|zR).
k=0

Corollary (Chapman-Kolmogorov equation)
Let (X) be Markov. Then forn > 1,

n—1
Jfn(n|z0) :// 1T a(@rralar) | doy - - dopes.
k=0
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Prelude: Markov chains

Example 1: Simulation of extreme events

Example 2: Estimation in general HMMs
3 Examples of SMC problems Example 3: Estimation of SAWs

Example: The AR(1) process

As a first example we consider a first order autoregressive process (AR(1))

in R. Set
Xo=0, Xg1=aXk+ €y,

where o is a constant and the variables (ex);>1 of the noise sequence are
i.i.d. with density function f. In this case,

P(Xpt1 < 2p1| Xk = 21) = P(aXp + €1 < 21| X = 1)
=P(ert1 < 21 — axp| Xp = 21) = Plepg1 < 2pq1 — amy),
implying that

0
q(@pt1ler) = mP(XkH < x| X = )

= aip(ek—&—l < Tp1 — axg) = fTp1 — axp).
Thk+1
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Prelude: Markov chains
Example 1: Simulation of extreme events

2: i ion i \/
3 Examples of SMC problems Example 2: Estimation in general HMMs

Example 3: Estimation of SAWs

Simulation of rare events for Markov chains

Let (X)) be a Markov chain on X = R and consider the rectangle

B =By x By x---B,, CR", where every By = (ay, by) is an interval. Here
B can be a possibly extreme event.

Say that we wish to to compute, sequentially as n increases, some

expectation under the conditional distribution f,, g of the states
Xo.n = (Xo, X1, X2,..., X,) given Xo., € B, e

Tn = Efn(QS(XO:n)‘XO:n € B) = Efn‘B(qb(XO:n))

_ f(zomn)
= /B¢($0n) W:GB) dzo.p.
| —

:fn\B(xO:n):Zn(i():n)/cn

Here the unknown probability ¢, = P(Xy., € B) of the rare event B is
often the quantity of interest.
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Prelude: Markov chains

Example 1: Simulation of extreme events

Example 2: Estimation in general HMMs
3 Examples of SMC problems Example 3: Estimation of SAWs

Simulation of rare events for Markov chains (cont.)

Cp = IP>(‘X70:n S B) = / ]-B(xo:n)f(-rO:n) de:n

a first—naive—approach could of course be to use standard MC and

simply
© simulate the Markov chain NV times, yielding trajectories (X ")
@ count the number Ny of trajectories that fall into B, and

N
i=1"

© estimate ¢, using the MC estimator

N

N B

¢, = F

Problem: if ¢,, = 1072 we may expect to produce a billion draws before

obtaining a single draw belonging to B! As we will se, SMC methods solve
the problem efficiently.
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Prelude: Markov chains
Example 1: Simulation of extreme events

3 Examples of SMC problems Example 2: Estimation in general HMMs

Example 3: Estimation of SAWs

Estimation in general hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises two stochastic processes:

@ A Markov chain (Xj)g>0 with transition density ¢:

Xit1| Xk = o ~ q(@pr1|T8)-

The Markov chain is not seen by us (hidden) but partially observed
through
@ an observation process (Y} )r>0 such that conditionally on the chain
(X&)k>0.
@ the Yy's are independent with
@ conditional distribution of each Y} depending on the corresponding Xy,
only.
The density of the conditional distribution Y% |(X%)r>0 L Y5 | X will be
denoted by p(yx|xr).
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Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs

3 Examples of SMC problems Example 3: Estimation of SAWs

Estimation in general HMMs (cont.)

Graphically:

@ a @ (Observations)
@ 0 @ ... (Markov chain)

Yi| X = xr ~ p(yk|zr) (Observation density)
X1 Xk =z ~ q(xp41|z8) (Transition density)
Xo ~ x(x0) (Initial distribution)
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Prelude: Markov chains
Example 1: Simulation of extreme events

3 Examples of SMC problems Example 2: Estimation in general HMMs

Example 3: Estimation of SAWs

Example HMM: A stochastic volatility model

The following dynamical system is used in financial economy (see Taylor
(1982)). Let
Xk+1 = aXy + o€xya,

Y, = Bexp (%) €k,

where o € (0,1), 0 > 0, and 8 > 0 are constants and (ex)r>1 and (gx)k>0
are sequences of i.i.d. standard normal-distributed noise variables. In this

model
o the values of the observation process (Y}) are observed daily
log-returns (from e.g. the Swedish OMXS30 index) and
@ the hidden chain (X}) is the unobserved log-volatility (modeled by a
stationary AR(1) process).

The strength of this model is that it allows for volatility clustering, a
phenomenon that is often observed in real financial time series.
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Prelude: Markov chains

Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs
Example 3: Estimation of SAWs

Example HMM: A stochastic volatility model

3 Examples of SMC problems

A realization of the the model looks like follows (here oo = 0.975, o = 0.16,
and 5 = 0.63).
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Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs
Example 3: Estimation of SAWs

3 Examples of SMC problems

Example HMM: A stochastic volatility model

Daily log-returns from the Swedish stock index OMXS30, from 2005-03-30
to 2007-03-30.
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Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs

3 Examples of SMC problems Example 3: Estimation of SAWs

The smoothing distribution

When operating on HMMs, one is most often interested in the smoothing
distribution fy, (0. |yo:n), i.€. the conditional distribution of a set Xy, of

hidden states given Yo., = yo.n-
Theorem (Smoothing distribution)

_ X(@o)p(yolzo) [Ty P(yk|z) g (k| TR-1)
fn($01n|y0:n) - ;n(lyOn) :

where L, (yo.n) is the likelihood function given by

L, (yo.n) = density of the observations yo.,,

— [+ [ xaowlanleo) [T plonkoia(ontoir) deo-- ds.
k=1

Y
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Prelude: Markov chains
Example 1: Simulation of extreme events

3 Examples of SMC problems Example 2: Estimation in general HMMs

Example 3: Estimation of SAWs

Estimation of smoothed expectations

Being a high-dimensional (say n = 1000 or 10, 000) integral over
complicated integrands, L, (yo.n) is in general unknown. However by
writing

Tn = E(QS(XOn)D/On = yo:n) = / - / gf)(l‘o;n)fn(xom‘yom) dzg---dz,
:/--~/¢(x0m)wmdxo--~dxn,

C
with
Zn(T0:n) = X(z0)P(Yolro) [Tiey P(yklzr)q(@r]Tp—1),
Cpn = Ln(yl):n)a

we may cast the problem of computing 7, into the framework of
self-normalized IS. In particular we would like to update sequentially, in n,
the approximation as new data (Y}) appears.
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Prelude: Markov chains

Example 1: Simulation of extreme events

Example 2: Estimation in general HMMs

3 Examples of SMC problems

Example 3: Estimation of SAWs

Self-avoiding walks (SAWSs) in the 2-dim integer (Z?) lattice

Let Snd:ef{afom €72 w9 =0,|xpp1 —ap| =1, 28 # 20, V0 < L < k< n}

be the set of n-step self-avoiding walks in Z2.

A self-avoiding walk of length 50
T
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Prelude: Markov chains
Example 1: Simulation of extreme events
Example 2: Estimation in general HMMs

Example 3: Estimation of SAWs

Self-avoiding walks (SAWSs) in the honeycomb lattice (HCL)

3 Examples of SMC problems

Let

Snd:d{aco;n € HCL: 29 =0, |zp11 — x| = 1,25 # 20, V0 < L < k < n} be

the set of n-step self-avoiding walks in HCL.

Self-avoiding walk of length 50 in the HCL
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Application of SAWs

Example 3: Estimation of SAWs

In addition, let

¢n = |Sn| = The number of possible SAWs of length n.

SAWs are used in
@ polymer science for describing long chain polymers, with the
self-avoidance condition modeling the excluded volume effect.
@ statistical mechanics and the theory of critical phenomena in
equilibrium.
However, computing ¢, (and in analyzing how ¢,, depends on n) is known
to be a very challenging combinatorial problem!
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An MC approach to SAWs

Example 3: Estimation of SAWs

Trick: let fn(2o.n,) be the uniform distribution on S,,:

1

fn(xO:n) = ]lSn (xO:n)v Ty € Z2na

Cp e e’
=2(z0:n)

We may thus cast the problem of computing the number ¢,, (= the
normalizing constant of f,,) into the framework of self-normalized IS based
on some convenient instrumental distribution g,, on Z2".

In addition, solving this problem for n =1,2,3,...,508,509,... calls for
sequential implementation of IS.

This will be the topic of HA2!
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